A Source Book from The Open Group

The Single UNIX ® Specification:

Authorized Guide to Version 4

The Open Group

Copyright © March 2010, The Open Group
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission
of the copyright owners.

A Source Book from The Open Group
The Single UNIX® Specification: Authorized Guide to Version 4

ISBN: 1-931624-84-4
Document Number: G101

Published by The Open Group, March 2010.

Any comments relating to the material contained in this document may be submitted by email to:

OGspecs@opengroup.org

ii A Source Book from The Open Group (2010)

Contents

Chapter 1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.11.1
1.11.2
1.11.3
1.11.4
1.11.5
1.11.6
1.11.7
1.11.8
1.11.9
1.11.10
1.11.11
1.11.12
1.12
1.12.1
1.12.2
1.12.3
1.12.4
1.13
1.14

Chapter 2
2.1
2.2
2.3
2.4
25

The Single UNIX Environment ... 1
INEFOAUCTION ... 1
INtErface COUNLSoeiiiiiiiiii e 2
Formal Standards AlIGNMENtcoccouviiiiiiiiiiei e 2
POrtability COUESoiiiiiiiiiieiiiee s 2
(0011 o]0l €] o 0] o 1 T PP PT TP PR 6
Common Directories and DEVICEScueeeeeiiiiieeeniiiiiee i 7
Environment Variables. ... 7
YACC Grammars as Specificationsccccovvvveeie e 8
Regular EXPreSSIONSeviiiiiiiiiieiiiiiiee ettt 9
FlE ACCESS ..ttt e e e e e 9
Programming ENVIrONMENTcooiiiiiiiiiiiee e 9

C-Language SUPPOITuveeeiiiieeeeiiiiiiiieree e e e 9
Feature Test Macros and Name Space ISSU€es..........ccccovcvvveeennne 10
Error NUMDBDEIS ... 10
SIgNAl CONCEPLS oottt 10
Standard 1/O StreamIS.......oouviiiiiiiiiiee et 11
STREAMS ...ttt 11
XSl Interprocess COMMUNICALIONccuvveeeeriiieieeiiiieee e 11
REAIME ..oiieeeee e e 11
I (== o TP 12
SOCKEES ...ttt e e e 12
General Terminal INterface ... 12
How to Read an XSH Reference Page.........cccccevviiieiiiiiiieenennns 12
Commands and Utilities ENVIronmMentccoceeeviiiieeeeiniieeeennns 13
Shell Command LangQUAGEocuuveeeeiiiiiiieeiiiieee e sieeee e 13
SYMDOLIC LINKS....ceiiiiiiiiieiiiiiee e 13
File Format NOtationcoeiiiiiiiiiiiiiiiieee e 13
How to Read an XCU Reference Pageccccccovvieeiiiniinenenns 14
Terminal Interfaces ENVIroNmMeNtcoocvviieiiiiiieienniieee i 14
INternationalizationccoviiiiiiii e 15

The Single UNIX Specification, Version 4 17
Base Definitions (XBD).......ccciiiiiiiaiiiiiiiee it 17
System Interfaces (XSH)oovviiiiiiiiii e 18
Shell and UtilitiesS (XCU)uvuiiiiiiiiiiiee et 18
RAtioNale (XRAT) ...eeiiieiiiiiiie ettt 19
X/Open Curses (XCURSES)ccuvveiiiiiiiieee e 19

The Single UNIX® Specification: Authorized Guide to Version 4

Contents

Chapter 3 System INterfaCces ..., 21
3.1 BasSE DOCUMENTSuuiiiiiiiiie i 21
3.2 Overview of Changesuueeviiiieiiii e 21
3.3 System Interfaces by Categoryccccovvvveeeiiee e, 25
3.4 XSH OpPtion GrOUPS.....ccceviiiiiiieeiee e e ceecre e e e eeeaee s 32
3.5 (@] 0110 g 1S3 2o [o3 Y RS 34
Chapter 4 Shell and ULIHtIESccoeiiiieiceeceee e, 37
4.1 (001110 g ST 1 10, LU R 37
4.2 FUNCHONAl OVEIVIEW ...t 37
4.3 BaSE DOCUMENTSeuiiiiiiiie e 39
4.4 Overview of Changesuuevviiieeeiiiiccieeece e 39
45 EXCIUSION Of ULIlItIES. ... 40
Chapter 5 HEAAEIS ... 45
5.1 Header and Name Space RUIES.........ccovvieeiiiiiiiiiiiiiicecee e, 45
5.1.1 ISO C HEAUEIS ...ttt 45
51.2 POSIX.1-2008 Base Headers........cccocvveveeeiiiiiieee it 46
5.1.3 DS I o 1= T= o =T PP 47
5.2 NamMES Safe 10 USE ..oooiiiiiiiie it 48
53 BasSE DOCUMENTSuuiiiiiiiiie e 48
5.4 Overview of Changesuueeviiieeiiii e 48
Chapter 6 Terminal Interfaces ... 51
6.1 FUNCHONAl OVEIVIEW ...t 51
6.1.1 CUrSES INLEITACESvveeee i 51
6.1.2 CUISES ULIIILIES...eeiii i 53
6.2 Overview of Changesuuveviiieeiiiiiicceeee e 53
Chapter 7 System Interface Table ... 55
7.1 INEFOAUCTION ...t 55
7.2 System Interface Tablecovveeiiiiiiiiie e 56
Chapter 8 Utility Interface Table ..., 81
8.1 INEFOAUCTION ...t 81
8.2 Utility Interface Tableoooooiiiiiiiiiee e 82
Chapter 9 Header Interface Table ..., 87
9.1 INEFOAUCTION ...t 87
9.2 Header Interface Table ... 88
Chapter 10 XCURSES Interface Table ... 91
10.1 INEFOAUCTION ... 91
10.2 XCURSES Interface Table.........coocuieiiiiiiiiee e 91
Chapter 11 System Interfaces Migration —...........ccccocoeeeiiceeeiccee 101
111 INEFOAUCTION .. 101
11.2 SYStEM INLEITACES ...t 101
Chapter 12 Utilities Migration ..., 299
12.1 INEFOAUCTION .. 299
12.2 UBIHEIES et e e e e e e e e e 299

v A Source Book from The Open Group (2010)

Contents

Chapter 13
13.1
13.2

Chapter 14
14.1
14.2
14.2.1
14.2.2
14.2.3
14.2.4
14.2.5
14.2.6
14.2.7
14.2.8
14.2.9
14.3
14.3.1
14.4
14.4.1
14.4.2
14.4.3
14.5
14.5.1
14.5.2
14.5.3
14.5.4
14.5.5
14.5.6
14.6
14.6.1
14.6.2
14.6.3
14.6.4
14.6.5
14.6.6
14.6.7
14.6.8
14.6.9
14.6.10
14.6.11
14.6.12
14.6.13
14.7
14.8
14.8.1
14.8.2
14.8.3
14.8.4
14.8.5
14.8.6
14.8.7

Headers Migrationccccooovevieieieeeieceeeceeee 341
INEFOAUCTION .. 341
HEAABIS ...t 341

ISO C MIQrationccccoeeieieieiceecceeeee e 363
INEFOAUCTION .. 363
Language ChangeSscccoeiiiiiiiiiiiieeeee e 363

NEW KEYWOITSuuiiiiiiiiiiieeee e e e e e e e s e e e e e e e e 363
NEW TYPES .. 364
TYPE QUANTIEIS ..evveiieeee e 364
BOOIBAN ..o 365
Universal Character Names..........eoeeiiiieieeiiiiiiee et 365
1= TSRS 365
Predefined 1dentifiers...........coooiiiiiii i 366
Compound LIteralSccuvviieeiieeee i 366
Designated INItIAliZErsccoeeviiiiiciiieeee e 366
Decimal Integer CONStaNtSc.vvvvveeiieeeee i e e e s 367
S] o T (= = | U 367
IMPIICit DECIArationsccooiiiiiiiiiiiiiic e 367
SIZBO0T e 367
Multiplicative OPEratorscccovevcuvviiiiiieeee e e e e 367
Enumeration SPeCIfierscccccoveiiiiiiiiiiiee e 368
Variable Length Arraycccvviiiiiiiiiee e 368
Array DecClarationsccccvvieiiiieie e 368
Array Type Compatibilityccceveveeeiiiiiie e 368
Incomplete Array Structure Members...........cccccvveeieeeeee e, 368
BIOCKS ... 369
The for Statement.......c..eviiiii s 369
=T Lo PP 369
COMMENTS ... e e e e e e e e e e e e eennernnnne 370
Hexadecimal Floating-Point Constants...............coccccvvvvvieeeeeeeeenn. 370
Predefined MaCIOSocuiiiiiiiiiiie e 370
Source File INCIUSIONcooiiiiiiieiiiie e 370
Translation-Time ArithmetiC ..., 370
Minimum Maximum Line Length........cccccceevieeeiiiiiiiiiieeeeeee e, 371
Case-Sensitive 1dentifiers ... 371
[INE DIFECHIVE ...veiii ittt e e 371
Empty Argument MacroSc.cuovviiiiiiiiiiieeeiceiiine et 371
Pragmas ... 371
Translation LIMItS.......ooveiieiiiiiie e 371
TOKEN PASHNG ..vvvviiieeeei i 372
VariadiC MACIOSceieiiiiiiie et 372
1Yz B o0 o) Y/ () ISP 372
HEAABIS ... 373
INEEOET TYPES .. ittt 373
Exact-Width Integer TYPES......cccoiiiiiiiiiiiiieeee e 373
Minimum-Width Integer TYPeSccccvviiiiiiiiie e 374
Fastest Minimum-Width Integer Typescccccvviveeeeeeeeeieicenns 374
Integer Types Capable of Holding Object Pointers...................... 374
Greatest-Width Integer TYPeS.......coovciiviiiiiiiee e, 374
Limits of Specified-Width Integer Typescccccvvvevveeeeeiiiiiiinns 376
=T (0 TP PP 376

The Single UNIX® Specification: Authorized Guide to Version 4

Contents

14.9 ComPpleX NUMDEIS ...t 376
14.9.1 TrigoONOMEtriC FUNCLIONSuvviiiiiiieeeee e 377
14.9.2 Hyperbolic FUNCHONScooieeiiiiiiiiieeee e 378
14.9.3 Exponential and Logarithmic Functions...............ccccccvvviveeeeneeennn. 378
149.4 Power and Absolute-Value FUNCIONScccceeviiiiiee i 379
1495 Manipulation FUNCHONS...........ccooiiiiiiiiiiiicece e 379
14.10 Other Mathematical Changes...........cccccvviieeiieee e 380
14.10.1 Classification MACIOS........ccvviiieiiiiiiee e 380
14.10.2 TrigoNOMEtriC FUNCLIONSuvviiiiieieeeee e 381
14.10.3 Hyperbolic FUNCHONScoviieiiiiiiciieeee e 381
14.10.4 Exponential and Logarithmic Functions...............ccccccvvveeveeneeeenn, 382
14.10.5 Nearest Integer FUNCHONSccccviiiiiiieeee e 384
14.10.6 Remainder FUNCHONScooiiiiiiiie e 385
14.10.7 Manipulation FUNCHONS..........cccooiiiiiiiiiiiicece e 385
14.10.8 (070] 191 oF= LG 1ST] g TN 1Y/ F= Lol (o SR ERRRR 386
14.11 Floating-Point Environment SUPPOIt.........cccooviiiiiiiiiieeeeee e 387
14.11.1 oY o 110 1 PEERRR 387
14.11.2 [0 10] o 1 oo [P PEERRR 388
14.11.3 ENVIFONMENT ...oiiiiiiiiiee e 388
14.12 Type-Generic Math ..o 389
14.12.1 Unsuffixed Functions With a C-Prefixed
COUNEIPAIT ettt 389
14.12.2 Unsuffixed Functions Without a C-Prefixed
COUNLEIPAIT ettt 389
14.13 Other Library Changesuevvveeeiiiiiiiiiiieeeeeee e a e 390
14.13.1 Wide-String Numeric Conversion FUNCLIONS...........cevveveeeeiiiiinnns 393
14.14 ANNEXES ... e e e e 394
INAEX e 395

A Source Book from The Open Group (2010)

About This Document

This

document is designed for users, developers, and implementors of open systems. It provides

complete information on what's new in the Single UNIX Specification, Version 4, including POSIX.1-2008,
with comprehensive reference material on every aspect.

This document is structured as follows:

Chapter 1 describes how the Single UNIX Specification environment is organized and where to look
for more detailed information in the Single UNIX Specification.

Chapter 2 gives an overview of the documents that comprise the different parts of the Single UNIX
Specification, Version 4, and how they are organized. This includes an overview of the contents of
each of the documents and their relation to each other.

Chapter 3 covers the C language programming interfaces that are the system interfaces, describing
the base documents, an overview of the changes in this version, and lists of the new functions. It
also describes the options and groups the interfaces into categories to give the reader an
understanding of what facilities are available.

Chapter 4 covers the shell and utilities, describing the base documents, an overview of the changes
in this version, and lists of the new features. It also contains rationale of why certain utilities are
excluded, and also a description of the options.

Chapter 5 covers the C language headers and name space rules. It describes the base documents,
and gives an overview of the changes in this version.

Chapter 6 describes the contents of X/Open Curses, Issue 7.

Chapter 7 gives a quick reference table of all the system interfaces defined in the Base
Specifications, Issue 7, complete with an indication of their status for XSl-conforming and POSIX-
conforming systems, and their availability in UNIX 03, UNIX 98, UNIX 95, POSIX.1-2001,
POSIX.1-1996, POSIX.2-1992, C99, and C89.

Chapter 8 gives a quick reference table of all the utility interfaces defined in the Base Specifications,
Issue 7, complete with an indication of their status for XSl-conforming and POSIX-conforming
systems, and their availability in UNIX 03, UNIX 98, UNIX 95, POSIX.1-2001, and POSIX.2-1992.

Chapter 9 gives a quick reference table of the headers defined in the Base Specifications, Issue 7,
complete with an indication of their status for XSl-conforming and POSIX-conforming systems, and
their availability in UNIX 03, UNIX 98, UNIX 95, POSIX.1-2001, POSIX.1-1996, POSIX.2-1992, C99,
and C89.

Chapter 10 gives a quick reference table of the XCURSES interfaces, complete with an indication of
their availability in other specifications.

Chapter 11 provides migration information on the changes made to system interfaces in Issue 7 that
might affect an application program.

The Single UNIX® Specification: Authorized Guide to Version 4 Vii

About This Document

= Chapter 12 provides migration information on the changes made to the utilities in Issue 7 that might
affect an application program.

= Chapter 13 provides migration information on the changes made to the headers in Issue 7 that
might affect an application program.

= Chapter 14 provides migration information on the changes made to the ISO C Language for the
ISO/IEC 9899: 1999 standard.

viii A Source Book from The Open Group (2010)

About The Open Group

The Open Group

The Open Group is a global consortium that enables the achievement of business objectives through IT
standards. With more than 375 member organizations, The Open Group has a diverse membership that
spans all sectors of the IT community — customers, systems and solutions suppliers, tool vendors,
integrators, and consultants, as well as academics and researchers — to:

= Capture, understand, and address current and emerging requirements, and establish policies and
share best practices

= Facilitate interoperability, develop consensus, and evolve and integrate specifications and open
source technologies

= Offer a comprehensive set of services to enhance the operational efficiency of consortia
= QOperate the industry’s premier certification service
Further information on The Open Group is available at www.opengroup.org.

The Open Group publishes a wide range of technical documentation, most of which is focused on
development of Open Group Standards and Guides, but which also includes white papers, technical
studies, certification and testing documentation, and business titles.

Full details and a catalog are available at www.opengroup.org/bookstore.

Readers should note that Corrigenda may apply to any publication. Corrigenda information is published
at www.opengroup.org/corrigenda.

The Single UNIX® Specification: Authorized Guide to Version 4 iX

http://www.opengroup.org
http://www.opengroup.org/bookstore
http://www.opengroup.org/corrigenda

About the Austin Group

The Austin Group is a joint working Group of members of the IEEE Portable Applications Standards
Committee, members of The Open Group, and members of ISO/IEC Joint Technical Committee 1 (JTC1).
The Austin Group continues as the maintenance body for the specification that is ISO/IEC 9945, IEEE Std
1003.1, and The Open Group Base Specifications.

Anyone wishing to participate in the Austin Group should contact the chair with their request. There are
no fees for participation or membership. You may participate as an observer or as a contributor. You do
not have to attend face-to-face meetings to participate; electronic participation is most welcome. For more
information on the Austin Group and how to participate, see www.opengroup.org/austin.

X A Source Book from The Open Group (2010)

http://www.opengroup.org/austin

Trademarks

ArchiMate®, Jericho Forum®, Making Standards Work®, The Open Group®, TOGAF®, UNIX®, and the
“X"® device are registered trademarks and Boundaryless Information Flow™, DirecNet™, FACE™, and
The Open Group Certification Mark™ are trademarks of The Open Group in the United States and other
countries.

POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.

The Open Group acknowledges that there may be other company names and products that might be
covered by trademark protection and advises the reader to verify them independently.

The Single UNIX® Specification: Authorized Guide to Version 4 Xi

Ackno wledgements

The Open Group gratefully acknowledges:
= The Austin Group for developing the Base Specifications, Issue 7
= The Base Working Group for developing XCURSES, Issue 7
= Finnbarr P. Murphy for writing Chapter 14, the ISO C Language migration chapter

Xii A Source Book from The Open Group (2010)

Referenced Documents

The following documents are referenced in this guide:

ANSI C
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

HP-UX Manual
Hewlett-Packard HP-UX Release 9.0 Reference Manual, Third Edition, August 1992.

IEC 60559:1989
IEC 60559:1989, Binary Floating-Point Arithmetic for Microprocessor Systems (previously
designated IEC 559:1989). (Previously designated IEC 559.)

ISO/IEC 10646-1: 2000
ISO/IEC 10646-1:2000, Information Technology — Universal Multiple-Octet Coded Character Set
(UCS) — Part 1: Architecture and Basic Multilingual Plane.

ISO/IEC 10967-1:1994
ISO/IEC 10967-1:1994, Information Technology — Language-Independent Arithmetic — Part 1:
Integer and Floating-Point Arithmetic.

ISO C (1990)
ISO/IEC 9899:1990, Programming Languages — C, including Amendment 1:1995 (E), C Integrity
(Multibyte Support Extensions (MSE) for ISO C).

ISO C (1999)
ISO/IEC 9899:1999, Programming Languages — C, including ISO/IEC 9899: 1999/Cor.1: 2001(E),
ISO/IEC 9899: 1999/Cor.2: 2004(E), and ISO/IEC 9899: 1999/Cor.3(E))

ISO POSIX-1:1996
ISO/IEC 9945-1: 1996, Information Technology — Portable Operating System Interface (POSIX) —
Part 1: System Application Program Interface (API) [C Language] (identical to ANSI/IEEE Std
1003.1-1996). Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993, 1003.1c-1995, and
1003.1i-1995.

ISO POSIX-2:1993
ISO/IEC 9945-2:1993, Information Technology — Portable Operating System Interface (POSIX) —
Part 2: Shell and Utilities (identical to ANSI/IEEE Std 1003.2: 1992, as amended by ANSI/IEEE Std
1003.2a: 1992).

Issue 1
X/Open Portability Guide, July 1985 (ISBN: 0-444-87839-4).

Issue 2
X/Open Portability Guide, January 1987:

Volume 1: XVS Commands and Utilities (ISBN: 0-444-70174-5)

The Single UNIX® Specification: Authorized Guide to Version 4 Xiii

Issue 3

Referenced Documents

Volume 2: XVS System Calls and Libraries (ISBN: 0-444-70175-3)

X/Open Specification, 1988, 1989, February 1992:

Issue 4

Commands and Utilities, Issue 3 (ISBN: 1-872630-36-7, C211); this specification was formerly
X/Open Portability Guide, Issue 3, Volume 1, January 1989, XSI Commands and Utilities
(ISBN: 0-13-685835-X, XO/XPG/89/002)

System Interfaces and Headers, Issue 3 (ISBN: 1-872630-37-5, C212); this specification was
formerly X/Open Portability Guide, Issue 3, Volume 2, January 1989, XSI System Interface and
Headers (ISBN: 0-13-685843-0, XO/XPG/89/003)

Curses Interface, Issue 3, contained in Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapters 9 to 14 inclusive; this specification was formerly
X/Open Portability Guide, Issue 3, Volume 3, January 1989, XSI Supplementary Definitions
(ISBN: 0-13-685850-3, XO/XPG/89/004)

Headers Interface, Issue 3, contained in Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapter 19, Cpio and Tar Headers; this specification was
formerly X/Open Portability Guide Issue 3, Volume 3, January 1989, XSl Supplementary
Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004)

CAE Specification, July 1992, published by The Open Group:

System Interface Definitions (XBD), Issue 4 (ISBN: 1-872630-46-4, C204)
Commands and Utilities (XCU), Issue 4 (ISBN: 1-872630-48-0, C203)
System Interfaces and Headers (XSH), Issue 4 (ISBN: 1-872630-47-2, C202)

Issue 4, Version 2
CAE Specification, August 1994, published by The Open Group:

Issue 5

System Interface Definitions (XBD), Issue 4, Version 2 (ISBN: 1-85912-036-9, C434)
Commands and Utilities (XCU), Issue 4, Version 2 (ISBN: 1-85912-034-2, C436)
System Interfaces and Headers (XSH), Issue 4, Version 2 (ISBN: 1-85912-037-7, C435)

Technical Standard, February 1997, published by The Open Group:

Issue 6

System Interface Definitions (XBD), Issue 5 (ISBN: 1-85912-186-1, C605)
Commands and Utilities (XCU), Issue 5 (ISBN: 1-85912-191-8, C604)
System Interfaces and Headers (XSH), Issue 5 (ISBN: 1-85912-181-0, C606)

Technical Standard, December 2001, published by The Open Group:

Base Definitions (XBD), Issue 6, 2004 Edition (ISBN: 1-931624-43-7, C046)
System Interfaces (XSH), Issue 6, 2004 Edition (ISBN: 1-931624-44-5, C047)
Shell and Utilities (XCU), Issue 6, 2004 Edition (ISBN: 1-931624-45-3, C048)
Rationale (Informative), Issue 6, 2004 Edition (ISBN: 1-931624-46-1, C049)

(See also POSIX.1:2001.)

Xiv

A Source Book from The Open Group (2010)

Referenced Documents

Issue 7
Technical Standard, December 2008, Base Specifications, Issue 7 (ISBN: 1-931624-79-8, C082),
published by The Open Group.

(See also POSIX.1:2008.)

MSE Working Draft
Working draft of ISO/IEC 9899: 1990/Add3: Draft, Addendum 3 — Multibyte Support Extensions
(MSE) as documented in the ISO Working Paper SC22/WG14/N205 dated 31 March 1992.

POSIX.1:1988
IEEE Std 1003.1-1988, IEEE Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) [C Language].

POSIX.1:1990
IEEE Std 1003.1-1990, IEEE Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) [C Language].

POSIX.1: 1996
IEEE Std 1003.1-1996, IEEE Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) [C Language].

POSIX.1:2001
IEEE Std 1003.1-2001, IEEE Standard for Information Technology — Portable Operating System.

(See also Issue 6.)

POSIX.1:2008
IEEE Std 1003.1-2008, IEEE Standard for Information Technology — Portable Operating System.

(See also Issue 7.)

POSIX.1a
P1003.1a, Standard for Information Technology — Portable Operating System Interface (POSIX) —
Part 1: System Application Program Interface (API) — (C Language) Amendment

POSIX.1d: 1999
IEEE Std 1003.1d-1999, IEEE Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) — Amendment 4: Additional
Realtime Extensions [C Language].

POSIX.1g: 2000
IEEE Std 1003.1g-2000, IEEE Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) — Amendment 6: Protocol-
Independent Interfaces (PII).

POSIX.1j: 2000
IEEE Std 1003.1j-2000, IEEE Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) — Amendment 5: Advanced
Realtime Extensions [C Language].

POSIX.1q: 2000
IEEE Std 1003.19-2000, IEEE Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (APl) — Amendment 7: Tracing [C
Language].

POSIX.2b
P1003.2b, Standard for Information Technology — Portable Operating System Interface (POSIX) —
Part 2: Shell and Utilities — Amendment

The Single UNIX® Specification: Authorized Guide to Version 4 XV

Referenced Documents

POSIX.2d: 1994
IEEE Std 1003.2d:1994, IEEE Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 2: Shell and Utilities — Amendment 1: Batch Environment.

SVID, Issue 1
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue 1;
Morristown, NJ, UNIX Press, 1985.

SVID, Issue 2
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue 2;
Morristown, NJ, UNIX Press, 1986.

SVID, Issue 3
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue 3;
Morristown, NJ, UNIX Press, 1989.

XNS, Issue 5.2
Technical Standard, January 2000, Networking Services (XNS), Issue 5.2 (ISBN: 1-85912-241-8,
C808), published by The Open Group.

X/Open Curses, Issue 4, Version 2
CAE Specification, May 1996, X/Open Curses, Issue 4, Version 2 (ISBN: 1-85912-171-3, C610),
published by The Open Group.

X/Open Curses, Issue 7
Technical Standard, November 2009, X/Open Curses, Issue 7 (ISBN: 1-931624-83-6) C094),
published by The Open Group.

XVi A Source Book from The Open Group (2010)

Chapter 1

The Single UNIX Environment

The Single UNIX Specification programming environment provides a broad-based functional set of
interfaces to support the porting of existing UNIX applications and the development of new applications.
The environment also supports a rich set of tools for application development.

This chapter describes the overall environment, programming, and utility considerations, and some of the
global issues such as internationalization support, environment variables, and file access. It describes

how the

environment is organized and where to look for detailed information in the Single UNIX

Specification. References give the section of the Single UNIX Specification in which more detailed

explanati

1.1

ons and definitions can be found.

Intr oduction

Many names have been applied to the work that has culminated in the Single UNIX Specification
and the accompanying UNIX certification program. It began as the Common API Specification,
became Spec 1170, and is now in its latest iteration the Single UNIX Specification, Version 4,
published in a number of The Open Group Technical Standards, the core of which are also
POSIX.1-2008.

The Single UNIX Specification uses The Open Group Base Specifications, Issue 7
documentation as its core. The documentation is structured as follows:

= The Base Specifications, Issue 7, composed of:
— Base Definitions, Issue 7 (XBD7)
— System Interfaces, Issue 7 (XSH7)
— Shell and Utilities, Issue 7 (XCU7)
— Rationale, Issue 7, (XRAT7) (Informative)
= X/Open Curses, Issue 7

One thing that becomes apparent working with the Single UNIX Specification is its focus on
application development. The Single UNIX Specification is similar to the User’s and
Programmer’s Reference Manuals on Berkeley or SystemV systems. Matters of system
management are not part of this specification. Directory organization is not discussed beyond
the simple few directories and devices that applications generally use. User management
discussions do not appear. There is no discussion of such files as /etc/passwd or /etc/groups ,
since an application’s access to the information traditionally kept in these files is through
programmatic interfaces such as getpwnam() and getgrnam(). Processes have appropriate
privileges, and there is no concept of the “superuser” or “root”.

The Single UNIX® Specification: Authorized Guide to Version 4 1

Interface Counts The Single UNIX Environment

1.2

1.3

1.4

Interface Counts

There are now 1833 interfaces defined in the Single UNIX Specification, Version 4. The table
below gives the breakdown for each volume of the Single UNIX Specification. Also see the
interface tables in Chapter 7 through Chapter 10 for detailed lists of the interfaces.

XSH XCU XBD XCURSES Total
1191 174 82 386 1833

Table 1-1 Interface Count

Formal Standards Alignment

The Single UNIX Specification supports formal standards developed for applications portability.
The following source code portability standards lie at the core of the Single UNIX Specification:

= POSIX.1-2008

(This is technically identical to the Base Specifications, Issue 7; they are one and the same
document.)

= The ISO/IEC 9899: 1999 standard

The Single UNIX Specification fully aligns with these standards. The Single UNIX Specification
functional extensions beyond the required POSIX base functionality are identified by the X/Open
System Interfaces option, denoted XSI, and by mandating certain other POSIX options; for
example, File Synchronization. Where there are multiple interfaces to accomplish some task, the
standards-based interfaces are clearly identified as the preferred way of doing things to support
future portability.

Portability Codes

While great care has been taken to align the Single UNIX Specification with formal standards, it
is still a superset specification that extends functionality or perhaps presents a more exact (and
restrictive) definition. When this occurs, the text in the Single UNIX Specification is clearly
marked by shading and a portability code appears in the margin (sometimes referred to as a
margin code or option code). In this version, the number of portability codes has reduced, as the
functionality associated with various old options has been mandated.

Programmers need to take care when using functionality that appears in a shaded area if they
are developing applications that need to be maximally portable or portable beyond UNIX certified
systems. For example, if functionality is marked with XSl in the margin, it will be available on all
UNIX certified systems, but may not be available on systems only supporting the base POSIX.1
requirements. Alternatively, an application may depend on the exact format of output from a
particular utility whose output format is incompletely specified, as indicated by shading and OF
marked in the margin. It is likely that an application is developed with a particular platform, or at
least a well-defined set of platforms in mind. These codes are exceptionally useful to warn a
developer of areas of potential problems.

There are 45 margin codes defined in total in XBD, Section 2.1.6, Options. 40 of these reflect
optional features defined within the POSIX base standard, six of which are mandatory in the
Single UNIX Specification (FSC, TSA, TSH, TSS, UP, and XSI). One of the codes—MC1—is a

A Source Book from The Open Group (2010)

The Single UNIX Environment Portability Codes

shorthand notation for a permutation of certain options. Three of the codes are special codes to
denote other portability warnings, these being OB (obsolescent), OH (optional header), and OF
(output incompletely specified).

All the codes including those of the POSIX options are listed below together with an indication of
their status within the Single UNIX Specification:

ADV

BE

CD

CPT

CX

FD

FR

FSC

IP6

MC1

ML

Advisory Information

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Advanced Realtime Option Group.

Batch Environment Services and Utilities

This identifies utilities and services that are optional in the Single UNIX Specification.
They are defined in XCU.

C-Language Development Utilities

This identifies a set of utilities that are optional in the Single UNIX Specification. They
are defined in XCU.

Process CPU-Time Clocks

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Advanced Realtime Option Group.

Extension to the ISO C Standard

Extensions beyond the ISO C standard are so marked. These extensions are
mandatory on all systems supporting POSIX.1 and the Single UNIX Specification. This
is included since the Single UNIX Specification defers to the ISO C standard, thereby
allowing the extensions to be identified.

FORTRAN Development Utilities

This identifies a set of utilities that are optional in the Single UNIX Specification. They
are defined in XCU.

FORTRAN Runtime Utilities

This identifies a set of utilities that are optional in the Single UNIX Specification. They
are defined in XCU.

File Synchronization

This identifies interfaces and additional semantics that are optional within the POSIX
base standard but mandatory in the Single UNIX Specification.

IPV6

This identifies additional semantics for networking interfaces relating to support of IP
Version 6 that are optional in the Single UNIX Specification.

Non-Robust Mutex Priority Protection or Non-Robust Mutex Priority Inheritance or
Robust Mutex Priority Protection or Robust Mutex Priority Inheritance

This is a special margin code used as a shorthand notation.
Process Memory Locking

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Realtime Option Group.

The Single UNIX® Specification: Authorized Guide to Version 4 3

Portability Codes The Single UNIX Environment

MLR

MON

MSG

MX

OB

OF

OH

PIO

PS

RPI

RPP

RS

SD

Range Memory Locking

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Realtime Option Group.

Monotonic Clock

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Advanced Realtime Option Group.

Message Passing

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Realtime Option Group.

IEC 60559 Floating-Point Option

This identifies additional semantics within Math interfaces that are optional in the Single
UNIX Specification. Indicates support of the IEC 60559: 1989 standard floating-point.

Obsolescent

Features marked as obsolescent are portable to all Single UNIX Specification
platforms, but may be withdrawn in a future issue. This functionality should be avoided.

Output Format Incompletely Specified

The format of a utility’s output is incompletely specified, and therefore cannot be
processed consistently by another application across multiple platforms.

Optional Header

Certain headers are not required to be included in a source module on XSl-conforming
systems, although the POSIX base standard may require it. These headers are marked
in the SYNOPSIS sections.

Prioritized Input and Output

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification.

Process Scheduling

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Realtime Option Group.

Robust Mutex Priority Inheritance

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. This is new functionality added in this version of the specification.

Robust Mutex Priority Protection

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. This is new functionality added in this version of the specification.

Raw Sockets

This identifies additional semantics for sockets that are optional in the Single UNIX
Specification.

Software Development Utilities

This identifies a set of utilities that are optional in the Single UNIX Specification. They
are defined in XCU.

A Source Book from The Open Group (2010)

The Single UNIX Environment Portability Codes

SHM

SIO

SPN

SS

TCT

TEF

TPI

TPP

TPS

TRC

TRI

TRL

TSA

Shared Memory Objects

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Realtime Option Group.

Synchronized Input and Output

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Realtime Option Group.

Spawn

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Advanced Realtime Option Group.

Process Sporadic Server

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Advanced Realtime Option Group.

Thread CPU-Time Clocks

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Advanced Realtime Threads Option Group.

Trace Event Filter

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Tracing Option Group.

Non-Robust Mutex Priority Inheritance

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Realtime Threads Option Group.

Non-Robust Mutex Priority Protection

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Realtime Threads Option Group.

Thread Execution Scheduling

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Realtime Threads Option Group.

Trace

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Tracing Option Group.

Trace Inherit

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Tracing Option Group.

Trace Log

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Tracing Option Group.

Thread Stack Address Attribute

This identifies semantics that are optional within the POSIX base standard but
mandatory in the Single UNIX Specification.

The Single UNIX® Specification: Authorized Guide to Version 4 5

Portability Codes The Single UNIX Environment

1.5

TSH

TSP

TSS

TYM

UP

uu

XSl

XSR

Thread Process-Shared Synchronization

This identifies interfaces and additional semantics that are optional within the POSIX
base standard but mandatory in the Single UNIX Specification.

Thread Sporadic Server

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Advanced Realtime Threads Option Group.

Thread Stack Size Attribute

This identifies semantics that are optional within the POSIX base standard but
mandatory in the Single UNIX Specification.

Typed Memory Objects

This identifies interfaces and additional semantics that are optional in the Single UNIX
Specification. They are part of the Advanced Realtime Option Group.

User Portability Utilities

This identifies interfaces and additional semantics in XCU that are optional within the
POSIX base standard but mandatory in the Single UNIX Specification. These represent
interactive utilities or semantics within utilities.

UUCP Utilities

This identifies a set of utilities that are optional in the Single UNIX Specification. They
are defined in XCU.

X/Open System Interfaces

This identifies interfaces and additional semantics that are optional within the POSIX
base standard but mandatory in the Single UNIX Specification. This functionality is
required to be present on all UNIX certified systems.

XSI STREAMS

This identifies interfaces and additional semantics related to the support of STREAMS.
This functionality is optional within this version of the Single UNIX Specification.

Where a portability code applies to an entire function or utility, the SYNOPSIS section of the
corresponding reference page is shaded and marked with the margin code. Refer to XBD,
Section 1.7, Portability for more information.

Option Groups

The Single UNIX Specification includes a set of profiling options, allowing larger profiles of the
options of the Base standard. The Option Groups within the Single UNIX Specification are
defined within XBD, Section 2.1.5.2, XSI Option Groups.

The Single UNIX Specification contains the following Option Groups:

= Encryption , covering the functions crypt(), encrypt(), and setkey.()

= Realtime, covering the functions from the IEEE Std 1003.1b-1993 Realtime extension.

= Realtime Threads , covering threads-related functions that are also related to realtime

functionality.

A Source Book from The Open Group (2010)

The Single UNIX Environment Option Groups

= Advanced Realtime , covering some of the non-threads-related functions originally from
IEEE Std 1003.1d-1999 and IEEE Std 1003.1j-2000.

= Advanced Realtime Threads , covering some of the threads-related functions originally
from IEEE Std 1003.1d-1999 and IEEE Std 1003.1j-2000.

= Tracing, covering the functionality originally from IEEE Std 1003.1g-2000. This
functionality has been marked obsolescent in this version of the Single UNIX Specification.

= XS|I STREAMS, covering the functionality and interfaces related to STREAMS, a uniform
mechanism for implementing networking services and other character-based 1/0 as
described in XSH, Section 2.6, STREAMS. This functionality has been marked
obsolescent in this version of the Single UNIX Specification.

1.6 Common Directories and Devices

The Single UNIX Specification describes an applications portability environment, and as such
defines a certain minimal set of directories and devices that applications regularly use. The
following directories are defined:

/ The root directory of the file system.
/dev Contains the devices /dev/console , /dev/null , and /devi/tty .
tmp A directory where applications can create temporary files.

The directory structure does not cross into such system management issues as where user
accounts are organized or software packages are installed. Refer to XBD, Section 10.1,
Directory Structure and Files for more information.

XBD, Chapter 10, Directory Structure and Devices also defines the mapping of <control>-char
sequences to control character values, and associated requirements on system documentation.

1.7 Environment Variables

When a program begins, an environment is made available to it. The environment consists of
strings of the form name=value, where name is the name associated with the environment
variable, and its value is represented by the characters in value. UNIX systems traditionally pass
information to programs through the environment variable mechanism. The Single UNIX
Specification uses only uppercase characters, digits, and underscores to name environment
variables, reserving for applications the name space of names containing lowercase characters.

A number of utilities and functions defined in the Single UNIX Specification use environment
variables to modify their behavior. The ENVIRONMENT VARIABLES section of a utility’s
reference page describes any appropriate environment variables. Quite a number of
environment variables (listed below) modify the behavior of more than a single utility.

The Single UNIX® Specification: Authorized Guide to Version 4 7

Environment Variables

The Single UNIX Environment

ARFLAGS IFS MAILPATH PS1

CcC LANG MAILRC PS2
CDPATH LC_ALL MAKEFLAGS PS3
CFLAGS LC_COLLATE MAKESHELL PS4
CHARSET LC_CTYPE MANPATH PWD
COLUMNS LC_MESSAGES MBOX RANDOM
DATEMSK LC_MONETARY MORE SECONDS
DEAD LC_NUMERIC MSGVERB SHELL
EDITOR LC_TIME NLSPATH TERM
ENV LDFLAGS NPROC TERMCAP
EXINIT LEX OLDPWD TERMINFO
FC LFLAGS OPTARG TMPDIR
FCEDIT LINENO OPTERR TZ
FFLAGS LINES OPTIND USER
GET LISTER PAGER VISUAL
GFLAGS LOGNAME PATH YACC
HISTFILE LPDEST PPID YFLAGS
HISTORY MAIL PRINTER

HISTSIZE MAILCHECK PROCLANG

HOME MAILER PROJECTDIR

1.8 YACC Grammar s as Specifications

The Single UNIX Specification describes certain functionality and “little” languages with yacc
grammars. The yacc utility (Yet-Another-Compiler-Compiler) is used to build language parsers,
and the syntax of the yacc input language is designed for describing languages. Because of this,
and its familiarity in the community, it has been used in the Single UNIX Specification to describe
the shell (XCU, Chapter 2, Shell Command Language), the awk language (XCU, Chapter 4,
Utilities, awk), the bc language (XCU, Chapter 4, Utilities, bc), the locale definition language
(XBD, Chapter 7, Locale), basic and extended regular expressions (XBD, Chapter 9, Regular
Expressions), and terminfo source format (X/Open Curses, Chapter 7, Terminfo Source Format).

These grammars are representations of the languages they describe, and a number of caveats
apply:

= They are not complete input grammars to yacc itself.

= They are not based on any existing implementations, nor have they been tested as such.

= Were these partial grammars to be completed, there are no guarantees that they are the
most efficient method of defining the respective languages for yacc to process.

Refer to XCU, Chapter 1 for more information.

A Source Book from The Open Group (2010)

The Single UNIX Environment Regular Expressions

1.9

1.10

1.11

1.111

Regular Expressions

Both Basic Regular Expressions (BREs) and Extended Regular Expressions (ERES) are
described in XBD, Chapter 9, Regular Expressions and all of the utilities and interfaces that use
regular expressions refer back to this definition.

Basic regular expressions:

csplit, ed, ex, expr, grep, more, nl, pax, sed, vi

Extended regular expressions:

awk, grep -E, lex

The functions regcomp() and regexec() in XSH, Chapter 3, System Interfaces implement
regular expressions as defined in the Single UNIX Specification.

File Access

The Single UNIX Specification describes the interaction of symbolic links that may effect the file
access in the file system. The behavior of symbolic links is fully specified with respect to their
creation and use through the relevant XSH interfaces, such as Ichown(), Istat(), readlink(),
realpath(), and symlink(), and pathname resolution (XBD, Chapter 4, General Concepts). The
behavior is also specified with respect to the utilities described in XCU.

Programming Environment

The Single UNIX Specification and UNIX certified systems are tools for developing portable
applications and for porting existing applications that were originally developed to run on UNIX
systems. XSH defines the C-language programming environment, and the syntax and semantics
of the interfaces. Feature test macros, name space issues, and the program interaction with the
operating system are all described in the opening chapters of XSH. The following introductions
to these topics include references and additional explanations to orient an application developer
with the information presented in XSH.

C-Langua ge Support

The programming interfaces in XSH are described in C-language syntax, as defined in the
ISO C standard, and presume a C-language compilation environment. (Implementations may
make the functionality available through other programming languages, but this is not covered by
the Single UNIX Specification.)

For an implementation to be a conforming UNIX certified system, it must support the ISO C
standard. Implementations may additionally support the X/Open Common Usage C dialect as a
migration strategy from previous XPG3 environments. X/Open Common Usage C is defined in
Programming Languages, Issue 3, Chapters 1-4, and essentially refers to the C Language
before the 1989 ANSI C standard.

XCU defines ¢c99 as the interface to the C compilation environment. The c99 interface is an
interface to the standard C99 compiler. The ¢89 and cc utilities are not defined in this version of
the Single UNIX Specification, although implementations may additionally support them for

The Single UNIX® Specification: Authorized Guide to Version 4 9

Programming Environment The Single UNIX Environment

1.11.2

1.11.3

1114

10

backwards-compatibility.

Feature Test Macros and Name Space Issues

There are a number of tasks that must be done to effectively make the interface environment
available to a program. One or more C-language macros, referred to as feature test macros,
must be defined before any headers are included. These macros might more accurately be
referred to as header configuration macros, as they control what symbols will be exposed by the
headers. The macro _XOPEN_SOURCE must be defined to a value of 700 to make available
the functionality of the Single UNIX Specification, Version 4. With respect to POSIX base
functionality covered by the Single UNIX Specification, this is equivalent to defining the macro
_POSIX_C_SOURCE to be 200809L.

Use of the _XOPEN_SOURCE macro should not be confused with indicator macros associated
with options and Option Groups, such as _XOPEN_UNIX, which are defined by the
implementation in <unistd.h> .

In the first case (feature test macro _XOPEN_SOURCE defined by the application), the
application is announcing to the implementation its desire to have certain symbols exposed in
standard headers. The implementation tests the value of the macro to determine what features
have been requested. In the second case (indicator macro _XOPEN_UNIX defined by the
implementation in <unistd.h>), the implementation is announcing to the application what
functionality it supports. The application tests the macro value to determine whether the
implementation supports the functionality it wants to use (the XSl option in this example).

The UNIX system name space is well defined. All identifiers defined in the Single UNIX
Specification appear in the headers described in XBD, Chapter 13, Headers (with the exception
of environ). Tables in XSH, Section 2.2, The Compilation Environment clearly describe which
identifier prefixes and suffixes are reserved for the implementation, which identifier macro
prefixes may be used by the application programmer providing appropriate #undef statements
are used to prevent conflicts, and which identifiers are reserved for external linkage.

Error Numbers

Each interface reference page lists in the ERRORS section possible error returns that may be
tested either in errno or in the function return value upon the unsuccessful completion of a
function call. Each error return has a symbolic name (defined as a manifest constant in
<errno.h>) which should always be used by the portable application, as the actual error values
are unspecified. All of the error names are listed in XSH, Section 2.3, Error Numbers along with
additional relevant information.

Signal Concepts

The signal() function defined by the ISO C standard has shortcomings that make it unreliable for
many application uses on some implementations. The Single UNIX Specification defines a
reliable signal mechanism which applications should use instead. XSH, Section 2.4, Signal
Concepts discusses signal generation and delivery, signal actions, async-signal-safe functions,
and interruption of functions by signals.

A Source Book from The Open Group (2010)

The Single UNIX Environment Programming Environment

1.11.5

1.116

1.11.7

1.11.8

Standar d 1/O Streams

When a program starts, it has three 1/0 streams associated with it, namely standard input (for
reading conventional input), standard output (for writing conventional output), and standard error
(for writing diagnostic output). These streams are already open for the process, and ready for
I/O.

The mechanics of stream 1/O, buffering, relationships to file descriptors, and inheritance across
process creation are all discussed in XSH, Section 2.5, Standard /0O Streams. New in this
version of the Single UNIX Specification are facilities for associating a standard 1/0 stream with a
memory buffer instead of a file.

STREAMS

STREAMS is a method of implementing network services and other character-based
input/output mechanisms, with the STREAM being a full-duplex connection between a process
and a device. STREAMS provides direct access to protocol modules, and optional protocol
modules can be interposed between the process-end of the STREAM and the device-driver at
the device-end of the STREAM. Pipes can be implemented using the STREAMS mechanism, so
they can provide process-to-process as well as process-to-device communications.

XSH, Section 2.6, STREAMS introduces STREAMS I/O, the message types used to control
them, an overview of the priority mechanism, and the interfaces used to access them. In this
version of the specification, STREAMS functionality has been marked obsolescent.

XSI Interprocess Communication

The Single UNIX Specification describes a set of interprocess communications (IPC) primitives,
namely message queues, semaphores, and shared memory. These functions are all derived
from the SVID.

General information that is shared by all three mechanisms is described in XSH, Section 2.7,
XSl Interprocess Communication. There, the common permissions mechanism is briefly
introduced, describing the mode bits and how they are used to determine whether or not a
process has access to read or write/alter the appropriate instance of one of the IPC
mechanisms. All other relevant information is contained in the reference pages themselves.

Realtime

The Single UNIX Specification includes realtime functionality to support the source portability of
applications with realtime requirements. Realtime is discussed in XSH, Section 2.8, Realtime.
This section includes an overview of the functional areas: semaphores, process memory locking,
memory mapped files and shared memory objects, priority scheduling, realtime signals, timers,
interprocess communication, synchronous input/output, and asynchronous input/output.

The Single UNIX® Specification: Authorized Guide to Version 4 11

Programming Environment The Single UNIX Environment

1.11.9 Threads

XSH describes functionality to support multiple flows of control, called threads, within a process.
Threads are discussed in XSH, Section 2.9, Threads, which includes an overview of the
supported interfaces, threads implementation models, thread mutexes, thread attributes, thread
scheduling, thread cancelation, thread read-write locks, and application-managed thread stacks.

1.11.10 Sockets

UNIX certified systems support UNIX domain sockets for process-to-process communication in a
single system and network sockets using Internet protocols based on IPv4, and may also
support raw sockets and network sockets using Internet protocols based on IPv6.

XSH Section 2.10, Sockets, discusses all aspects of UNIX domain sockets and network sockets,
including socket types, addressing, protocols, and socket options.

1.11.11 General Terminal Interface

The general terminal interface is described in the Single UNIX Specification in XBD, Chapter 11,
General Terminal Interface, providing a mechanism to control asynchronous communications
ports. It is left to implementations as to whether or not they support network connections and
synchronous communications ports.

While all of the interface details are contained in XSH, the mechanics of the terminal interface
with respect to process groups, controlling terminals, input and output processing, input, output,
and control modes, and special characters are described in XBD, Chapter 11, General Terminal
Interface.

This interface should not be confused with the X/Open Curses interface that provides a terminal-
independent way to update character screens.

1.11.12 How to R ead an XSH Reference P age

12

Each reference page in XSH has a common layout of sections describing the interface. (Function
interface descriptions in X/Open Curses follow the same layout.) This layout is similar to the
manual page or “man” page format shipped with most UNIX systems, and each interface has
SYNOPSIS, DESCRIPTION, RETURN VALUE, and ERRORS sections. These are the four
sections that relate to conformance.

Additional sections contain considerable extra information for the application developer. The
EXAMPLES sections provide source code examples of how to use certain interfaces. The
APPLICATION USAGE sections provide additional caveats, issues, and recommendations to the
developer. The SEE ALSO sections contain useful pointers to related interfaces and headers
that a developer may wish to also read.

The FUTURE DIRECTIONS sections act as pointers to related work that may impact on the
interface in the future, and often cautions the developer to architect the code to account for a
change in this area. (A FUTURE DIRECTIONS section expresses current thinking and should
not be considered a commitment to adopt the feature or interface in the future.)

The RATIONALE sections include historical information about an interface and why features
were included or discarded in the definition.

The CHANGE HISTORY sections describe when the interface was introduced, and how it has

A Source Book from The Open Group (2010)

The Single UNIX Environment Programming Environment

1.12

1.12.1

1.12.2

1.12.3

changed. This information can be useful when porting existing applications that may reflect
earlier implementations of the interface.

Option Group labels in the reference page headers, and portability shading and margin marks
are features already described in this document; they appear on the reference pages to guide an
application developer when deciding how best an interface should be used. Refer to XSH,
Section 1.2, Format of Entries for information on the exact layout.

Commands and Utilities Environment

The Single UNIX Specification describes 174 utilities supported on UNIX certified systems.
These utilities provide a rich environment for building shell script applications, supporting
program development (the C Language in particular), and providing a user portability
environment.

The shell command language, symbolic links, file format notation, utility reference page layouts,
and guidelines, are all introduced in this section. The following introductions to these topics
include references and additional explanations to orient an application developer with the
information presented in XCU.

Shell Command Langua ge

The shell is a powerful and flexible programming language. A considerable number of utilities on
early UNIX systems were actually shell programs.

The Single UNIX Specification shell is the standard POSIX shell. This shell is for the most part
based on the Bourne shell with features from the KornShell, ksh.

The shell command language is defined in its entirety in XCU, Chapter 2, Shell Command
Language. This is a very strict definition of the shell. Token recognition, word expansions, simple
and compound commands, the shell grammar, the execution environment, and special built-ins
are a few of the topics covered. It is not a guide to writing or porting shell scripts.

Symbolic Links

The Single UNIX Specification includes support for symbolic links in the file system. The
programmatic interfaces that manipulate symbolic links (or symlinks) are all well defined in XSH
and XCU, and symlink concepts with respect to issues like pathname resolution are discussed in
XBD, Chapter 4, General Concepts. A UNIX certified system supports symlinks, and application
programs may make use of them.

File Format Notation

Sections in the utility reference pages often require the expected input used by the utility or
output it generates to be described. Additionally, information files used or created sometimes
require description. The method used throughout XCU is a format description plus its
arguments, similar to that used by the printf() function. These file format specifications are
presented as:

"<format>"[,<argl> <arg2> ..., <argn>]

The format specifier contains the format string a programmer might use to write the data. The

The Single UNIX® Specification: Authorized Guide to Version 4 13

Commands and Utilities Environment The Single UNIX Environment

1.12.4

1.13

14

specifiers should not be considered format strings that could be directly used in a call to scanf().
The conversion specifications in the format string are what would be expected by a developer
familiar with the printf() interface. Refer to XBD, Chapter 5, File Format Notation for more
information.

How to R ead an XCU Reference P age

Each reference page in XCU has a common layout of sections describing the interface. This
layout, while similar to the manual page or “man” page format shipped with most UNIX systems,
offers a more detailed view of the utility’s description.

As well as the SYNOPSIS and DESCRIPTION sections, each interface has OPTIONS,
OPERANDS, STDIN (standard input format), INPUT FILES, ENVIRONMENT VARIABLES,
ASYNCHRONOUS EVENTS (what signals are caught and the consequence of receiving
signals), STDOUT (standard output format), STDERR, and OUTPUT FILES sections.

An EXTENDED DESCRIPTION will be used if the utility has a particularly long description; for
example, if it supports its own language (awk), or provides a considerable number of
subcommands (mailx).

Utilities generally return O upon successful completion, and a failed status as greater than 0. The
EXIT STATUS sections specify this, but will also describe if particular values are returned in
certain circumstances. In general, an application should be written to test for successful
completion, rather than specific error returns.

The CONSEQUENCE OF ERRORS section describes what happens to such items as open
files, process state, and the environment, should errors occur.

As with the XSH reference pages, additional sections contain considerable extra information for
the application developer, and include EXAMPLES, APPLICATION USAGE, FUTURE
DIRECTIONS, RATIONALE, SEE ALSO, and CHANGE HISTORY sections. The defaults for
these sections, and additional detail about what each section specifies, are covered in XCU,
Section 1.4, Utility Description Defaults.

Terminal Interfaces Environment

The Single UNIX Specification includes X/Open Curses. These interfaces provide a terminal-
independent character screen update method. The functionality includes:

= Multibyte and wide-character support
= Color terminal support

= Wide and non-spacing character generalizations such that multi-column display characters
and non-spacing characters are supported

New interfaces over Issue 3 are marked with ENHANCED CURSES in the reference page
header, and shading and a portability code is used (EC) to indicate in the introductory chapters
and reference pages the extended features.

Applications using the interfaces from X/Open Curses need to define the ' XOPEN_SOURCE
macro to be 700 prior to including any headers. This feature test macro ensures the appropriate
name space is exposed in the headers.

On UNIX certified systems, the c99 compiler recognizes the additional curses library option-
argument for the | option.

A Source Book from The Open Group (2010)

The Single UNIX Environment Terminal Interfaces Environment

1.14

There are four X/Open Curses utilities—infocmp, tic, tput, and untic—which are new in this
version of the Single UNIX Specification.

Internationalization

There is a rich set of interfaces in the Single UNIX Specification to support internationalized
applications development. Internationalization refers to developing an application without prior
knowledge of the language, cultural information, or character set encoding scheme that will be
used in the run-time environment. The application responds accordingly at run time for cultural
or locale-specific conditions. The term “internationalization” is often shortened to simply “I18N”,
for “I"—18 letters (nternationalizatio)—"“N".

Localization is the process of establishing a base of cultural and codeset data on a system such
that it can be accessed. It is the method by which locales are created in such a way that
internationalized programs can access the relevant information.

There are a number of factors that need to be considered when structuring an application to
support multiple cultures:

= Cultural-specific data (for example, date, number, and monetary formats) needs to be
defined in a locale, with the appropriate tools and interfaces available for creating and
accessing the information.

= Provision for handling text strings in programs, and managing catalogs of these strings for
multiple natural languages, needs to be made.

= Multibyte and wide-character handling interfaces are required to manage textual data that
is not represented in single byte per character formats.

= Codeset conversion tools need to be supported.

All of these requirements are met in the Single UNIX Specification. Utilities exist to support the
definition and display of locales (localedef and locale). Programming interfaces exist to access
the locale-specific data, and others have been extended such that all the checking and
manipulations done with characters and strings can be done with wide characters and wide-
character strings. Interfaces to access message string catalogs (catopen(), catgets(), and
catclose()) and a tool to define them (gencat) exist. Codeset conversions can be done at the
utility (iconv) and program level (iconv_open(), iconv(), and iconv_close()). New in this version
of the Single UNIX Specification are facilities for handling multiple concurrent locales
(newlocale(), duplocale(), uselocale(), and variants of existing functions with names ending _|;
for example, isalnum_I()).

Much of the 118N information is spread throughout the Single UNIX Specification, with specific
interface and utility descriptions appearing in XSH and XCU, respectively. Introductions to
character and codeset issues and the locale definition language appear in XBD, Chapter 6,
Character Set, and Chapter 7, Locale, respectively.

The Single UNIX® Specification: Authorized Guide to Version 4 15

16

The Single UNIX Environment

A Source Book from The Open Group (2010)

Chapter 2

The Single UNIX Specification, Version 4

This chapter gives an overview of the different parts that comprise the Single UNIX Specification, Version
4 and how they are organized. The Single UNIX Specification, Version 4 is made up of two documents:
the Base Specifications, Issue 7 and X/Open Curses, Issue 7. The Base Specifications, Issue 7 comprise
four volumes: Base Definitions, System Interfaces, Shell and Utilities, and Rationale.

2.1 Base Definitions (XBD)

XBD is part of the Base Specifications, Issue 7. XBD provides common definitions for the Base
Specifications of the Single UNIX Specification; therefore, readers should be familiar with it
before using the other parts of the Single UNIX Specification. The presence of this volume
reduces duplication in the other related parts of the Single UNIX Specification and ensures
consistent use of terminology.

This volume is structured as follows:

Chapter 1 is an introduction which includes the scope of the Base Specifications, and the
scope of the changes made in this version. Normative references, terminology, and
portability codes used throughout the Base Specifications are included in this chapter.

Chapter 2 defines the conformance requirements, both for implementation and application
conformance. For implementation conformance, this includes documentation requirements,
conformance definitions for the core POSIX subset, conformance definitions for systems
conforming to the Single UNIX Specification (denoted as XSI conformance), and option
groups.

Chapter 3 contains the general terms and definitions that apply throughout the Base
Specifications.

Chapter 4 describes general concepts that apply throughout the Base Specifications.

Chapter 5 describes the notation used to specify file input and output formats in XBD and
XCU.

Chapter 6 describes the portable character set and the process of character set definition.

Chapter 7 describes the syntax for defining internationalization locales as well as the
POSIX locale provided on all systems.

Chapter 8 describes the use of environment variables for internationalization and other
purposes.

Chapter 9 describes the syntax of pattern matching using regular expressions employed by
many utilities and matched by the regcomp() and regexec() functions. Both Basic Regular
Expressions (BREs) and Extended Regular Expressions (EREs) are described in this
chapter.

The Single UNIX® Specification: Authorized Guide to Version 4 17

Base Definitions (XBD) The Single UNIX Specification, Version 4

2.2

2.3

= Chapter 10 describes files and devices found on all systems and their semantics. For
example, the device /dev/null is an infinite data source and data sink.

= Chapter 11 describes the asynchronous terminal interface for many of the functions in XSH
and the stty utility in XCU.

= Chapter 12 describes the policies for command line argument construction and parsing. It
contains the utility argument syntax used throughout XCU, and also utility syntax
guidelines for naming of utilities and the specification of their options, option-arguments,
and operands.

= Chapter 13 defines the contents of headers which declare the functions and global
variables, and define types, constants, macros, and data structures that are needed by
programs using the services provided by the system interfaces defined in XSH. These are
in the form of reference pages and are organized alphabetically.

System Interfaces (XSH)

XSH is part of the Base Specifications, Issue 7. XSH describes a set of system interfaces
offered to application programs by systems conformant to this volume of the Single UNIX
Specification. Readers are expected to be experienced C language programmers, and to be
familiar with the XBD volume.

This volume is structured as follows:

= Chapter 1 explains the relationship of XSH to other formal standards and describes the
format of the reference pages that comprise most of this volume.

= Chapter 2 contains important concepts, terms, and caveats relating to the rest of XSH.
This includes information on the compilation environment, the name space, definitions of
error numbers, signal concepts, standard /O streams, STREAMS, XSI IPC, realtime,
threads, sockets, tracing, and data types.

= Chapter 3 defines the functional interfaces to systems conformant to this volume of the
Single UNIX Specification. These are in the form of reference pages and are organized
alphabetically.

Shell and Utilities (XCU)

XCU! is part of the Base Specifications, Issue 7. XCU describes the shell and utilities that are
available to application programs on systems conformant to this volume of the Single UNIX
Specification. Readers are expected to be familiar with the XBD volume.

This volume is structured as follows:

= Chapter 1 explains the relationship of XCU to other formal standards, including the 1ISO C
standard and also XSH. It also describes the utility limits, grammar conventions, defaults
used by the utility descriptions, considerations for utilities in support of large files, and
requirements for built-in utilities.

18

The acronym “XCU” derives from an earlier version of this volume of the specification which was called “Commands and
Utilities™.

A Source Book from The Open Group (2010)

The Single UNIX Specification, Version 4 Shell and Utilities (XCU)

2.4

2.5

= Chapter 2 describes the command language—that is, the shell command language
interpreter—used in systems conformant to the Single UNIX Specification. It also includes
reference pages for the special built-in utilities, organized alphabetically.

= Chapter 3 describes a set of services and utilities that are implemented on systems
supporting the Batch Environment option.

= Chapter 4 consists of reference pages for all utilities—other than the special built-in utilities
described in Chapter 2—available on systems conforming to the Single UNIX Specification.
These are in the form of reference pages and are organized alphabetically.

Rationale (XRAT)

XRAT is part of the Base Specifications, Issue 7. XRAT has been published to assist in the
process of review and understanding of the main text. It contains historical information
concerning the contents of the Base Specifications, Issue 7 and why features were included or
discarded by the standard developers. It also contains notes of interest to application
programmers on recommended programming practices, emphasizing the consequences of
some aspects that may not be immediately apparent.

XRAT is organized in parallel to the normative volumes of the Base Specification, with a
separate appendix (A, B, and C) for each of the three normative volumes of the document: XBD,
XSH, and XCU, respectively. In addition, two additional appendices are included: Appendix D,
Portability Considerations and Appendix E Subprofiling Considerations. The Portability
Considerations appendix includes a report on the perceived user requirements for the Base
Specifications and how the facilities provided satisfy those requirements, together with guidance
to writers of profiles on how to use the configurable options, limits, and optional behavior. The
Subprofiling Considerations appendix satisfies the requirement that the document address
subprofiling. This contains an example set of subprofiling options.

X/Open Curses (XCURSEYS)

XCURSES is not part of the Base Specifications, Issue 7, but is a separate Open Group
Technical Standard. XCURSES describes a set of interfaces providing a terminal-independent
method of updating character screens that are available to application programs on systems
conformant to this part of the Single UNIX Specification.

This document is structured as follows:

= Chapter 1 introduces Curses and gives an overview of the changes made in this version.
This chapter also defines the requirements for conformance to this document and shows
the generic format followed by interface definitions in Chapter 4.

= Chapter 2 describes the relationship between Curses and the C language, the compilation
environment, and the X/Open System Interface (XSI) operating system requirements. It
also defines the effect of the interface on the name space for identifiers and introduces the
major data types that the interfaces use.

= Chapter 3 gives an overview of Curses. It discusses the use of some of the key data types
and gives general rules for important common concepts such as characters, renditions,
and window properties. It contains general rules for the common Curses operations and
operating modes. This information is implicitly referenced by the interface definitions in
Chapter 4. The chapter explains the system of naming the Curses functions and presents

The Single UNIX® Specification: Authorized Guide to Version 4 19

X/Open Curses (XCURSES) The Single UNIX Specification, Version 4

20

a table of function families. Finally, the chapter contains notes regarding use of macros and
restrictions on block-mode terminals.

Chapter 4 defines the Curses functional interfaces.

Chapter 5 defines the contents of headers which declare the functions and global
variables, and define types, constants, macros, and data structures that are needed by
programs using the services provided by the interfaces defined in Chapter 4.

Chapter 6 defines the Curses utilities.

Chapter 7 discusses the terminfo database which Curses uses to describe terminals. The
chapter specifies the source format of a terminfo entry using a formal grammar, an informal
discussion, and an example. Boolean, numeric, and string capabilities are presented in
tabular form.

Appendix A discusses the use of these capabilities by the writer of a terminfo entry to
describe the characteristics of the terminal in use.

The Glossary contains normative definitions of terms used in the document.

A Source Book from The Open Group (2010)

Chapter 3

System Interfaces

The Single UNIX Specification covers a broad spectrum of functionality, providing a rich environment for
applications portability and portable applications development. This chapter covers the C language
programming interfaces that are the system interfaces, describing the scope of the interfaces, an overview
of the changes in this version, and lists of the new functions. It also groups the interfaces into categories
to give the reader an understanding of what facilities are available.

3.1 Base Documents
The system interfaces provided in XSH, Issue 7 are drawn from the following base documents:

= |[EEE Std 1003.1, 2004 Edition (POSIX-1) (incorporating IEEE Std 1003.1-2001,
IEEE Std 1003.1-2001/Cor 1-2002, and IEEE Std 1003.1-2001/Cor 2-2004)

= The Open Group Technical Standard, 2006, Extended API Set Part 1
= The Open Group Technical Standard, 2006, Extended API Set Part 2
= The Open Group Technical Standard, 2006, Extended API Set Part 3
= The Open Group Technical Standard, 2006, Extended API Set Part 4

= |SO/IEC 9899:1999, Programming Languages — C (including ISO/IEC
9899: 1999/Cor.1: 2001(E), ISO/IEC 9899: 1999/Cor.2: 2004(E), and ISO/IEC
9899:1999/Cor.3(E))

3.2 Overview of Changes

The following sections describe changes made to XSH since Issue 6. Chapter 11 (on page 101)
details the technical changes that have been made to the system interfaces from Issue 6.

Chapter 11 (on page 101) also details the changes to the POSIX base requirements.

Changes from Issue 6 to Issue 7

The following list summarizes the major changes that were made in XSH from Issue 6 to Issue 7:
= The Open Group Technical Standard, 2006, Extended API Set Part 1 is incorporated.
= The Open Group Technical Standard, 2006, Extended API Set Part 2 is incorporated.
= The Open Group Technical Standard, 2006, Extended API Set Part 3 is incorporated.

The Single UNIX® Specification: Authorized Guide to Version 4 21

Overview of Changes System Interfaces

= The Open Group Technical Standard, 2006, Extended API Set Part 4 is incorporated.

= Existing functionality is aligned with ISO/IEC 9899: 1999, Programming Languages — C,
ISO/IEC 9899: 1999/Cor.2: 2004(E).

= Austin Group defect reports, IEEE Interpretations against IEEE Std 1003.1, and responses
to ISO/IEC defect reports against ISO/IEC 9945 are applied.

= The Open Group corrigenda and resolutions are applied.

= |ssues arising from ISO TR 24715: 2006, Conflicts between POSIX and the LSB have been
addressed.

= Features, marked legacy or obsolescent in the base document, have been considered for
removal in this version. The following table lists the removed functions and symbols:

Removed Functions and Symbols in Issue 7
bemp() gethostbyaddr () rindex()
bcopy () gethostbyname() scalb()
bsd_signal() getwd() setcontext()
bzero() h_errno swapcontext()
ecvt() index() ualarm()
fevt() makecontext() usleep()
ftime() mktemp () vfork()
gevt() pthread_attr getstackaddr() wcswes()
getcontext() pthread_attr _setstackaddr()

The utimes() function, which was marked legacy in Issue 6, has been reinstated as
mandatory in Issue 7.

= Functionality associated with the following options in Issue 6 is how mandatory in Issue 7:

_POSIX_ASYNCHRONOUS_|O
_POSIX_BARRIERS
_POSIX_CLOCK_SELECTION
_POSIX_MAPPED_FILES
_POSIX_MEMORY_PROTECTION
_POSIX_READER_WRITER_LOCKS
_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES
_POSIX_SPIN_LOCKS
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREADS
_POSIX_TIMEOUTS
_POSIX_TIMERS

22 A Source Book from The Open Group (2010)

System Interfaces

New Features in Issue 7

Overview of Changes

The functions first introduced in Issue 7 (over the XSH, Issue 6 base document) are listed in the

table below:
New Functions in Issue 7

alphasort() iswdigit_I() strfmon_I()
dirfd () iswgraph_I() strncasecmp_I()
dprintf() iswlower_I() strndup()
duplocale() iswprint_I() strnlen()
faccessat() iswpunct_I() strsignal ()
fchmodat() iswspace_l() strxfrm_I()
fchownat() iswupper_I() symlinkat()
fdopendir() iswxdigit_I() tolower_I()
fexecve () isxdigit_I() toupper_I()
fmemopen() linkat() towctrans_I()
freelocale() mbsnrtowcs () towlower_I()
fstatat() mkdirat() towupper_I()
futimens() mkdtemp () unlinkat()
getdelim() mkfifoat() uselocale()
getline() mknodat() utimensat()
isalnum_I() newlocale () vdprintf()
isalpha_I() openat() wepepy()
isblank_I() open_memstream() wepnepy ()
iscntrl_I() open_wmemstream() wcescasecmp ()
isdigit_I() psiginfo() wcescasecmp_|()
isgraph_1() psignal() wescoll_I()
islower_|() pthread_mutexattr_getrobust() wecsdup()
isprint_I() pthread_mutexattr_setrobust() wcsncasecmp()
ispunct_I() pthread_mutex_consistent() wcesncasecmp_I()
isspace_I() readlinkat() wcesnlen()
isupper_I() renameat() wesnrtombs ()
iswalnum_lI() scandir() wesxfrm_I()
iswalpha_I() stpepy () wctrans_|()
iswblank_1() stpncpy() wctype_|()
iswentrl_1() strcasecmp_I()
iswctype_1() strcoll_I()

The following table lists functions that were previously part of an option group but are now

mandatory in Issue 7:

The Single UNIX® Specification: Authorized Guide to Version 4

23

Overview of Changes

24

System Interfaces

Newly Mandated Functions in Issue 7

aio_cancel()
aio_error()
aio_fsync()
aio_read()
aio_return()
aio_suspend()
aio_write()
asctime_r()
catclose()
catgets()
catopen()
clock _getres()
clock _gettime()
clock _nanosleep()
clock_settime()
ctime_r()
dicose()
dlerror()
dlopen()
disym()
fchdir()
flockfile ()
fstatvfs()
ftrylockfile ()
funlockfile ()
getc_unlocked()
getchar_unlocked()
getgrgid_r()
getgrnam_r()
getlogin_r()
getpgid()
getpwnam_r()
getpwuid_r()
getsid()
getsubopt()
gmtime_r()
iconv()
iconv_close()
iconv_open()
Ichown ()
lio_listio()
localtime_r()
mkstemp ()
mmap()
mprotect()
munmap ()
nanosleep()
nl_langinfo ()
poll()

posix_trace_timedgetnext_event()

pread()

pthread_atfork()
pthread_attr_destroy()
pthread_attr getdetachstate()
pthread_attr getguardsize()
pthread_attr _getschedparam()
pthread_attr_init()
pthread_attr setdetachstate()
pthread_attr setguardsize()
pthread_attr setschedparam()
pthread_barrier_destroy()
pthread_barrier_init()
pthread_barrier_wait()
pthread_barrierattr_destroy()
pthread_barrierattr_init()
pthread_cancel()
pthread_cleanup_pop()
pthread_cleanup_push()
pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_condattr_destroy()
pthread_condattr_getclock()
pthread_condattr_init()
pthread_condattr_setclock()
pthread_create()
pthread_detach()
pthread_equal()
pthread_exit()
pthread_getspecific()
pthread_join()

pthread_key create()
pthread_key delete()
pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_timedlock()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_mutexattr_destroy()
pthread_mutexattr_gettype()
pthread_mutexattr_init()
pthread_mutexattr_settype()
pthread_once()
pthread_rwlock_destroy()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()

pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_destroy()
pthread_rwlockattr_init()
pthread_self()
pthread_setcancelstate ()
pthread_setcanceltype()
pthread_setspecific()
pthread_spin_destroy()
pthread_spin_init()
pthread_spin_lock()
pthread_spin_trylock()
pthread_spin_unlock()
pthread_testcancel()
putc_unlocked()
putchar_unlocked()
pwrite ()

rand_r()

readdir_r()

sem_close()
sem_destroy()
sem_getvalue()
sem_init()

sem_open()

sem_post()
sem_timedwait()
sem_trywait()
sem_unlink()
sem_wait()

sigqueue()

sigqueue()
sigtimedwait()
sigwaitinfo ()

statvfs()

strcasecmp()

strdup()

strerror_r()

strfmon()

strncasecmp()
strtok_r()

tcgetsid()

timer_create()
timer_delete()
timer_getoverrun()
timer_gettime ()
timer_settime()

truncate ()

ttyname_r()

waitid ()

A Source Book from The Open Group (2010)

System Interfaces System Interfaces by Category

3.3 System Interfaces b y Category

The Single UNIX Specification, Version 4 supports and is aligned with key formal standards, of
which POSIX.1-2008 forms the core. This section gives lists of interfaces categorized by
functional grouping:

Asynchronous Input and Output Interfaces
aio_cancel(), aio_error(), aio_fsync(), aio_read(), aio_return(), aio_suspend (),
aio_write(), lio_listio()

Barrier Interfaces
pthread_barrier_destroy(), pthread_barrier_init(), pthread_barrier_wait(),
pthread_barrierattr()

Jump Interfaces
longjmp(), setjimp()

Maths Library Interfaces
acos(), acosf(), acosh(), acoshf(), acoshl(), acosl(), asin(), asinf(), asinh(), asinhf(),
asinhl(), asinl(), atan(), atan2(), atan2f(), atan2l(), atanf(), atanh(), atanhf(), atanhl(),
atanl(), cabs(), cabsf(), cabsl(), cacos(), cacosf(), cacosh(), cacoshf(), cacoshl(),
cacosl(), carg(), cargf(), cargl(), casin(), casinf(), casinh(), casinhf(), casinhl(), casinl(),
catan(), catanf(), catanh(), catanhf(), catanhl(), catanl(), cbrt(), cbrtf(), cbrtl(), ccos(),
ccosf(), ccosh(), ccoshf(), ccoshl(), ccosl(), ceil(), ceilf(), ceill(), cexp(), cexpf(), cexpl(),
cimag(), cimagf(), cimagl(), clog(), clogf(), clogl(), conj(), conjf(), conjl(), copysign(),
copysignf(), copysignl(), cos(), cosf(), cosh(), coshf(), coshl(), cosl(), cpow(), cpowf(),
cpowl(), cproj(), cprojf(), cprojl(), creal(), crealf(), creall(), csin(), csinf(), csinh(),
csinhf(), csinhl(), csinl(), csart(), csartf(), csqrtl(), ctan(), ctanf(), ctanh(), ctanhf(),
ctanhl(), ctanl(), erf(), erfc(), erfcf(), erfcl(), erff(), erfl(), exp(), exp2(), exp2f(), exp2l(),
expf(), expl(), expml1(), expm1f(), expmll(), fabs(), fabsf(), fabsl(), fdim(), fdimf(),
fdiml(), floor(), floorf(), floorl(), fma(), fmaf(), fmal(), fmax(), fmaxf(), fmaxl|(), fmin(),
fminf(), fminl(), fmod(), fmodf(), fmodl(), fpclassify(), frexp(), frexpf(), frexpl(), hypot(),
hypotf(), hypotl(), ilogb(), ilogbf(), ilogbl(), isfinite(), isgreater(), isgreaterequal(), isinf(),
isless(), islessequal(), islessgreater(), isnan(), isnormal(), isunordered(), Idexp(),
Idexpf(), Idexpl(), lgammal(), Igammaf(), Igammal(), lirint(), lirintf(), lirintl (), llround(),
lIroundf(), llroundl(), log(), log10(), log10f(), log10I(), loglp(), loglpf(), loglpl(), log2(),
log2f(), log2I(), logh(), logbf(), logbl(), logf(), logl(), Irint(), Irintf(), Irintl(), Iround(),
Iroundf(), IroundI(), modf(), modff(), modfl(), nan(), nanf(), nanl(), nearbyint(),
nearbyintf(), nearbyintl(), nextafter(), nextafterf(), nextafterl(), nexttoward(),
nexttowardf(), nexttoward!(), pow(), powf(), powl(), remainder(), remainderf(),
remainderl (), remquo(), remquof(), remquol(), rint(), rintf(), rintl(), round(), roundf(),
roundl(), scalbin(), scalbInf(), scalbInl(), scalbn(), scalbnf(), scalbnl(), signbit(), sin(),
sinf(), sinh(), sinhf(), sinhl(), sinl(), sqgrt(), sqrtf(), sqrtl(), tan(), tanf(), tanh(), tanhf(),
tanhl(), tanl(), tgamma(), tgammaf(), tgammal(), trunc(), truncf(), truncl()

General ISO C Library Interfaces
abs(), asctime(), atof(), atoi(), atol(), atoll(), bsearch(), calloc(), ctime(), difftime(), div(),
feclearexcept(), fegetenv(), fegetexceptflag(), fegetround(), feholdexcept(),
feraiseexcept(), fesetenv(), fesetexceptflag (), fesetround(), fetestexcept(), feupdateenv(),
free(), gmtime(), imaxabs(), imaxdiv(), isalnum(), isalpha(), isblank(), iscntrl(), isdigit(),
isgraph(), islower (), isprint(), ispunct(), isspace(), isupper(), isxdigit(), labs(), Idiv(),
llabs (), lidiv(), localeconv(), localtime (), malloc(), memchr(), memcmp(), memcpy(),
memmove (), memset(), mktime(), gsort(), rand(), realloc(), setlocale(), snprintf(),
sprintf(), srand(), sscanf(), strcat(), strchr(), strcmp(), strcoll(), strcpy(), strcspn(),
strerror (), strftime(), strlen(), strncat(), strncmp(), strncpy(), strpbrk(), strrchr(), strspn(),
strstr(), strtod(), strtof(), strtoimax(), strtok(), strtol(), strtold(), strtoll(), strtoul(),

The Single UNIX® Specification: Authorized Guide to Version 4 25

System Interfaces by Category System Interfaces

26

strtoull(), strtoumax(), strxfrm(), time(), tolower (), toupper(), tzname, tzset(), va_arg(),
va_copy(), va_end(), va_start(), vsnprintf(), vsprintf(), vsscanf()

Thread-Safe General ISO C Library Interfaces
asctime_r(), ctime_r(), gmtime_r(), localtime_r(), rand_r(), strerror_r(), strtok_r()

Wide-Character ISO C Library Interfaces
btowc (), iswalnum(), iswalpha(), iswblank(), iswentrl(), iswctype (), iswdigit(), iswgraph(),
iswlower (), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit(), mblen(), mbrlen(),
mbrtowc (), mbsinit(), mbsrtowcs(), mbstowcs(), mbtowc(), swprintf(), swscanf(),
towctrans(), towlower (), towupper (), vswprintf(), vswscanf(), wertomb (), wecscat(),
weschr (), wesemp (), wescoll(), wesepy (), wesespn (), wesftime(), weslen(), wesncat(),
wesnemp (), wesnepy (), wespbrk(), wesrchr(), wesrtombs (), wesspn(), wesstr(), westod (),
westof (), westoimax (), westok (), westol (), westold(), westoll (), westombs (), westoul (),
westoull(), westoumax (), wesxfrm (), wetob (), wetomb (), wetrans (), wetype (), wmemchr(),
wmemcmp (), wmemcpy (), wmemmove(), wmemset()

Extended Wide-Character ISO C Library Interfaces
mbsnrtowces (), wepepy (), wepnepy (), wescasecmp (), wesdup(), wesncasecmp(),
wesnlen(), wesnrtombs ()

General C Library Extension Interfaces
fnmatch(), getopt(), getsubopt(), optarg, opterr, optind, optopt, stpcpy (), stpncpy(),
strcasecmp (), strdup(), strfmon(), strncasecmp(), strndup(), strnlen()

Clock Selection Interfaces
clock _nanosleep(), pthread_condattr_getclock(), pthread_condattr_setclock()

Device Input and Output Interfaces
FD _CLR(), FD_ISSET(), FD_SET(), FD_ZERO(), clearerr(), close(), fclose(), fdopen(),
feof (), ferror(), fflush(), fgetc(), fgets(), fileno(), fopen(), fprintf(), fputc(), fputs(), fread(),
freopen(), fscanf(), fwrite (), getc(), getchar(), gets(), open(), perror(), poll(), printf(),
pread(), pselect(), putc(), putchar(), puts(), pwrite(), read(), scanf(), select(), setbuf(),
setvbuf(), stderr, stdin, stdout, ungetc(), vfprintf(), vfscanf(), vprintf(), vscanf(), write()

Extended Device Input and Output Interfaces
dprintf(), fmemopen(), open_memstream(), vdprintf()

General Terminal Interfaces
cfgetispeed(), cfgetospeed(), cfsetispeed(), cfsetospeed(), ctermid(), isatty (), tcdrain(),
tcflow(), tcflush(), tcgetattr(), tcsendbreak(), tcsetattr(), ttyname()

Thread-Safe General Terminal Interfaces
ttyname_r()

Dynamic Linking Interfaces
diclose(), dlerror(), dlopen(), disym()

File Descriptor Management Interfaces
dup(), dup2(), fentl(), fgetpos(), fseek(), fseeko(), fsetpos(), ftell(), ftello(), ftruncate(),
Iseek (), rewind()

FIFO Interfaces
mkfifo ()

FIFO File Descriptor Interfaces
mkfifoat(), mknodat()

A Source Book from The Open Group (2010)

System Interfaces System Interfaces by Category

File Attribute Interfaces
chmod (), chown(), fchmod (), fchown(), umask()

File Attributes File Descriptor Interfaces
fchmodat(), fchownat()

Thread-Safe Stdio Locking Interfaces
flockfile (), ftrylockfile (), funlockfile (), getc_unlocked (), getchar_unlocked(),
putc_unlocked(), putchar_unlocked()

File System Interfaces
access(), chdir(), closedir(), creat(), fchdir(), fpathconf(), fstat(), fstatvfs(), getcwd(),
link (), mkdir(), mkstemp(), opendir(), pathconf(), readdir(), remove(), rename(),
rewinddir(), rmdir(), stat(), statvfs(), tmpfile(), tmpnam(), truncate(), unlink(), utime()

File System Extension Interfaces
alphasort(), dirfd(), getdelim(), getline(), mkdtemp(), scandir()

File System File Descriptor Interfaces
faccessat(), fdopendir(), fstatat(), linkat(), mkdirat(), openat(), renameat(), unlinkat(),
utimensat()

File System Glob Expansion Interfaces
glob(), globfree()

Thread-Safe File System Interfaces
readdir_r()

Internationalization Interfaces
catclose (), catgets(), catopen(), iconv(), iconv_close(), iconv_open(), nl_langinfo()

Job Control Interfaces
setpgid(), tcgetpgrp(), tcsetpgrp(), tcgetsid()

Memory Mapped File Interfaces
mmap (), munmap()

Memory Protection Interfaces
mprotect()

Multiple Concurrent Locale Interfaces
duplocale(), freelocale(), isalnum_I(), isalpha_l(), isblank_I(), iscntrl_I(), isdigit_I(),
isgraph_1(), islower_I(), isprint_I(), ispunct_I(), isspace_l(), isupper_I(), iswalnum_I(),
iswalpha_I(), iswblank_I(), iswentrl_I(), iswctype_I(), iswdigit_I(), iswgraph_I(),
iswlower_I(), iswprint_I(), iswpunct_I(), iswspace_I(), iswupper_I(), iswxdigit_I(),
isxdigit_I(), newlocale(), strcasecmp_I(), strcoll_I(), strfmon_1I(), strncasecmp_I(),
strxfrm_I(), tolower_I(), toupper_I(), towctrans_I(), towlower (), towupper(), uselocale(),
wescasecmp_I(), wescoll_I(), wesncasecmp_I(), wesxfrm_I(), wetrans_I(), wetype _[()

Multiple Process Interfaces
_Exit(), _exit(), assert(), atexit(), clock(), execl(), execle(), execlp(), execv(), execve(),

execvp (), exit(), fork(), getpgrp(), getpgid(), getpid(), getppid(), getsid(), setsid(),
sleep(), times(), wait(), waitid (), waitpid()

Multiple Processes File Descriptor Interfaces
fexecve()

Networking Interfaces
accept(), bind(), connect(), endhostent(), endnetent(), endprotoent(), endservent(),
freeaddrinfo (), gai_strerror(), getaddrinfo(), gethostent(), gethostname(), gethameinfo(),

The Single UNIX® Specification: Authorized Guide to Version 4 27

System Interfaces by Category System Interfaces

28

getnetbyaddr(), getnetbyname (), getnetent(), getpeername(), getprotobyname(),
getprotobynumber (), getprotoent(), getservbyname (), getservbyport(), getservent(),
getsockname(), getsockopt(), htonl(), htons(), if freenameindex(), if indextoname(),

if _nameindex(), if_nametoindex(), inet_addr(), inet_ntoa(), inet_ntop(), inet_pton(),
listen(), ntohl(), ntohs(), recv(), recvfrom(), recvmsg(), send(), sendmsg(), sendto(),
sethostent(), setnetent(), setprotoent(), setservent(), setsockopt(), shutdown(), socket(),
sockatmark(), socketpair()

Pipe Interfaces
pipe()

Robust Mutex Interfaces
pthread_mutex_consistent(), pthread_mutexattr_getrobust(),
pthread_mutexattr_setrobust()

Realtime Signal Interfaces
sigqueue (), sigtimedwait(), sigwaitinfo()

Regular Expression Interfaces
regcomp(), regerror(), regexec(), regfree()

Reader Writer Lock Interfaces
pthread_rwlock_destroy(), pthread_rwlock_init(), pthread_rwlock_rdlock(),
pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(),
pthread_rwlock_trywrlock(), pthread_rwlock_unlock(), pthread_rwlock_wrlock(),
pthread_rwlockattr_destroy(), pthread_rwlockattr_init(), pthread_rwlockattr _getpshared(),
pthread_rwlockattr_setpshared()

Semaphore Interfaces
sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(),
sem_timedwait(), sem_trywait(), sem_unlink(), sem_wait()

Shell and Utilities Interfaces
pclose(), popen(), system(), wordexp(), wordfree()

Signal Jump Interfaces
siglongjmp (), sigsetjimp()

Signal Interfaces
abort(), alarm(), kill(), pause(), raise(), sigaction(), sigaddset(), sigdelset(),
sigemptyset(), sidfillset(), sigismember(), signal(), sigpending(), sigprocmask(),
sigsuspend (), sigwait()

Extended Signal Interfaces
psignal(), psiginfo(), strsignal()

Single Process Interfaces
confstr(), environ, errno, getenv(), setenv(), sysconf(), uname(), unsetenv()

Spin Lock Interfaces
pthread_spin_destroy(), pthread_spin_init(), pthread_spin_lock(), pthread_spin_trylock(),
pthread_spin_unlock()

Symbolic Link Interfaces
Ichown (), Istat(), readlink(), symlink()

Symbolic Link File Descriptor Interfaces
readlinkat(), symlinkat()

A Source Book from The Open Group (2010)

System Interfaces System Interfaces by Category

System Database Interfaces
getgrgid(), getgrnam (), getpwnam(), getpwuid()

Thread-Safe System Database Interfaces
getgrgid_r(), getgrnam_r(), getpwnam_r(), getpwuid_r()

Base Threads Interfaces
pthread_atfork(), pthread_attr_destroy(), pthread_attr_getdetachstate(),
pthread_attr_getschedparam(), pthread_attr_init(), pthread_attr_setdetachstate(),
pthread_attr_setschedparam(), pthread_cancel(), pthread_cleanup_pop(),
pthread_cleanup_push(), pthread_cond_broadcast(), pthread_cond_destroy(),
pthread_cond_init(), pthread_cond_signal(), pthread_cond_timedwait(),
pthread_cond_wait(), pthread_condattr_destroy(), pthread_condattr_init(),
pthread_create(), pthread_detach (), pthread_equal(), pthread_exit(),
pthread_getspecific(), pthread_join(), pthread_key create(), pthread_key_delete(),
pthread_kill(), pthread_mutex_destroy(), pthread_mutex_init(), pthread_mutex_lock(),
pthread_mutex_timedlock(), pthread_mutex_trylock(), pthread_mutex_unlock(),
pthread_mutexattr_destroy(), pthread_mutexattr_init(), pthread_once(), pthread_self(),
pthread_setcancelstate (), pthread_setcanceltype(), pthread_setspecific(),
pthread_sigmask(), pthread_testcancel()

Extended Threads Interfaces
pthread_attr_getguardsize(), pthread_attr_setguardsize (), pthread_mutexattr_gettype(),
pthread_mutexattr_settype()

Timer Interfaces
clock_getres(), clock_gettime(), clock_settime(), nanosleep(), timer_create(),
timer_delete(), timer_getoverrun(), timer_gettime(), timer_settime()

User and Group Interfaces
getegid(), geteuid(), getgid(), getgroups(), getlogin(), getuid(), setegid(), seteuid(),
setgid (), setuid()

Thread-Safe User and Group Interfaces
getlogin_r()

Wide Character Device Input and Output Interfaces
fgetwe(), fgetws(), fputwe (), fputws(), fwide (), fwprintf(), fwscanf(), getwc(), getwchar(),
putwc (), putwchar(), ungetwe(), viwprintf(), viwscanf(), vwprintf(), vwscanf(), wprintf(),
wscanf()

Advisory Information Interfaces
posix_fadvise (), posix_fallocate (), posix_madvise(), posix_memalign()

Process CPU-Time Clocks Interfaces
clock _getcpuclockid()

File Synchronization Interfaces
fsync()

Process Memory Locking Interfaces
mlockall (), munlockall()

Range Memory Locking Interfaces
mlock (), munlock ()

Message Passing Interfaces
mq_close (), mq_getattr(), mg_notify(), mg_open(), mq_receive(), mq_send(),
mq_setattr (), mg_timedreceive (), mg_timedsend(), mg_unlink()

The Single UNIX® Specification: Authorized Guide to Version 4 29

System Interfaces by Category System Interfaces

30

Process Scheduling Interfaces
posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(),
sched_get_priority_max(), sched _get_priority_min(), sched_getparam(),
sched_getscheduler(), sched_rr_get interval(), sched_setparam(), sched_setscheduler()

Robust Mutex Priority Inheritance Interfaces
pthread_mutexattr_getprotocol(), pthread_mutexattr_setprotocol()

Robust Mutex Priority Protection Interfaces
pthread_mutex_getprioceiling (), pthread_mutex_setprioceiling(),
pthread_mutexattr_getprioceiling(), pthread_mutexattr_getprotocol(),
pthread_mutexattr_setprioceiling(), pthread_mutexattr_setprotocol()

Shared Memory Objects Interfaces
shm_open(), shm_unlink()

Synchronized Input and Output Interfaces
fdatasync(), msync()

Spawn Interfaces
posix_spawn(), posix_spawn_file_actions_addclose(),
posix_spawn_file_actions_adddup2(), posix_spawn_file_actions_addopen(),
posix_spawn_file_actions_destroy(), posix_spawn_file_actions_init(),
posix_spawnattr_destroy (), posix_spawnattr_getflags(), posix_spawnattr_getpgroup(),
posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
posix_spawnattr_getsigdefault(), posix_spawnattr_getsigmask(), posix_spawnattr_init(),
posix_spawnattr_setflags(), posix_spawnattr_setpgroup(),
posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(),
posix_spawnattr_setsigdefault(), posix_spawnattr_setsigmask(), posix_spawnp()

Thread CPU-Time Clocks Interfaces
pthread_getcpuclockid()

Trace Event Filter Interfaces
posix_trace_eventset_add(), posix_trace_eventset del(), posix_trace eventset_empty(),
posix_trace_eventset fill(), posix_trace_eventset _ismember(), posix_trace_get _filter(),
posix_trace_set filter(), posix_trace_trid_eventid_open()

Non-Robust Mutex Priority Inheritance Interfaces
pthread_mutexattr_getprotocol(), pthread_mutexattr_setprotocol()

Non-Robust Mutex Priority Protection Interfaces
pthread_mutex_getprioceiling (), pthread_mutex_setprioceiling(),
pthread_mutexattr_getprioceiling(), pthread_mutexattr_getprotocol(),
pthread_mutexattr_setprioceiling(), pthread_mutexattr_setprotocol()

Thread Execution Scheduling Interfaces
pthread_attr_getinheritsched(), pthread_attr_getschedpolicy(), pthread_attr_getscope(),
pthread_attr_setinheritsched (), pthread_attr_setschedpolicy(), pthread_attr_setscope(),
pthread_getschedparam (), pthread_setschedparam(), pthread_setschedprio(),
sched_get_priority_max(), sched_get_priority_min(), sched _rr_get_interval()

Trace Interfaces
posix_trace_attr_destroy(), posix_trace_attr_getclockres(),
posix_trace_attr_getcreatetime(), posix_trace_attr_getgenversion(),
posix_trace_attr_getname(), posix_trace_attr_getstreamfullpolicy(),
posix_trace_attr_getstreamsize(), posix_trace_attr_init(),

A Source Book from The Open Group (2010)

System Interfaces System Interfaces by Category

posix_trace_attr_setmaxdatasize (), posix_trace_attr_setname(),
posix_trace_attr_setstreamfullpolicy(), posix_trace_attr_setstreamsize(),
posix_trace_clear(), posix_trace_create(), posix_trace_event(),
posix_trace_eventid_equal(), posix_trace_eventid_get name(),
posix_trace_eventid_open(), posix_trace_eventtypelist_getnext_id(),
posix_trace_eventtypelist_rewind(), posix_trace_get attr(), posix_trace_get status(),
posix_trace_getnext_event(), posix_trace_shutdown(), posix_trace_start(),
posix_trace_stop(), posix_trace_timedgetnext_event(), posix_trace_trygetnext_event()

Trace Inherit Interfaces
posix_trace_attr_getinherited(), posix_trace_attr_setinherited()

Trace Log Interfaces
posix_trace_attr_getlogfullpolicy(), posix_trace_attr_getlogsize(),
posix_trace_attr_setlogfullpolicy(), posix_trace_attr_setlogsize (), posix_trace_close(),
posix_trace_create_withlog(), posix_trace_flush(), posix_trace _open(),
posix_trace_rewind()

Thread Stack Address Attribute Interfaces
pthread_attr_getstack(), pthread_attr_setstack()

Thread Process-Shared Synchronization Interfaces
pthread_barrierattr_getpshared(), pthread_barrierattr_setpshared(),
pthread_condattr_getpshared(), pthread_condattr_setpshared(),
pthread_mutexattr_getpshared(), pthread_mutexattr_setpshared(),
pthread_rwlockattr_getpshared(), pthread_rwlockattr_setpshared()

Thread Stack Size Attribute Interfaces
pthread_attr_getstack(), pthread_attr_getstacksize(), pthread_attr_setstack(),
pthread_attr_setstacksize()

Typed Memory Objects Interfaces
posix_mem_offset(), posix_typed_mem_get_info(), posix_typed_mem_open()

XSI General C Library Interfaces
_tolower(), _toupper(), a64l(), daylight(), drand48(), erand48(), ffs(), getdate(),
hcreate(), hdestroy(), hsearch(), initstate(), insque(), isascii(), jrand48(), 164a(),
Icong48(), Ifind(), Irand48(), Isearch(), memccpy (), mrand48(), nrand48(), random(),
remque(), seed48(), setstate(), signgam, srand48(), srandom(), strptime(), swab(),
tdelete(), tfind(), timezone(), toascii(), tsearch(), twalk()

XSI Database Management Interfaces
dbm_clearerr(), dom_close(), dom_delete(), dom_error(), dom_fetch(), dom_firstkey (),
dbm_nextkey(), dbm_open(), dbm_store()

XSl Device Input and Output Interfaces
fmtmsg(), readv(), writev()

XSI General Terminal Interfaces
grantpt(), posix_openpt(), ptsname(), unlockpt()

XSl File System Interfaces
basename(), dirname (), ftw(), lockf(), mknod(), nftw(), realpath(), seekdir(), sync(),
telldir (), tempnam()

XSl Interprocess Communication Interfaces
ftok (), msgctl(), msgget(), msgrev(), msgsnd(), semctl(), semget(), semop(), shmat(),
shmctl(), shmdt(), shmget()

The Single UNIX® Specification: Authorized Guide to Version 4 31

System Interfaces by Category System Interfaces

3.4

32

XSI Jump Interfaces
_longjmp (), _setimp()

XSI Maths Library Interfaces
j00),110), in(), y0(), y1(), yn()

XSI Multiple Process Interfaces
getpriority (), getrlimit(), getrusage (), nice(), setpgrp(), setpriority (), setrlimit(), ulimit(),

XSI Signal Interfaces
killpg (), sigaltstack(), sighold(), sigignore(), siginterrupt(), sigpause(), sigrelse(), sigset(),

XSI Single Process Interfaces
gethostid(), gettimeofday(), putenv()

XSI System Database Interfaces
endpwent(), getpwent(), setpwent()

XSI System Logging Interfaces
closelog(), openlog(), setlogmask(), syslog()

XSl Threads Extension Interfaces
pthread_attr_getstack(), pthread_attr_setstack(), pthread_getconcurrency(),
pthread_setconcurrency()

XSI Timer Interfaces
getitimer(), setitimer()

XSl User and Group Interfaces
endgrent(), endutxent(), getgrent(), getutxent(), getutxid(), getutxline(), pututxline(),
setgrent(), setregid(), setreuid(), setutxent()

XSI Wide-Character Library Interfaces
weswidth (), wewidth()

XS| STREAMS Interfaces
fattach (), fdetach(), getmsg(), getpmsg(), ioctl(), isastream(), putmsg(), putpmsg()

XSH Option Groups

The Single UNIX Specification includes a set of profiling options, allowing larger profiles of the
options of the Base standard. In Version 2 and earlier versions of the Single UNIX Specification
these were known as Feature Groups. The Option Groups within the Single UNIX Specification
are defined within XBD, Section 2.1.5.2, XSI Option Groups.

The Single UNIX Specification contains the following Option Groups relating to XSH:
= Encryption , covering the functions crypt(), encrypt(), and setkey()
= Realtime, covering the functions from the IEEE Std 1003.1b-1993 Realtime extension

This Option Group consists of the set of the following options from within POSIX.1-2008:

A Source Book from The Open Group (2010)

System Interfaces XSH Option Groups

_POSIX_FSYNC

_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MESSAGE_PASSING
_POSIX_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING
_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SYNCHRONIZED_IO

Where entire functions are included in the Option Group, the NAME section is marked with
REALTIME. Where additional semantics have been added to existing pages, the new
material is identified by use of the appropriate margin legend for the underlying option
defined within POSIX.1-2008.

= Realtime Threads , covering the functions from the IEEE Std 1003.1¢c-1995 Threads
extension that are related to realtime functionality

This Option Group consists of the set of the following options from within POSIX.1-2008:

_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING

Where entire functions are included in the Option Group, the NAME section is marked with
REALTIME THREADS. Where additional semantics have been added to existing pages,
the new material is identified by use of the appropriate margin legend for the underlying
option defined within POSIX.1-2008.

= Advanced Realtime , covering some of the non-threads-related functions from IEEE Std
1003.1d-1999 and IEEE Std 1003.1j-2000

This Option Group consists of the set of the following options from within POSIX.1-2008:

_POSIX_ADVISORY_INFO
_POSIX_CPUTIME
_POSIX_MONOTONIC_CLOCK
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER
_POSIX_TYPED_MEMORY_OBJECTS

Where entire functions are included in the Option Group, the NAME section is marked with
ADVANCED REALTIME. Where additional semantics have been added to existing pages,
the new material is identified by use of the appropriate margin legend for the underlying
option defined within POSIX.1-2008.

= Advanced Realtime Threads , covering some of the threads-related functions from
IEEE Std 1003.1d-1999 and IEEE Std 1003.1j-2000

This Option Group consists of the set of the following options from within POSIX.1-2008:

_POSIX_THREAD_CPUTIME
_POSIX_THREAD_SPORADIC_SERVER

Where entire functions are included in the Option Group, the NAME section is marked with
ADVANCED REALTIME THREADS. Where additional semantics have been added to
existing pages, the new material is identified by use of the appropriate margin legend for
the underlying option defined within POSIX.1-2008.

The Single UNIX® Specification: Authorized Guide to Version 4 33

XSH Option Groups System Interfaces

3.5

34

= Tracing, covering the functionality from IEEE Std 1003.1g-2000
This Option Group consists of the set of the following options from within POSIX.1-2008:

_POSIX_TRACE
_POSIX_TRACE_EVENT _FILTER
_POSIX_TRACE_LOG
_POSIX_TRACE_INHERIT

Where entire functions are included in the Option Group, the NAME section is marked with
TRACING. Where additional semantics have been added to existing pages, the new
material is identified by use of the appropriate margin legend for the underlying option
defined within POSIX.1-2008.

= XS| STREAMS, covering the functionality and interfaces related to STREAMS, a uniform
mechanism for implementing networking services and other character-based 1/0 as
described in XSH, Section 2.6, STREAMS

This option group includes the following functions:

fattach (), fdetach(), getmsg(), getpmsg(), ioctl(), isastream(), putmsg(), putpmsg()

and the <stropts.h> header.

Where applicable, whole pages are marked STREAMS, together with the appropriate
option margin legend for the SYNOPSIS section. Where additional semantics have been
added to existing pages, the new material is identified by use of the appropriate margin
legend for the underlying option defined within POSIX.1-2008.

Options Policy

In Version 2 and earlier versions of the Single UNIX Specification, conforming systems had to
provide headers, and stub functions returning the [ENOSYS] error condition for unsupported
options.

The policy introduced in Version 3 and updated in this version of the specification provides
flexibility for implementations in how they support options. It also specifies how conforming
applications can adapt to different implementations that support different sets of options. It
allows the following:

1. If an implementation has no interest in supporting an option, it does not have to provide
anything associated with that option beyond the announcement that it does not support it.

2. An implementation can support a partial or incompatible version of an option (as a non-
standard extension) as long as it does not claim to support the option.

3. An application can determine whether the option is supported. A strictly conforming
application must check this announcement mechanism before first using anything
associated with the option.

There is an important implication of this policy. XSH does not dictate the behavior of interfaces
associated with an option when the implementation does not claim to support the option. In
particular, it does not require that a function associated with an unsupported option will fail if it
does not perform as specified.

The policy is enabled through the symbolic constants for Options and Option Groups defined in
<unistd.h> .

A Source Book from The Open Group (2010)

System Interfaces Options Policy

Any application must consider the following three cases for each option:

1.

Option not supported for compilation

The implementation advertises at compile time (by defining the constant in <unistd.h>
with value -1, or by leaving it undefined) that the option is not supported for compilation
and, at the time of compilation, is not supported for runtime use. In this case, the headers,
data types, function interfaces, and utilities required only for the option need not be
present. A later runtime check using the fpathconf(), pathconf(), or sysconf() functions
defined in the System Interfaces volume of POSIX.1-2008 or the getconf utility defined in
the Shell and Utilities volume of POSIX.1-2008 can in some circumstances indicate that
the option is supported at runtime. (For example, an old application binary might be run
on a newer implementation to which support for the option has been added.)

Option always supported

The implementation advertises at compile time (by defining the constant in <unistd.h>
with a value greater than zero) that the option is supported both for compilation and for
use at runtime. In this case, all headers, data types, function interfaces, and utilities
required only for the option shall be available and shall operate as specified. Runtime
checks with fpathconf(), pathconf(), or sysconf() shall indicate that the option is
supported.

Option might or might not be supported at runtime

The implementation advertises at compile time (by defining the constant in <unistd.h>

with value zero) that the option is supported for compilation and might or might not be
supported at runtime. In this case, the fpathconf(), pathconf(), or sysconf() functions
defined in the System Interfaces volume of POSIX.1-2008 or the getconf utility defined in
the Shell and Utilities volume of POSIX.1-2008 can be used to retrieve the value of each
symbol on each specific implementation to determine whether the option is supported at
runtime. All headers, data types, and function interfaces required to compile and execute
applications which use the option at runtime (after checking at runtime that the option is
supported) shall be provided, but if the option is not supported at runtime they need not
operate as specified. Utilities or other facilities required only for the option, but not needed
to compile and execute such applications, need not be present.

If an option is not supported for compilation, an application that attempts to use anything
associated only with the option is considered to be requiring an extension. Unless explicitly
specified otherwise, the behavior of functions associated with an option that is not supported at
runtime is unspecified, and an application that uses such functions without first checking
fpathconf(), pathconf(), or sysconf() is considered to be requiring an extension.

The Single UNIX® Specification: Authorized Guide to Version 4 35

36

System Interfaces

A Source Book from The Open Group (2010)

Chapter 4

Shell and Utilities

XCU, Issue 7 describes all of the utilities required in the Single UNIX Specification environment. This
chapter covers the contents of XCU, describing options, functional overview, the scope of the interfaces,
an overview of the changes in this version, and lists of the new features. It also contains rationale of why
certain utilities are excluded.

4.1 Options in XCU

Some of the utilities need not be present on a system conforming to the Single UNIX
Specification. The optional utilities are as follows:

= DEVELOPMENT utilities are those required in a software development environment. The
reference pages for these utilities are marked DEVELOPMENT.

= FORTRAN utilities are required in a FORTRAN-77 development environment, and
essentially consist of the compiler, fort77, and the ctags utility. The reference pages for
these utilities are marked FORTRAN. (The ctags utility is also marked DEVELOPMENT.)

= The UUCP Utilities are optional. These are marked by the UU notation in their SYNOPSIS.

= The Batch Environment Services and Utilities are optional. These are marked by the BE
notation in their SYNOPSIS. They are also marked OB to indicate that they are
obsolescent.

4.2 Functional Overvie w

The Single UNIX Specification supports a robust tool environment of 174 utilities, described in
XCU. This is 160 external utilities and 14 required built-in utilities. The Single UNIX Specification
utilities have been quite stable since XPG4 Base, and provide a standards-based tool
environment based on UNIX systems practice.

The XSI extensions over the base POSIX functionality in XCU include utilities such as:
= The SCCS suite of tools for source code management:

admin, delta, get, prs, rmdel, sact, sccs, unget, val, what

= The optional UUCP Utilities for UNIX-to-UNIX file copying:

uucp, uustat, uux

The Single UNIX® Specification: Authorized Guide to Version 4 37

Functional Overview Shell and Utilities

= The compression utilities:

compress, uncompress, zcat

= Additional C-language development tools:

cflow, cxref

= Additional utilities:
cal, fuser, ipcrm, ipcs, link, unlink

= Other miscellaneous tools and utilities. (These tools can be found in the table in Chapter 8
(on page 81), with an xsi code in the POSIX column.)

The Single UNIX Specification utilities include:

admin df lex pwd time

alias diff link galter touch

ar dirname In qdel tput

asa du locale ghold tr

at echo localedef gmove true

awk ed logger gmsg tsort
basename env logname grerun tty

batch ex Ip grls type

bc expand Is gselect ulimit

bg expr m4 gsig umask
c99 false mailx gstat unalias
cal fc make gsub uname
cat fg man read uncompress
cd file mesg renice unexpand
cflow find mkdir rm unget
chgrp fold mkfifo rmdel uniq
chmod fort77 more rmdir unlink
chown fuser mv sact uucp
cksum gencat newgrp sccs uudecode
cmp get nice sed uuencode
comm getconf nl sh uustat
command getopts nm sleep uux
compress grep nohup sort val

cp hash od split Vi

crontab head paste strings wait

csplit iconv patch strip wc

ctags id pathchk stty what

cut ipcrm pax tabs who

cxref ipcs pr tall write

date jobs printf talk xargs

dd join prs tee yacc
delta kill ps test zcat

A certified UNIX system will provide all the tools in XCU, with the following provisions:
= The DEVELOPMENT utilities need not be provided. These consist of:

admin, cflow, ctags, cxref, delta, get, lex, make, nm, prs, rmdel, sact, sccs, strip, unget, val,
what, yacc

38 A Source Book from The Open Group (2010)

Shell and Utilities Functional Overview

4.3

4.4

= The FORTRAN development utilities need not be provided. These consist of the compiler,
fort77, and the ctags utility (which is also a DEVELOPMENT utility).

= The UUCP Utilities need not be provided. These consist of:
uucp, uustat, uux
= The obsolescent Batch Environment Services and Utilities need not be provided. These
consist of:
galter, gdel, ghold, gmove, gmsg, grerun, grls, gselect, gsig, gstat, gsub
If the implementation claims to provide the DEVELOPMENT option, then all the tools in the
group must be provided.

It should be noted that the C compiler, c99, is not considered part of the DEVELOPMENT group.
All certified UNIX systems must provide a way of compiling C-language programs.

Base Documents
The Shell and Utilities provided in XCU, Issue 7 are drawn from the following base documents:

= |EEE Std 1003.1, 2004 Edition (POSIX-1) (incorporating IEEE Std 1003.1-2001,
IEEE Std 1003.1-2001/Cor 1-2002, and IEEE Std 1003.1-2001/Cor 2-2004)

= The Open Group Technical Standard, 2006, Extended API Set Part 1

= |SO/IEC 9899:1999, Programming Languages — C (including ISO/IEC
9899:1999/Cor.1: 2001(E), ISO/IEC 9899:1999/Cor.2: 2004(E), and ISO/IEC
9899:1999/Cor.3(E))

Overview of C hanges

The following sections give a high-level overview of changes made to XCU since Issue 6.
Chapter 12 (on page 299) details the technical changes that have been made to the utilities from
Issue 6.

Changes from Issue 6 to Issue 7

The following list summarizes the major changes that were made in XCU from Issue 6 to Issue
7.

= Austin Group defect reports, IEEE Interpretations against IEEE Std 1003.1, and responses
to ISO/IEC defect reports against ISO/IEC 9945 are applied.

= The Open Group corrigenda and resolutions are applied.

= Features, marked legacy or obsolescent in the base documents, have been considered for
removal in this version. The only such feature in XCU is the obsolescent —r option of the cp
utility, which has been removed.

= A review of the use of fixed path filenames within the standard has been undertaken; for
example, the at, batch, and crontab utilities previously had a requirement for use of the
directory /ustr/lib/cron .

The Single UNIX® Specification: Authorized Guide to Version 4 39

Overview of Changes Shell and Utilities

4.5

40

= The options within the standard have been revised.

— The Batch Environment Services and Utilities option is marked obsolescent.
— The UUCRP utilities option is added.

— The User Portability Utilities option is revised so that only the bg, ex, fc, fg, jobs,

more, talk, and vi utilities are included, the rest being moved to the Base.

New Features in Issue 7

There are no new utilities in Issue 7. However, new options have been added to some utilities,
and a new primary has been added to the find utility, as listed in the table below:

Utility New Options or Primary in Issue 7

diff -u-U

find —path

In -L-P

Is -A-S -k

patch -u

pathchk | -P

sort -C

touch —d

Exclusion of Utilities

The set of utilities contained in the Single UNIX Specification is drawn from the POSIX.2-1992
standard and XCU, Issue 5, with one change: the substitution of the c99 utility for the c89 utility.
This section contains information on some of the deliberations that led to this set of utilities, and
why certain utilities were excluded.

Many utilities were evaluated by the standard developers; more historical utilities were excluded
from the standards than included. The following list contains many common UNIX system utilities
that were not included.

This section is limited to a discussion of only those utilities actively or indirectly evaluated by the
standard developers, rather than the list of all known UNIX utilities from all its variants.

adb

as

banner

calendar

cancel

The intent of the various software development utilities was to assist in the
installation (rather than the actual development and debugging) of applications.
This utility is primarily a debugging tool. Furthermore, many useful aspects of adb
are very hardware-specific.

Assemblers are hardware-specific and are included implicitly as part of the
compilers in the Single UNIX Specification.

The only known use of this command is as part of the Ip printer header pages. It
was decided that the format of the header is implementation-defined, so this utility
is superfluous to applications portability.

This reminder service program is not useful to conforming applications.

The Ip (line printer spooling) system specified is the most basic possible and did
not need this level of application control.

A Source Book from The Open Group (2010)

Shell and Utilities Exclusion of Utilities

chroot This is primarily of administrative use, requiring superuser privileges.

col No utilities defined in the Single UNIX Specification produce output requiring such
a filter. The nroff text formatter is present on many historical systems and will
continue to remain as an extension; col is expected to be shipped by all the
systems that ship nroff.

cpio This has been replaced by pax, for reasons explained in the rationale for that utility.
cpp This is subsumed by c99.
cu This utility is terminal-oriented and is not useful from shell scripts or typical

application programs.

dc The functionality of this utility can be provided by the bc utility; bc was selected
because it was easier to use and had superior functionality. Although the historical
versions of bc are implemented using dc as a base, the Single UNIX Specification
prescribes the interface and not the underlying mechanism used to implement it.

dircmp Although a useful concept, the historical output of this directory comparison
program is not suitable for processing in application programs. Also, the diff -r
command gives equivalent functionality.

dis Disassemblers are hardware-specific.

emacs The community of emacs editing enthusiasts was adamant that the full emacs
editor not be included in the standard because they were concerned that an
attempt to standardize this very powerful environment would encourage vendors to
ship versions conforming strictly to the standard, but lacking the extensibility
required by the community. The author of the original emacs program also
expressed his desire to omit the program. Furthermore, there were a number of
historical UNIX systems that did not include emacs, or included it without
supporting it, but there were very few that did not include and support vi.

Id This is subsumed by c99.
line The functionality of line can be provided with read.
lint This technology is partially subsumed by c99. It is also hard to specify the degree

of checking for possible error conditions in programs in any compiler, and
specifying what lint would do in these cases is equally difficult.

It is fairly easy to specify what a compiler does. It requires specifying the language,
what it does with that language, and stating that the interpretation of any incorrect
program is unspecified. Unfortunately, any description of lint is required to specify
what to do with erroneous programs. Since the number of possible errors and
guestionable programming practices is infinite, lint cannot be required to detect all
errors of any given class.

Additionally, some vendors complained that since many compilers are distributed in
a binary form without a lint facility (because the 1ISO C standard does not require
one), implementing the standard as a stand-alone product will be much harder.
Rather than being able to build upon a standard compiler component (simply by
providing c99 as an interface), source to that compiler would most likely need to be
modified to provide the lint functionality. This was considered a major burden on
system providers for a very small gain to developers (users).

login This utility is terminal-oriented and is not useful from shell scripts or typical
application programs.

The Single UNIX® Specification: Authorized Guide to Version 4 41

Exclusion of Utilities Shell and Utilities

lorder

Ipstat

mail

mknod

news

pack

passwd

pcat

P9

prof

RCS

red

rsh

sdb

42

This utility is an aid in creating an implementation-defined detail of object libraries
that the standard developers did not feel required standardization.

The Ip system specified is the most basic possible and did not need this level of
application control.

This utility was omitted in favor of mailx because there was a considerable
functionality overlap between the two.

This was omitted in favor of mkfifo, as mknod has too many implementation-
defined functions.

This utility is terminal-oriented and is not useful from shell scripts or typical
application programs.

This compression program was considered inferior to compress.

This utility was proposed in a historical draft but met with too many objections to be
included. There were various reasons:

Changing a password should not be viewed as a command, but as part of the
login sequence. Changing a password should only be done while a trusted
path is in effect.

Even though the text in early drafts was intended to allow a variety of
implementations to conform, the security policy for one site may differ from
another site running with identical hardware and software. One site might use
password authentication while the other did not. Vendors could not supply a
passwd utility that would conform to the Single UNIX Specification for all sites
using their system.

This is really a subject for a system administration working group or a
security working group.

This compression program was considered inferior to zcat.

This duplicated many of the features of the more pager, which was preferred by the
standard developers.

The intent of the various software development utilities was to assist in the
installation (rather than the actual development and debugging) of applications.
This utility is primarily a debugging tool.

RCS was originally considered as part of a version control utilities portion of the
scope. However, this aspect was abandoned by the standard developers. SCCS is
included as part of the Development option within the Single UNIX Specification.

Restricted editor. This was not considered by the standard developers because it
never provided the level of security restriction required.

Restricted shell. This was not considered by the standard developers because it
does not provide the level of security restriction that is implied by historical
documentation.

The intent of the various software development utilities was to assist in the
installation (rather than the actual development and debugging) of applications.
This utility is primarily a debugging tool. Furthermore, some useful aspects of sdb
are very hardware-specific.

A Source Book from The Open Group (2010)

Shell and Utilities

sdiff

shar

shl

size

spell

su

sum

tar

unpack

wall

Exclusion of Utilities

The “side-by-side diff” utility from System V was omitted because it is used
infrequently, and even less so by conforming applications. Despite being in
System V, it is not in the SVID or XPG.

Any of the numerous “shell archivers” were excluded because they did not meet
the requirement of existing practice.

This utility is terminal-oriented and is not useful from shell scripts or typical
application programs. The job control aspects of the shell command language are
generally more useful.

The intent of the various software development utilities was to assist in the
installation (rather than the actual development and debugging) of applications.
This utility is primarily a debugging tool.

This utility is not useful from shell scripts or typical application programs. The spell
utility was considered, but was omitted because there is no known technology that
can be used to make it recognize general language for user-specified input without
providing a complete dictionary along with the input file.

This utility is not useful from shell scripts or typical application programs. (There
was also sentiment to avoid security-related utilities.)

This utility was renamed cksum.

This utility has been replaced by pax, for reasons explained in the rationale for that
utility.

This compression program was considered inferior to uncompress.

This utility is terminal-oriented and is not useful in shell scripts or typical
applications. It is generally used only by system administrators.

The Single UNIX® Specification: Authorized Guide to Version 4 43

44

Shell and Utilities

A Source Book from The Open Group (2010)

Chapter 5

Headers

This chapter covers the header and name space rules, the scope of the headers, and an overview of the

changes

5.1

5.1.1

to them in this version of the specification.

Header and Name Space Rules

The headers in the Single UNIX Specification are built upon the headers from the ISO C
standard.

ISO C Headers

The ISO C standard describes general rules for implementations versus applications with
respect to headers and name space.

Headers

1. Headers need not be regular text files and the characters between the ' <’ and’ >’ need
not name a source file.

2. Headers should be self-sufficient such that any standard header does not need any other
standard header to be included using #include before or after it (and thus headers can be
included in any order).

3. Headers should be idempotent, such that any standard header can be included any
number of times without causing problems.

4. Headers can provide macro versions of functions which should behave in a semantically
identical fashion. By undefining such a macro, a regular declaration of the function is
made visible.

5. Headers can assume that they are included outside of any file scope declaration or
definition.

6. Headers can assume that they are included prior to the first use of its functions, objects,
or macros.

With the exception of <assert.h>, the 1SO C standard headers are both self-sufficient and
idempotent.

The I1SO C standard specifies the rules for its 24 standard headers. Items 2. through 6. listed
above for headers are requirements for these.

The Single UNIX® Specification: Authorized Guide to Version 4 45

Header and Name Space Rules Headers

51.2

46

<assert.h> <float.h> <math.h> <stddef.h> <time.h>
<complex.h> <inttypes.h> <setjmp.h> <stdio.h> <tgmath.h>
<ctype.h> <is0646.h> <signal.h> <stdint.h> <wchar.h>
<errno.h> <limits.h> <stdarg.h> <stdlib.h> <wctype.h>
<fenv.h> <locale.h> <stdbool.h> <string.h>

A compilation system can provide more headers, but a strictly conforming 1SO C standard
program can only use these.

Name Space
1. [A-Z][0-9a-z_A-Z]* are reserved for implementation use anywhere.

2. _[0-9a-z_A-Z]* are reserved for implementation use as identifiers with external linkage
and in any header as a tag or an ordinary identifier with file scope.

POSIX.1-2008 Base Headers

The requirements for the POSIX.1-2008 base standard are a subset of the requirements for the
Single UNIX Specification. For the purposes of this description, the POSIX.1-2008 base
standard is the set of requirements excluding the XSI option.

POSIX.1-2008 specifies general rules for name space control in headers through feature test
macros:

1. Feature test macros have names that match _[A-Z][0-9a-z_A-Z]*. (Thus, the use of such
names takes advantage of the name space rules in the ISO C standard.) They almost
always match _[A-Z]+ SOURCE. The original feature test macro for the POSIX.1-1990
standard was _POSIX_SOURCE. Later revisions of POSIX.1 use the more powerful
feature test macro called _POSIX_C_SOURCE, which allows you to specify the revision
of POSIX to which your application conforms. The value of _POSIX_C_SOURCE which
corresponds to the functionality contained in the Single UNIX Specification, Version 4 is
200809L.

2. If the feature test macro associated with a particular header is defined prior to its
inclusion, the header must obey the name space rules of the matching specification. For
example, if the macro _POSIX_C_SOURCE is defined with the value 200809L before a
POSIX standard header is included, the header makes visible only the symbols required
by the standard and additional symbols explicitly permitted by the standard (including
those in reserved name spaces). No other symbols are permitted to be visible (unless
enabled by another feature test macro).

3. If such a header is included without any feature test macros being defined, it has no
restrictions (at least with respect to the associated POSIX standard; headers defined by
the ISO C standard make visible only the symbols allowed by the ISO C standard).

POSIX.1 specifies general rules for its headers:
1. [a-z_A-Z][0-9a-z_A-Z]*_t are reserved for all POSIX.1 headers.

2. POSIX_*, POSIX_* and posix_* are reserved for use by POSIX.1 and other POSIX
standards.

3. Each function must be declared with a prototype in at least one header.
4. The default location for this declaration is <unistd.h> .

POSIX.1 specifies the rules for the standard POSIX base headers and subsumes the headers

A Source Book from The Open Group (2010)

Headers

51.3

Header and Name Space Rules

from the ISO C standard, giving additional rules to six of them:

<aio.h> <monetary .h>
<arpal/inet.h> <mqueue.h>
<cpio.h> <net/if.h>
<dirent.h> <netdb.h>
<dlIfcn.h> <netinet/in.h>
<fentl.h> <netinet/tcp.h>
<fnmatch.h> <nl_types.h>
<glob.h> <poll.h>
<grp.h> <pthread.h>
<iconv.h> <pwd.h>
<langinfo.h> <regex.h>

<sched.h>
<semaphore.h>
<spawn.h>
<strings.h>
<sys/mman.h>
<sys/select.h>
<sys/socket.h>
<sys/stat.h>
<sys/statvfs.h>
<sys/times.h>
<sys/types.h>

The six modified ISO C standard headers are:

<errno.h>
<limits.h>
<setjmp.h>
<signal.h>
<stdio.h>
<time.h>

XSI| Headers

The XSI option adds the following headers:

<search.h>
<syslipc.h>
<sys/msg.h>
<sys/resour ce.h>

<fmtmsg.h>
<ftw.h>
<libgen.h>
<ndbm.h>

The XSI STREAMS option adds the <stropts.h> header.

<sys/sem.h>
<sys/shm.h>
<sys/time.h>
<sys/timeb.h>

<sys/un.h>
<sys/utsname.h>
<sys/wait.h>
<tar.h>
<termios.h>
<trace.h>
<unistd.h>
<utime.h>
<wordexp.h>

<sys/uio.h>
<syslog.h>
<ulimit.h>
<utmpx.h>

A feature test macro named _XOPEN_SOURCE provides for all the XSI extensions (which
include the POSIX.1 base) to the ISO C standard, in a similar way to the _POSIX_C_SOURCE
macro. For conformance to the Single UNIX Specification, Version 4, XOPEN_SOURCE should
be set to the value 700. The definition of _XOPEN_SOURCE subsumes the use of
_POSIX_C_SOURCE, ensuring that the appropriate POSIX name space is also exposed.

The Single UNIX® Specification: Authorized Guide to Version 4

47

Names Safe to Use Headers

5.2

5.3

5.4

48

Names Safe to Use

Reserved name rules are complicated and are set out in full in XSH, Section 2.2. There are,
however, three fairly simple rules which, if followed, make collisions with any reserved names
very unlikely:

1. Use #include to include all system headers at the top of source files.
2. Do not define or declare any names that begin with an underscore.

3. Use mixed case for all application-defined identifiers. POSIX.1 uses only uppercase
letters in constants and lowercase letters in other identifiers, and implementations usually
follow the same pattern for additional names they make visible in reserved name spaces.

Most implementations continue to add names to the standard headers. The
_POSIX_C_SOURCE and _XOPEN_SOURCE macros can be used to remove the added
symbols with unreserved names, so that a predictable standard name space is visible.

Base Documents
The headers provided in XBD, Issue 7 are drawn from the following base documents:

= |EEE Std 1003.1, 2004 Edition (POSIX-1) (incorporating IEEE Std 1003.1-2001,
IEEE Std 1003.1-2001/Cor 1-2002, and IEEE Std 1003.1-2001/Cor 2-2004)

= The Open Group Technical Standard, 2006, Extended API Set Part 1
= The Open Group Technical Standard, 2006, Extended API Set Part 2
= The Open Group Technical Standard, 2006, Extended API Set Part 3
= The Open Group Technical Standard, 2006, Extended API| Set Part 4

= |SO/IEC 9899:1999, Programming Languages — C (including ISO/IEC
9899: 1999/Cor.1: 2001(E), ISO/IEC 9899:1999/Cor.2: 2004(E), and ISO/IEC
9899: 1999/Cor.3(E))

Overview of C hanges

The following sections describe changes made to the headers since Issue 6. Chapter 13 (on
page 341) details the technical changes that have been made to the headers from Issue 6.
Changes from Issue 6 to Issue 7

The following list summarizes the major changes that were made in the headers from Issue 6 to
Issue 7:

= The Open Group Technical Standard, 2006, Extended API Set Part 1 is incorporated.
= The Open Group Technical Standard, 2006, Extended API Set Part 2 is incorporated.
= The Open Group Technical Standard, 2006, Extended API Set Part 3 is incorporated.
= The Open Group Technical Standard, 2006, Extended API Set Part 4 is incorporated.

A Source Book from The Open Group (2010)

Headers

Overview of Changes

Existing functionality is aligned with ISO/IEC 9899: 1999, Programming Languages — C,
ISO/IEC 9899: 1999/Cor.2: 2004(E).

Austin Group defect reports, IEEE Interpretations against IEEE Std 1003.1, and responses
to ISO/IEC defect reports against ISO/IEC 9945 are applied.

The Open Group corrigenda and resolutions are applied.

Issues arising from ISO TR 24715: 2006, Conflicts between POSIX and the LSB have been
addressed.

Features, marked legacy or obsolescent in the base document, have been considered for
removal in this version. This includes removal of the <ucontext.h> header.

The following headers which were optional in Issue 6 are now mandatory in Issue 7:

<aio.h>, <pthread.h> , <sched.h> , <semaphore.h> , <sys/mman.h>

The following headers moved from the XSI option to the POSIX Base in Issue 7:

<cpio.h>, <dIfcn.h> , <iconv.h>, <langinfo.h> , <monetary .h>, <nl_types.h> , <poll.h>,
<strings.h> , <sys/statvfs.h>

The following headers have been marked obsolescent in Issue 7:

<stropts.h> , <trace.h>, <ulimit.h> , <utime.h>

The header reference pages have been clarified with respect to macros and constants. In

particular, a definition of the term symbolic constant has been added, with associated
general rules which apply to every symbolic constant unless stated otherwise:

— It expands to a compile-time constant expression with an integer type.

— It may be defined as another type of constant—e.g., an enumeration constant—as
well as being a macro.

— It need not be usable in #if preprocessing directives.

In addition, wording changes have been made to ensure “macro” is used where constants
are required to be defined only as macros, and explicit requirements have been added
where macros are required to be usable in #if preprocessing directives.

New Features in Issue 7

There are no new headers in Issue 7.

The Single UNIX® Specification: Authorized Guide to Version 4 49

50

Headers

A Source Book from The Open Group (2010)

Chapter 6

Terminal Interfaces

The Single UNIX Specification, Version 4 contains X/Open Curses, Issue 7. These interfaces support a
terminal-independent character screen update method. X/Open Curses, Issue 7 is the first update of
X/Open Curses since Issue 4, Version 2. The Single UNIX Specification, Versions 1 through 3 all
contained X/Open Curses, Issue 4, Version 2, with corrigenda specifying how it functioned in a Base
Specifications Issue 5 and Issue 6 environment.

This chapter covers the contents of X/Open Curses, including a functional overview and an overview of
the changes in this version.

6.1 Functional Overvie w

6.1.1 Curses Interfaces

X/Open Curses, Issue 7, Chapters 1 to 3, provide all the introductory material needed to work
with the X/Open Curses interfaces. These interfaces include:

The Single UNIX® Specification: Authorized Guide to Version 4 51

Functional Overview

52

COLORS()
COLOR_PAIR()
COLOR_PAIRS()
COLS()
LINES()
PAIR_NUMBER()
add_wch()
add_wechnstr()
add_wchstr()
addch()
addchnstr()
addchstr()
addnstr()
addnwstr()
addstr()
addwstr()
attr_get()
attr_off()
attr_on()
attr_set()
attroff()

attron()
attrset()
baudrate ()
beep()

bkgd ()
bkgdset()
bkgrnd()
bkgrndset()
border()
border_set()
box ()
box_set()
can_change_color()
cbreak()
chgat()

clear()
clearok()
clrtobot()
clrtoeol()
color_content()
color_set()
copywin()
cur_term()
curs_set()
curscr()
def_prog_mode()
def_shell_mode()
del_curterm()
delay_output()
delch()
deleteln()

delscreen()
delwin()
derwin()
doupdate()
dupwin()
echo()
echo_wchar()
echochar()
endwin()
erase()
erasechar()
erasewchar()
filter()

flash ()
flushinp ()
get_wch()
get_wstr()
getbegyx ()
getbkgd()
getbkgrnd()
getcchar()
getch()
getmaxyx()
getn_wstr()
getnstr()
getparyx()
getstr()
getwin()
getyx()
halfdelay ()
has_colors()
has_ic()
has_il()
hline()
hline_set()
idcok()
idlok ()
immedok()
in_wch()
in_wchnstr()
in_wchstr()
inch()
inchnstr()
inchstr()
init_color()
init_pair()
initscr()
innstr()
innwstr()
ins_nwstr()
ins_wch()
ins_wstr()

insch()
insdelln()
insertin()
insnstr()
insstr()

instr()
intrflush ()
inwstr()
is_linetouched()
is_wintouched()
isendwin ()
key name()
keyname()
keypad ()
killchar ()
killwchar()
leaveok()
longname()
meta()
move()
mvcur()
mvderwin()
mvwin ()
napms()
newpad()
newterm()
newwin ()

nl()
nocbreak()
nodelay()
noecho()
nonl()
nogiflush()
noraw ()
notimeout()
overlay()
overwrite ()
pair_content()
pecho_wechar()
pechochar()
pnoutrefresh()
prefresh()
printw()
putp()
putwin()
giflush()
raw()
redrawwin ()
refresh()

Terminal Interfaces

restartterm()
ripoffline ()
savetty()
scanw()
scr_dump()
scr_init()
scr_restore()
scr_set()
scrl()
scroll()
scrollok()
set_curterm()
set_term()
setcchar()
setscrreg()
setupterm()
slk_attr_off()
slk_attr_on()
slk_attr_set()
slk_attroff()
slk_attron()
slk_attrset()
slk_clear()
slk_color()
slk_init()
slk_label()
slk_noutrefresh()
slk_refresh()
slk_restore()
slk_set()
slk_touch()
slk_wset()
standend()
standout()
start_color()
stdscr()
subpad()
subwin()
syncok()
term_attrs()
termattrs()
termname()
tigetflag()
tigetnum()
tigetstr()
timeout()
tiparm()
touchline()
touchwin()

reset_prog_mode() tparm()
reset_shell_mode() tputs()

resetty()

typeahead()

unctrl()
unget_wch()
ungetch()
untouchwin()
use_env()
vid_attr()
vid_puts()
vidattr()
vidputs()
vline()
vline_set()
vw_printw()
vw_scanw()
wattr_get()
wattr_off()
wattr_on()
wattr_set()
wattroff()
wattron()
wattrset()
wbkgd()
wbkgdset()
wbkgrnd ()
wbkgrndset()
wborder ()
wborder_set()
weclear()
wclrtobot()
weclrtoeol ()
wecolor_set()
weursyncup()
wdeleteln()
wecho_wchar()
wechochar()
werase()
wgetbkgrnd()
winsdelln()
winsertin()
wmove()
wnoutrefresh ()
wredrawlin()
wrefresh ()
wscrl()
wsetscrreg()
wstandend()
wstandout()
wsyncdown ()
wsyncup()
wtimeout()
wtouchlin()
wunctrl()

A Source Book from The Open Group (2010)

Terminal Interfaces Functional Overview

6.1.2

6.2

Note that there are functions listed in the table that represent a set of related functions. For
example, addch() represents the set of functions addch(), mvaddch(), mvwaddch(), and
waddch(). A table in X/Open Curses, Issue 7, Section 3.6.2, Function Families Provided,
summarizes these families of related calls.

Curses Utilities

X/Open Curses, Issue 7 is the first version of X/Open Curses to include utilities. The utilities all
relate to handling of the terminfo database:

infocmp, tic, tput, untic

The tput utility can be used in shell scripts to perform tasks similar to those for which tiparm() (or
the obsolescent tparm()) is used in C programs.

Overview of C hanges
The following sections describe changes made to X/Open Curses since Issue 4, Version 2. The
CHANGE HISTORY section for each entry details the technical changes that have been made to
that entry from Issue 4, Version 2.
Changes from Issue 4, Version 2 to Issue 7
Issue 7 is updated as follows:

= Functionality marked “To Be Withdrawn” is removed.

= Clarification is added to explain that the int arguments passed to getbegyx(), getmaxyx(),
getparyx(), and getyx() must be modifiable Ivalues.

= The tparm() function is marked obsolescent.

= Features described below are introduced.

Features Introduced in Issue 7

The following features are introduced in Issue 7:
= Function prototypes are updated to use const where appropriate.
= The tiparm() function is added.
= The following new utilities are added:

infocmp, tic, tput, untic

Features Withdrawn in Issue 7

The following interfaces are withdrawn in Issue 7:

Withdrawn Interfaces

tgetent() tgetnum() tgoto() vwprintw ()
tgetflag() tgetstr() vwscanw()

The Single UNIX® Specification: Authorized Guide to Version 4 53

54

Terminal Interfaces

A Source Book from The Open Group (2010)

Chapter 7

System Interface Table

7.1 Intr oduction

This chapter contains a table of all the interfaces defined in XSH, Issue 7, complete with an
indication of their status for XSl-conforming and POSIX-conforming systems, and their
availability in UNIX 03 (denoted by U03), UNIX 98 (denoted by U98), UNIX 95 (denoted by U95),
POSIX.1-2001 (denoted PO1), the ISO POSIX-1:1996 standard (denoted P96), the
POSIX.2-1992 standard (denoted P92), the ISO C standard (denoted C99), and C89.

The following conventions are used in columns 2 through 10:

m Indicates that the interface is defined as mandatory.
0 Indicates that the interface is part of an Option or Feature Group.
ob Indicates that the interface is Obsolescent, and although mandatory for the

implementation, applications are discouraged from its use.

obo In the XSI column, indicates that the interface is Obsolescent, and is part of an Option
or Feature Group. Applications are discouraged from its use.

I In the UO3 column, indicates that the interface is part of the Legacy Option Group and
need not be available on all implementations.

opt In the POSIX and P01 columns, two or three letter option codes are used as described
in XBD, Issue 7 (for the POSIX column) and XBD, Issue 6 (for the PO1 column),
denoting the option to which the interface belongs.

ob opt Same as opt, but the interface is also obsolescent.

r In the P96 column, indicates that the interface is part of the POSIX Realtime Extension.
t In the P96 column, indicates that the interface is part of the POSIX Threads Extension.
1 In the C89 column, indicates that the interface is part of the

ISO/IEC 9899: 1990/Amendment 1: 1995 (E).
Indicates that the interface is not specified.

The table is intended as a quick reference guide for programmers migrating to or developing
applications for the Single UNIX Specification, Version 4. Products that brand to a profile may
not provide all of the interfaces listed, depending on which Option or Feature Groups are
supported.

The Single UNIX® Specification: Authorized Guide to Version 4 55

System Interface Table System Interface Table

7.2 System Interface Table

There are 1191 interfaces listed.

56 A Source Book from The Open Group (2010)

System Interface Table System Interface Table

P96

Interface XSI |POSIX|U03 PO1 U98|U95|P92|C99|C89
FD_CLR() m m m m m | m
FD_ISSET() m m m m m | m
FD_SET() m m m m m | m
FD_ZERO() m m m m m | m .
_Exit() m m m m . . m
_exit() m m m m m | m|m
_longjmp() ob |obxsi| m Xsi m | m
_setimp() ob |obxsi| m Xsi m | m
_tolower() ob |obxsi| m Xsi m | m
_toupper() ob |obxsi| m Xsi m | m
a64l() m XSi m Xsi m | m .
abort() m m m m m| m| m|m/|m
abs() m m m m m| m | m|m|m
accept() m m m m m | m .
access() m m m m m | m/|m . .
acos() m m m m m| m | m|m|m
acosf() m m m m . m
acosh() m m m m m | m m
acoshf() m m m m m
acoshl() m m m m m
acosl() m m m m . . m
aio_cancel() m m o} aio o} r
aio_error() m m o] aio 0 r
aio_fsync() m m o} aio o} r
aio_read() m m 0 aio o} r
aio_return() m m o] aio 0 r
aio_suspend() m m o] aio o} r
aio_write() m m o] aio o] . r
alarm() m m m m m| m|m
alphasort() m m
asctime() ob ob m m m| m | m | m/|m
asctime_r() ob ob m tsf m . t . .
asin() m m m m m| m|m|m/ |m
asinf() m m m m . m
asinh() m m m m m | m m
asinhf() m m m m m
asinhl() m m m m m
asinl() m m m m . m .
assert() m m m m m| m|m|m/|m
atan2() m m m m m| m| m|m/|m
atan2f() m m m m m
atan2l() m m m m . m .
atan() m m m m m| m| m|m/|m
atanf() m m m m m
atanh() m m m m m | m m
atanhf() m m m m m
atanhl() m m m m m
atanl() m m m m m .
atexit() m m m m m | m . m | m
atof() m m m m m| m | m|m/|m

The Single UNIX® Specification: Authorized Guide to Version 4 57

System Interface Table

58

System Interface Table

Interface

P
0

POSIX

uo3

PO1

uas

u9s

P96
P92

C99

C89

atoi()
atol()
atoll()
basename()
bind()
bsearch()
btowc()
cabs()
cabsf()
cabsl()
cacos()
cacosf()
cacosh()
cacoshf()
cacoshl()
cacosl()
calloc()
carg()
cargf()
cargl()
casin()
casinf()
casinh()
casinhf()
casinhl()
casinl()
catan()
catanf()
catanh()
catanhf()
catanhl()
catanl()
catclose()
catgets()
catopen()
cbrt()
cbrtf()
cbrtl()
ccos()
ccosf()
ccosh()
ccoshf()
ccoshl()
ccosl()
ceil()
ceilf()
ceill()
cexp()
cexpf()
cexpl()

333-3

33%53383

33383

333333333333333368533333333333333333333333333333333

3 3

3333 -

3333 -

3 3

333~

3333 -

333

333333333333333333333333333-

333333333333333-

3 3

3 -

A Source Book from The Open Group (2010)

System Interface Table

System Interface Table

P
0

Interface

POSIX

uo3

U
o
=

uas

u9s

P96
P92

C99

C89

cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()
chdir()
chmod()
chown()
cimag()
cimagf()
cimagl()
clearerr()
clock()

clock _getcpuclockid()
clock _getres()
clock gettime()
clock _nanosleep()
clock_settime()
clog()

clogf()

clogl()

close()
closedir()
closelog()
confstr()
conj()

conjf()

conjl()
connect()
copysign()
copysignf()
copysignl()
cos()

cosf()

cosh()
coshf()
coshl()

cosl()

cpow()
cpowf()
cpowl()
cproj()
cprojf()
cprojl()
creal()
crealf()
creall()
creat()

crypt()

csin()

csinf()

3333333333333333333333333333333333333033333333333-3

33$33333333333333333333333333%33333333383333333333383

—

33033333333333333333333333333333300000333333333333

S€333333333333

—
(9}
% 3

333333

33$%$3333333333333333333333335

3333333

3 3 -

3333 -

3333333

33 -

3333-

3333333

3 3 -

33333 -

333~

333333333333333333- 333-

33 -

3 3 -

The Single UNIX® Specification: Authorized Guide to Version 4

59

System Interface Table

60

System Interface Table

P96

Interface XSI |POSIX|U03 PO1 U98|U95|P92|C99|C89
csinh() m m m m m
csinhf() m m m m m
csinhl() m m m m m
csinl() m m m m m
csqrt() m m m m m
csqrtf() m m m m m
csqrtl() m m m m m
ctan() m m m m m
ctanf() m m m m m
ctanh() m m m m m
ctanhf() m m m m m
ctanhl() m m m m m
ctanl() m m m m . . . m
ctermid() m m m m m | m/|m . .
ctime() ob ob m m m| m | m| m/|m
ctime_r() ob ob m tsf m . t
daylight m XSi m Xsi m | m
dbm_clearerr() m XSi m Xsi m | m
dbm_close() m XSi m Xsi m | m
dbm_delete() m XSi m Xsi m | m
dbm_error() m XSi m Xsi m | m
dbm_fetch() m XSi m Xsi m | m
dbm_firstkey() m XSi m Xsi m | m
dbm_nextkey() m XSi m Xsi m | m
dbm_open() m XSi m Xsi m | m
dbm_store() m XSi m Xsi m | m . .
difftime() m m m m m | m m | m
dirfd() m m
dirname() m XSi m Xsi m | m . .
div() m m m m m | m m | m
diclose() m m m Xsi m
dlerror() m m m Xsi m
dlopen() m m m Xsi m
disym() m m m Xsi m
dprintf() m m
drand48() m XSi m Xsi m | m .
dup2() m m m m mi | m/|m
dup() m m m m mi | m/|m
duplocale() m m . . .
encrypt() m XSi o] Xsi o | o
endgrent() m XSi m Xsi m | m
endhostent() m m m m m | m
endnetent() m m m m m | m
endprotoent() m m m m m | m
endpwent() m XSi m Xsi m | m
endservent() m m m m m | m
endutxent() m XSi m Xsi m | m .
environ m m m m m|m /| m
erand48() m XSi m Xsi m | m .
erf() m m m m m | m m

A Source Book from The Open Group (2010)

System Interface Table System Interface Table

P96
U98|U95|P92|C99|C89

P
0

POSIX|UO3

U
o
=

Interface

erfc()
erfcf()
erfcl()
erff()

erfl()

errno
execl()
execle()
execlp()
execv()
execve()
execvp()
exit()
exp2()
exp2f()
exp2l()
exp()
expf()
expl()
expml()
expmif()
expm1l()
fabs()
fabsf()
fabsl()
faccessat()
fattach () 0
fchdir()
fchmod()
fchmodat()
fchown ()
fchownat()
fclose()
fentl ()
fdatasync()
fdetach() 0
fdim()

fdimf()

fdiml()

fdopen()
fdopendir()
feclearexcept()
fegetenv()
fegetexceptflag()
fegetround()
feholdexcept()
feof()
feraiseexcept()
ferror()
fesetenv()

333333

33333333~
33333333-
33333333-

3333333333333333333333333
333333333333333333333333-53

3333333333333333333333333S3
333333333333 3-

o
o
o
x
()
330
x
@
333~
333

23333333
3
3.
3

33- 3

3033-
=33~

0| ob xsr

33338233
333

3333333333333390333333393333333333333333333333333-3
33330033~

333333333333 3S3

333333333-
333333333-
333333333-

The Single UNIX® Specification: Authorized Guide to Version 4 61

System Interface Table

System Interface Table

Interface

P
0

POSIX

P96
uo3 PO1 U98|U95|P92|C99|C89

fesetexceptflag()
fesetround()
fetestexcept()
feupdateenv()
fexecve ()
fflush()

fts()

fgetc()
fgetpos()
fgets()
fgetwce()
fgetws()
fileno()
flockfile ()
floor()
floorf()
floorl()
fma()
fmaf()
fmal()
fmax()
fmaxf()
fmaxl()
fmemopen()
fmin()
fminf()
fminl()
fmod()
fmodf()
fmodl()
fmtmsg()
fnmatch()
fopen()
fork ()
fpathconf()
fpclassify()
fprintf()
fputc()
fputs()
fputwe()
fputws()
fread()
free()
freeaddrinfo ()
freelocale()
freopen()
frexp()
frexpf()
frexpl()
fscanf()

333-3

3333333333333333333$%333333333333333333333333533333853

3333
3333
3333

3
3 .
3

33333353 -
3

33333

333

333333383~

—
2]
=

3333333333-

333333333333333333-
3.
3

333333333
333333333~

3

=

3
333333~

33333 -
33333 -
3333 -
3
3

3333333~
3333333~

333 -
3333333 3-
33rr333-

3333333333333$333333-
33 -

33333333333333333333-

33333 -
33333 -
3 3
3 3 -
3 3
33333 -
3 3 -

62

A Source Book from The Open Group (2010)

System Interface Table

System Interface Table

P96
Interface XSI |POSIX|U03 PO1 U98|U95|P92|C99|C89
fseek() m m m m m| m| m|m/|m
fseeko() m m m m m . . .
fsetpos() m m m m m | m . m | m
fstat() m m m m m | m/|m
fstatat() m m
fstatvfs() m m m Xsi m | m
fsync() m fsc m fsc m | m . . .
ftell() m m m m m| m|m|m/|m
ftello() m m m m m .
ftok() m XSi m Xsi m | m
ftruncate () m m m m m | m .
ftrylockfile () m m m tsf m . t
ftw() ob |obxsi| m Xsi m | m .
funlockfile () m m m tsf m t
futimens() m m
fwide () m m m m m m| 1
fwprintf() m m m m m . . m| 1
fwrite () m m m m m| m | m | m/|m
fwscanf() m m m m m m| 1
gai_strerror() m m m m
getaddrinfo() m m m m
getc() m m m m m| m | m|m/|m
getc_unlocked() m m m tsf m . t . .
getchar() m m m m m| m | m|m/|m
getchar_unlocked() m m m tsf m . t
getcwd () m m m m m | m|m
getdate() m XSi m Xsi m | m
getdate_err m XSi m Xsi m | m
getdelim() m m
getegid() m m m m m | m|m . .
getenv() m m m m m| m| m|m|m
geteuid() m m m m m | m/|m
getgid() m m m m m | m|m
getgrent() m XSi m Xsi m | m .
getgrgid() m m m m m|m/|m
getgrgid_r() m m m tsf m . t
getgrnam() m m m m m| m|m
getgrnam_r() m m m tsf m . t
getgroups() m m m m m | m/|m
gethostent() m m m m m | m
gethostid() m XSi m Xsi m | m
gethostname() m m m m m | m
getitimer() ob |obxsi| m Xsi m | m
getline() m m
getlogin() m m m m m| m|m
getlogin_r() m m m tsf m . t
getmsg() obo|lobxsr| o XSr m | m
getnameinfo() m m m m . .
getnetbyaddr() m m m m m | m
getnetbyname() m m m m m | m
The Single UNIX® Specification: Authorized Guide to Version 4 63

System Interface Table System Interface Table

P96

Interface XSI |POSIX|U03 PO1 U98|U95|P92|C99|C89
getnetent() m m m m m | m .
getopt() m m m m m | m|m
getpeername() m m m m m | m
getpgid() m m m Xsi m | m .
getpgrp() m m m m m | m|m
getpid() m m m m m | m|m
getpmsg() obo|lobxsr| o XSr m | m .
getppid() m m m m m | m/|m
getpriority () m XSi m Xsi m | m
getprotobyname () m m m m m | m
getprotobynumber () m m m m m | m
getprotoent() m m m m m | m
getpwent() m XSi m Xsi m | m .
getpwnam() m m m m m| m|m
getpwnam_r() m m m tsf m . t
getpwuid() m m m m m | m/|m
getpwuid_r() m m m tsf m . t
getrlimit() m XSi m Xsi m | m
getrusage() m XSi m Xsi m | m .
gets() ob ob m m m| m | m | m/|m
getservbyname() m m m m m | m
getservbyport() m m m m m | m
getservent() m m m m m | m
getsid() m m m Xsi m | m
getsockname() m m m m m | m
getsockopt() m m m m m | m
getsubopt() m m m Xsi m | m
gettimeofday() ob |obxsi| m Xsi m | m .
getuid() m m m m m | m/|m
getutxent() m XSi m Xsi m | m
getutxid() m XSi m Xsi m | m
getutxline() m XSi m Xsi m | m . .
getwc() m m m m m | m m| 1
getwchar() m m m m m | m . m| 1
glob() m m m m mi| o |m
globfree() m m m m mi| o |m
gmtime() m m m m m| m|m|m/ |m
gmtime_r() m m m tsf m . t
grantpt() m XSi m Xsi m | m
hcreate() m XSi m Xsi m | m
hdestroy () m XSi m Xsi m | m
hsearch() m XSi m Xsi m | m
htonl() m m m m m | m
htons() m m m m m | m .
hypot() m m m m m | m m
hypotf() m m m m m
hypotl() m m m m . m
iconv() m m m Xsi m | m
iconv_close() m m m Xsi m | m
iconv_open() m m m Xsi m | m

64 A Source Book from The Open Group (2010)

System Interface Table

System Interface Table

P
0

Interface

POSIX

uo3

U
o
=

uas

u9s

P96
P92

C99

C89

if_freenameindex()
if_indextoname()
if_nameindex()
if_nametoindex()
ilogb()

ilogbf()

ilogbl ()
imaxabs()
imaxdiv ()
inet_addr()
inet_ntoa()
inet_ntop()
inet_pton()
initstate ()
insque()

ioctl()
isalnum()
isalnum_I()
isalpha()
isalpha_I()
isascii()
isastream()
isatty ()
isblank ()
isblank_I()
iscntrl()
iscntrl_I()
isdigit()
isdigit_I()
isfinite ()
isgraph()
isgraph_I()
isgreater()
isgreaterequal()
isinf()

isless()
islessequal()
islessgreater()
islower ()
islower_I()
isnan()
isnormal()
isprint()
isprint_I()
ispunct()
ispunct_I()
isspace()
isspace_I()
isunordered()
isupper()

©333333333333333

o
(@)

S3333

o

3333333333333333333333333333g

$33333333333383

33333333333333333333333333383

303333333333333383

33-3-3- 3303- 3-

3333333-

333-

33 -

r

3655333333333 333-3

XSi
XSr

33

3333333 33-

333-

33 -

3 3 -

3- 3333~

333~

33 -

3- 3333~

333~

33333 -

3 3 - 3333333 33-

3 3 -

The Single UNIX® Specification: Authorized Guide to Version 4

65

System Interface Table

66

System Interface Table

P96

Interface XSI |POSIX|U03 PO1 U98|U95|P92|C99|C89
isupper_I() m m
iswalnum() m m m m m | m m| 1
iswalnum_1() m m
iswalpha() m m m m m | m m| 1
iswalpha_I() m m . . .
iswblank () m m m m m
iswblank_1() m m
iswentrl() m m m m m | m m| 1
iswentrl_1() m m
iswctype () m m m m m | m m| 1
iswctype_1() m m
iswdigit() m m m m m | m m| 1
iswdigit_I() m m
iswgraph() m m m m m | m m| 1
iswgraph_I() m m
iswlower () m m m m m | m m| 1
iswlower_I() m m
iswprint() m m m m m | m m| 1
iswprint_I() m m
iswpunct() m m m m m | m m| 1
iswpunct_I() m m
iswspace() m m m m m | m m| 1
iswspace_I() m m
iswupper() m m m m m | m m| 1
iswupper_I() m m
iswxdigit() m m m m m | m m| 1
iswxdigit_1() m m
isxdigit() m m m m m| m|m|m/ |m
isxdigit_I() m m
jo() m XSi m Xsi m | m
i10) m XSi m XSi m | m
inQ) m XSi m XSi m | m
jrand48() m XSi m Xsi m | m .
kill () m m m m m | m/|m
killpg() m XSi m XSi m | m
164a() m XSi m Xsi m | m . .
labs() m m m m m | m m | m
Ichown() m m m Xsi m | m
Ilcong48() m XSi m XSi m | m . . .
Idexp() m m m m m| m | m | m/|m
Idexpf() m m m m m
Idexpl() m m m m . . m .
Idiv() m m m m m | m m | m
Ifind () m XSi m XSi m | m .
lgamma() m m m m m | m m
lgammaf() m m m m m
lgammal() m m m m . . . m
link() m m m m m | m|m
linkat() m m
lio_listio() m m o] aio o] r

A Source Book from The Open Group (2010)

System Interface Table System Interface Table

P96
U98|U95|P92|C99|C89

P
0

POSIX|UO3

U
o
=

Interface

listen()
llabs()
lIdiv()
llrint()
lIrintf()
lIrintl()
llround()
llroundf()
llroundl ()
localeconv()
localtime ()
localtime_r()
lockf()
log10()
log10f()
log10I()
log1p()
log1pf()
loglpl()
log2()
log2f()
log2l()
log()

logb()
logbf()
logbl ()
logf()

logl()
longjmp ()
Irand48()
Irint()
Irintf ()
Irintl ()
Iround()
[roundf()
IroundI()
Isearch()
Iseek()
Istat()
malloc ()
mblen()
mbrlen()
mbrtowc ()
mbsinit()
mbsnrtowcs()
mbsrtowcs ()
mbstowcs ()
mbtowc ()
memccpy()
memchr ()

3333333333-

33333333333
33
33

33333 -

33 -

3
3.

3 3
3 3
3333333333333333-

33
3 3

333333~

333S3
33333~

3333333%3333333%333333333333333335

33333333~

33333~
PR3 3

333~
33 ¥

333-3

3$3333333333333333333$33333333333333334$4583333333333383

33333
35333
33333
3333-

The Single UNIX® Specification: Authorized Guide to Version 4 67

System Interface Table

68

System Interface Table

P96

Interface XSl |POSIX|U03 PO1 U98|U95|P92|C99|C89
memcmp () m m m m m | m m | m
memcpy () m m m m m | m m | m
memmove () m m m m m | m m | m
memset() m m m m m | m . m | m
mkdir () m m m m m | m/|m
mkdirat() m m
mkdtemp () m m
mkfifo () m m m m m | m/|m
mkfifoat() m m
mknod () m XSi m XSi m | m
mknodat () m XSi
mkstemp () m m m XSi m | m . . .
mktime () m m m m m| m | m | m/|m
mlock() 0 mir o} mr o} r
mlockall () o] mi o] mi o] . r
mmap () m m m |mflshmjtym| m | m . . .
modf() m m m m m| m | m | m/|m
modff() m m m m m
modfl() m m m m . . m
mprotect() m m m mpr m | m .
mq_close() 0 msg | O msg o} r
mq_getattr() 0 msg | O msg o} r
mq_notify () 0 msg | O msg o} r
mqg_open() 0 msg | O msg o} r
mq_receive() 0O | msg | o msg o} r
mqg_send() 0 msg | O msg o} r
mq_setattr() 0 msg | O msg o} r
mq_timedreceive() 0 msg | O msg
mq_timedsend() 0 msg | O msg . .
mq_unlink() 0 msg | O msg o} . r
mrand48() m XSi m XSi m | m
msgctl() m XSi m Xsi m | m
msgget() m XSi m XSi m | m
msgrev() m XSi m Xsi m | m
msgsnd() m XSi m Xsi m | m
msync() m | xsi|sio | m mf sio m | m .
munlock() 0 mir o] mr o} r
munlockall () o] mi o] mi o] . r
munmap () m m m |mflshmjtym| m | m .
nan() m m m m m
nanf() m m m m m
nanl() m m m m . . m
nanosleep() m m 0 tmr o} r .
nearbyint() m m m m m
nearbyintf() m m m m m
nearbyintl() m m m m m
newlocale() m m
nextafter() m m m m m | m m
nextafterf() m m m m m
nextafterl() m m m m m

A Source Book from The Open Group (2010)

System Interface Table System Interface Table

P96
Interface XSI |POSIX|U03 PO1 U98|U95|P92|C99|C89

nexttoward () m m m m . m
nexttowardf() m m m m . m
nexttowardl!() m m m m . m
nftw() m XSi m Xsi m | m
nice() m XSi m XSi m | m
nl_langinfo () m m m XSi m | m
nl_langinfo_I() m m . . .
nrand48() m XSi m XSi m | m
ntohl() m m m m m | m
ntohs() m m m m m | m .
open() m m m m m | m/|m
open_memstream() m m
open_wmemstream() m m
openat() m m
opendir() m m m m m| m|m
openlog() m XSi m Xsi m | m .
optarg m m m m m | m|m
opterr m m m m m | m|m
optind m m m m m | m|m
optopt m m m m m | m|m
pathconf() m m m m m | m/|m
pause() m m m m m | m/|m
pclose() m m m m m | m|m
perror() m m m m m| m|m|m/ |m
pipe() m m m m m|m /| m
poll() m m m Xsi m | m .
popen() m m m m m | m|m
posix_fadvise() 0 adv o] adv
posix_fallocate () 0 adv o] adv
posix_madvise () o] adv o] adv
posix_mem_offset() 0 tym o] tym
posix_memalign () 0 adv o] adv
posix_openpt() m XSi m XSi
posix_spawn() 0 spn o] spn
posix_spawn_file_actions_addclose() 0 spn o} spn
posix_spawn_file_actions_adddup2() 0 spn o} spn
posix_spawn_file_actions_addopen() 0 spn 0 spn
posix_spawn_file_actions_destroy() 0 spn o} spn
posix_spawn_file_actions_init() 0 spn o] spn
posix_spawnattr_destroy() 0 spn 0 spn
posix_spawnattr_getflags() 0 spn o] spn
posix_spawnattr_getpgroup() 0 spn o} spn
posix_spawnattr_getschedparam() 0 |spnps| o spn ps
posix_spawnattr_getschedpolicy() 0 |spnps| o spn ps
posix_spawnattr_getsigdefault() 0 spn o} spn
posix_spawnattr_getsigmask() 0 spn o] spn
posix_spawnattr_init() 0 spn o] spn
posix_spawnattr_setflags() 0 spn o} spn
posix_spawnattr_setpgroup() 0 spn 0 spn
posix_spawnattr_setschedparam() 0 |spnps| o spn ps

The Single UNIX® Specification: Authorized Guide to Version 4 69

System Interface Table

70

System Interface Table

P96
Interface XSl |POSIX |U03 PO1 U98|U95|P92|C99|C89
posix_spawnattr_setschedpolicy() 0 |spnps| o spn ps
posix_spawnattr_setsigdefault() 0 spn o] spn
posix_spawnattr_setsigmask() 0 spn o} spn
posix_spawnp() 0 spn o] spn
posix_trace_attr_destroy() obo|obtrc| o trc
posix_trace attr_getclockres() obo|obtrc| o trc
posix_trace attr getcreatetime() obo|lobtrc| o trc
posix_trace_attr_getgenversion() obo|obtrc| o trc
posix_trace_attr_getinherited() 0 tri o} trc tri
posix_trace_attr_getlogfullpolicy() 0 trl o] trc trl
posix_trace_attr_getlogsize() 0 trl o] trc trl
posix_trace attr getmaxdatasize() m m o} trc
posix_trace attr getmaxsystemeventsize()| m m o} trc
posix_trace_attr _getmaxusereventsize() m m 0 trc
posix_trace_attr_getname() obo|obtrc| o trc
posix_trace_attr_getstreamfullpolicy() obo|obtrc| o trc
posix_trace_attr_getstreamsize() obo|obtrc| o trc
posix_trace_attr_init() obo|obtrc| o trc
posix_trace_attr_setinherited() 0 tri o] trc tri
posix_trace_attr_setlogfullpolicy() 0 trl 0 trc trl
posix_trace attr_setlogsize() 0 trl o} trc trl
posix_trace_attr_setmaxdatasize() obo|obtrc| o trc
posix_trace_attr_sethame() obo|obtrc| o trc
posix_trace_attr_setstreamfullpolicy () obo|obtrc| o trc
posix_trace attr_setstreamsize() obo|lobtrc| o trc
posix_trace clear() obo|obtrc| o trc
posix_trace_close() 0 trl o} trc trl
posix_trace_create() obo|obtrc| o trc
posix_trace_create_withlog() 0 trl 0 trc trl
posix_trace _event() obo|lobtrc| o trc
posix_trace_eventid_equal() obo|lobtrc| o trc
posix_trace eventid_get name() obo|obtrc| o trc
posix_trace_eventid_open() obo|obtrc| o trc
posix_trace_eventset_add() 0 tef o} trc tef
posix_trace eventset_del() 0 tef o} trc tef
posix_trace _eventset_empty() 0 tef o} trc tef
posix_trace_eventset fill() 0 tef o} trc tef
posix_trace eventset_ismember() 0 tef o] trc tef
posix_trace_eventtypelist_getnext_id() obo|obtrc| o trc
posix_trace eventtypelist_rewind() obo|obtrc| o trc
posix_trace_flush() 0 trl o] trc trl
posix_trace get_attr() obo|obtrc| o trc
posix_trace get _filter() 0 tef o] trc tef
posix_trace get_status() obo|obtrc| o trc
posix_trace getnext_event() obo|lobtrc| o trc
posix_trace_open() 0 trl o} trc trl
posix_trace rewind() 0 trl o} trc trl
posix_trace_set filter() 0 tef o} trc tef
posix_trace shutdown() obo|obtrc| o trc
posix_trace_start() obo|obtrc| o trc

A Source Book from The Open Group (2010)

System Interface Table System Interface Table

P96

Interface XSI |POSIX|U03 PO1 U98|U95|P92|C99|C89
posix_trace_stop() obo|obtrc| o trc
posix_trace_timedgetnext_event() obo|obtrc| o trc tmo
posix_trace_trid_eventid_open() 0 tef o} trc tef
posix_trace_trygetnext_event() obo|obtrc| o trc
posix_typed_mem_get_info() 0 tym o} tym
posix_typed_mem_open() 0 tym o} tym
pow () m m m m m| m|m|m/|m
powf() m m m m m
powl() m m m m . m
pread() m m m Xsi m .
printf() m m m m m| m | m| m/|m
pselect() m m m m
psiginfo() m m
psignal() m m
pthread_atfork() m m m thr m t
pthread_attr_destroy() m m m thr m t
pthread_attr getdetachstate() m m m thr m t
pthread_attr getguardsize() m m m Xsi m .
pthread_attr _getinheritsched() 0 tps 0 thr tps o} t
pthread_attr_getschedparam() m m m thr m t
pthread_attr getschedpolicy() 0 tps o} thr tps o} t
pthread_attr getscope() 0 tps o} thr tps o} t
pthread_attr getstack() m |tsatss| m | thrtsatss | . .
pthread_attr getstacksize() m tss m thr tss m t
pthread_attr_init() m m m thr m t
pthread_attr setdetachstate () m m m thr m t
pthread_attr _setguardsize() m m m Xsi m .
pthread_attr_setinheritsched() 0 tps 0 thr tps o} t
pthread_attr_setschedparam() m m m thr m t
pthread_attr_setschedpolicy() 0 tps o} thr tps o} t
pthread_attr setscope() 0 tps o} thr tps o} t
pthread_attr_setstack() m |tsatss| m | thrtsatss | .
pthread_attr_setstacksize() m tss m thr tss m t
pthread_barrier_destroy() m m 0 thr bar
pthread_barrier_init() m m o] thr bar
pthread_barrier_wait() m m o} thr bar
pthread_barrierattr_destroy() m m o} thr bar
pthread_barrierattr_getpshared() m tsh 0 | thr bar tsh
pthread_barrierattr_init() m m o} thr bar
pthread_barrierattr_setpshared() m tsh o | thrbartsh | .
pthread_cancel() m m m thr m t
pthread_cleanup_pop() m m m thr m t
pthread_cleanup_push() m m m thr m t
pthread_cond_broadcast() m m m thr m t
pthread_cond_destroy() m m m thr m t
pthread_cond_init() m m m thr m t
pthread_cond_signal() m m m thr m t
pthread_cond_timedwait() m m m thr m t
pthread_cond_wait() m m m thr m t
pthread_condattr_destroy() m m m thr m t

The Single UNIX® Specification: Authorized Guide to Version 4 71

System Interface Table

72

System Interface Table

P96
Interface XSI |POSIX|U03 PO1 U98|U95|P92|C99|C89

pthread_condattr_getclock() m m o} thr cs . .
pthread_condattr_getpshared() m tsh m thr tsh m t
pthread_condattr_init() m m m thr m t
pthread_condattr_setclock() m m o} thr cs . .
pthread_condattr_setpshared() m tsh m thr tsh m t
pthread_create() m m m thr m t
pthread_detach() m m m thr m t
pthread_equal() m m m thr m t
pthread_exit() m m m thr m t
pthread_getconcurrency() ob |obxsi| m Xsi m
pthread_getcpuclockid() 0 tct o} thr tct . .
pthread_getschedparam() 0 tps o} thr tps o} t
pthread_getspecific() m m m thr m t
pthread_join() m m m thr m t
pthread_key create() m m m thr m t
pthread_key delete() m m m thr m t
pthread_Kkill() m m m thr m t
pthread_mutex_consistent() m m
pthread_mutex_destroy() m m m thr m t
pthread_mutex_getprioceiling() o |rppltpp| © thr tpp o} t
pthread_mutex_init() m m m thr m t
pthread_mutex_lock() m m m thr m t
pthread_mutex_setprioceiling() o |rppl|tpp| © thr tpp o} t
pthread_mutex_timedlock() m m o] thr tmo . .
pthread_mutex_trylock() m m m thr m t
pthread_mutex_unlock() m m m thr m t
pthread_mutexattr_destroy() m m m thr m t
pthread_mutexattr_getprioceiling() o |rpp|tpp| © thr tpp o} t
pthread_mutexattr_getprotocol() 0 mcl | o | thrtppjtpi | o t
pthread_mutexattr_getpshared() m tsh m thr tsh m t
pthread_mutexattr_getrobust() m m . . .
pthread_mutexattr_gettype() m m m Xsi m .
pthread_mutexattr_init() m m m thr m t
pthread_mutexattr_setprioceiling() o |rppltpp| © thr tpp o} t
pthread_mutexattr_setprotocol() 0 mcl | o | thrtppjtpi | o t
pthread_mutexattr_setpshared() m tsh m thr tsh m t
pthread_mutexattr_setrobust() m m . . .
pthread_mutexattr_settype() m m m Xsi m .
pthread_once() m m m thr m t
pthread_rwlock_destroy() m m m thr m
pthread_rwlock_init() m m m thr m
pthread_rwlock_rdlock() m m m thr m
pthread_rwlock_timedrdlock() m m o] thr tmo
pthread_rwlock_timedwrlock() m m o] thr tmo .
pthread_rwlock_tryrdlock() m m m thr m
pthread_rwlock_trywrlock() m m m thr m
pthread_rwlock_unlock() m m m thr m
pthread_rwlock_wrlock() m m m thr m
pthread_rwlockattr_destroy() m m m thr m
pthread_rwlockattr_getpshared() m tsh m thr tsh m

A Source Book from The Open Group (2010)

System Interface Table System Interface Table

P96

Interface XSI |POSIX|U03 PO1 U98|U95|P92|C99|C89
pthread_rwlockattr_init() m m m thr m
pthread_rwlockattr _setpshared() m tsh m thr tsh m .
pthread_self() m m m thr m t
pthread_setcancelstate () m m m thr m t
pthread_setcanceltype() m m m thr m t
pthread_setconcurrency() ob |obxsi| m Xsi m .
pthread_setschedparam() 0 tps o} thr tps o] t
pthread_setschedprio() 0 tps o} thr tps . .
pthread_setspecific() m m m thr m t
pthread_sigmask() m m m thr m t
pthread_spin_destroy() m m o} thr spi
pthread_spin_init() m m o] thr spi
pthread_spin_lock() m m 0 thr spi
pthread_spin_trylock() m m o} thr spi
pthread_spin_unlock() m m o} thr spi . .
pthread_testcancel() m m m thr m . t
ptsname() m XSi m Xsi m | m .
putc() m m m m m| m | m|m/|m
putc_unlocked() m m m tsf m . t
putchar() m m m m m| m| m|m|m
putchar_unlocked() m m m tsf m . t
putenv() m XSi m Xsi m | m
putmsg() obo|lobxsr| o XSr m | m
putpmsg() obo|lobxsr| o XSr m | m
puts() m m m m m| m | m|m/|m
pututxline() m XSi m Xsi m | m . .
putwc() m m m m m | m m| 1
putwchar() m m m m m | m m| 1
pwrite () m m m XSi m . .
gsort() m m m m m| m | m|m/|m
raise() m m m m m | m . m | m
rand () m m m m m| m|m|m/ |m
rand_r() ob ob m tsf m . t
random() m XSi m Xsi m | m .
read() m m m m m | m/|m
readdir() m m m m m | m/|m
readdir_r() m m m tsf m . t
readlink () m m m m m | m
readlinkat() m m
readv() m XSi m Xsi m | m .
realloc() m m m m m| m| m|m/|m
realpath () m XSi m Xsi m | m
recv() m m m m m | m
recvfrom() m m m m m | m
recvmsg() m m m m m | m .
regcomp() m m m m m| o | m
regerror() m m m m m| o | m
regexec() m m m m mi| o |m
regfree() m m m m m| o | m .
remainder() m m m m m | m m

The Single UNIX® Specification: Authorized Guide to Version 4 73

System Interface Table

74

System Interface Table

Interface

P
0

POSIX

uo3

PO1

uas

u9s

P96
P92

C99

C89

remainderf()
remainderl()
remove()

remque()

remquo()

remquof()

remquol()

rename()

renameat()

rewind()

rewinddir()

rint()

rintf()

rintl()

rmdir ()

round()

roundf()

roundI()

scalbln()

scalbInf()

scalbinl()

scalbn()

scalbnf()

scalbnl()

scandir()

scanf()

sched_get priority_max()
sched_get_priority_min()
sched_getparam()
sched_getscheduler()
sched_rr_get_interval()
sched_setparam()
sched_setscheduler()
sched_yield()
seed48()

seekdir()

select()

sem_close()
sem_destroy()
sem_getvalue()
sem_init()
sem_open()
sem_post()
sem_timedwait()
sem_trywait()
sem_unlink()
sem_wait()

semctl()

semget()

semop()

3333333333333333300000003333333333333333333333333-3

333333333333333333333353383

ps|tps
ps|tps

333333383

333333333333333-

333 oo000o0000033330000000 3 -

333353383

333333333333333-

m
ps
ps
ps
ps
ps
ps
ps

ps|thr
XSi
XSi
m
sem
sem
sem
sem
sem
sem
sem tmo
sem
sem
sem
XSi
XSi
XSi

33 -

333~

O0OO0O0OO0O0O333300000O0O03 -

333000 :-

33 -

333~

333~

333 -

33 -

== === ===3-

—_ e =y e = = -

333- 3- 3333- 333

33333333 3-

3 .

A Source Book from The Open Group (2010)

System Interface Table System Interface Table

P96

Interface XSI |POSIX|U03 PO1 U98|U95|P92|C99|C89
send() m m m m m | m
sendmsg() m m m m m | m
sendto() m m m m m | m .
setbuf() m m m m m| m | m|m/|m
setegid() m m m m
setenv() m m m m
seteuid() m m m m . . .
setgid() m m m m m | m/|m
setgrent() m XSi m Xsi m | m
sethostent() m m m m m | m
setitimer() ob |obxsi| m Xsi m | m .
setimp() m m m m m| m| m|m/|m
setkey() m XSi o} Xsi o | o .
setlocale() m m m m m| m| m|m/|m
setlogmask() m XSi m Xsi m | m
setnetent() m m m m m | m .
setpgid() m m m m m | m|m
setpgrp() ob |obxsi| m Xsi m | m
setpriority () m XSi m Xsi m | m
setprotoent() m m m m m | m
setpwent() m XSi m Xsi m | m
setregid() m XSi m Xsi m | m
setreuid() m XSi m XSi m | m
setrlimit() m XSi m Xsi m | m
setservent() m m m m m | m .
setsid() m m m m m | m/|m
setsockopt() m m m m m | m
setstate() m XSi m XSi m | m .
setuid() m m m m m | m/|m
setutxent() m XSi m XSi m | m
setvbuf() m m m m m | m . m| m
shm_open() 0 shm | o shm 0 r
shm_unlink() o] shm o] shm o] . r
shmat() m XSi m XSi m| o
shmctl() m XSi m XSi m | o
shmdt() m XSi m XSi m | o
shmget() m XSi m XSi m | o
shutdown () m m m m m | m .
sigaction() m m m m m | m/|m
sigaddset() m m m m m | m|m
sigaltstack() m XSi m XSi m | m
sigdelset() m m m m m | m/|m
sigemptyset() m m m m m | m|m
sidfillset() m m m m m| m|m
sighold () ob |obxsi| m XSi m | m
sigignore() ob |obxsi| m XSi m | m
siginterrupt() ob |obxsi| m XSi m | m .
sigismember() m m m m m | m/|m
siglongjmp () m m m m m | m/|m
signal() m m m m m | m m | m

The Single UNIX® Specification: Authorized Guide to Version 4 75

System Interface Table

76

System Interface Table

Interface

P
0

POSIX

uo3

PO1

uas

u9s

P96
P92

C99

C89

signbit()
sighgam
sigpause()
sigpending()
sigprocmask ()
sigqueue()
sigrelse()
sigset()
sigsetjimp()
sigsuspend()
sigtimedwait()
sigwait()
sigwaitinfo()
sin()

sinf()

sinh()
sinhf()
sinhl()

sinl()

sleep()
snprintf()
sockatmark()
socket()
socketpair()
sprintf()
sqrt()

sqrtf()
sqrtl()
srand48()
srand()
srandom()
sscanf()
stat()
statvfs()
stderr

stdin

stdout
stpepy ()

stpnepy ()
strcasecmp ()

strcasecmp_I()
strcat()
strchr()

stremp ()
strcoll()
strcoll_I()
strepy ()
strespn()
strdup ()
strerror()

33883338383

XSi
ob xsi

ob xsi
ob xsi

3333333333333333333$53%3333333333333333333383

3333333333333333333333330303333033333

3 -

3333~

3333~

XSi
XSi

thr
rts
XSi
XSi

353333333333333333z383

33§

3335

3333 -

3 3 -

XSi

303033330333-

3 3 - 3 -

3333 -

333333333-

3 -

3333 -

3333 -

333~

3333~

333333333- 3333~ 3 -

3 -

3333~

3333~

=~ 33 -

3S-~~-33-

3 3 -

33 -

333~

333~

3 3 -

3- 333333~

3333 -

3 .

333~

3333 -

3 3 -

33

333~

3333~

3 3 -

A Source Book from The Open Group (2010)

System Interface Table

System Interface Table

Interface

P
0

POSIX

uo3

PO1

uas

u9s

P96
P92

C99

C89

strerror_I()
strerror_r()
strfmon()
strfmon_I()
strftime ()
strftime_I()
strlen()
strncasecmp()
strncasecmp_I()
strncat()
strncmp ()
strncpy()
strndup ()
strnlen()
strpbrk()
strptime()
strrchr()
strsignal()
strspn()
strstr()
strtod()
strtof()
strtoimax ()
strtok()
strtok_r()
strtol ()
strtold()
strtoll()
strtoul ()
strtoull ()
strtoumax ()
strxfrm()
strxfrm_I()
swab()
swprintf()
swscanf()
symlink()
symlinkat()
sync()
sysconf()
syslog()
system()
tan()
tanf()
tanh()
tanhf()
tanhl()
tanl()
tcdrain()
tcflow ()

333-3

333333333$533333353333333333333333333333333333333383

33 -

33333333333333:- 333" 333 33~

3333~

333333333333-

tsf
XSi

XSi

333%-33333338333333- 333 333-

333333333333

3- 33333 3333 3- 333~ 333- 333~ 333 33-

3 3 -

303~ 333 33~

333~

3- 33333 3-

3 3 -

333~

33 -

3 3 -

333~

3 .

3333333 333333-

33 -

3333333~

333~

333~

33 -

The Single UNIX® Specification: Authorized Guide to Version 4

77

System Interface Table

78

System Interface Table

P96

Interface XSI |POSIX|U03 PO1 U98|U95|P92|C99|C89
tcflush() m m m m m | m|m
tcgetattr() m m m m m | m|m
tcgetpgrp() m m m m m | m/|m
tcgetsid() m m m Xsi m | m .
tcsendbreak() m m m m m | m/|m
tcsetattr() m m m m m | m|m
tcsetpgrp() m m m m m | m|m
tdelete() m XSi m Xsi m | m
telldir () m XSi m Xsi m | m
tempnam() ob |obxsi| m Xsi m | m
tfind () m XSi m Xsi m | m .
tgamma() m m m m m
tgammaf() m m m m m
tgammal() m m m m . . . m .
time() m m m m m| m|m|m/ |m
timer_create() m m o} tmr o} r
timer_delete() m m 0 tmr o} r
timer_getoverrun() m m o] tmr o] r
timer_gettime() m m o] tmr o} r
timer_settime() m m 0 tmr o} . r
times() m m m m m | m/|m
timezone m XSi m Xsi m | m . . .
tmpfile () m m m m m| m|m|m/|m
tmpnam() ob ob m m m| m | m | m/|m
toascii() ob |obxsi| m Xsi m | m . . .
tolower() m m m m m| m| m|m/|m
tolower_1() m m
toupper() m m m m m| m | m|m/|m
toupper_I() m m
towctrans() m m m m m m| 1
towctrans_I() m m
towlower () m m m m m | m m| 1
towlower_I() m m
towupper () m m m m m | m m| 1
towupper_I() m m . . .
trunc() m m m m . . m
truncate() m m m Xsi m | m .
truncf() m m m m m
truncl() m m m m . . m
tsearch() m XSi m Xsi m | m .
ttyname () m m m tsf m | m/|m
ttyname_r() m m m tsf m . t
twalk() m XSi m Xsi m | m .
tzname m m m m m|m /| m
tzset() m m m m m | m/|m
ulimit() ob |obxsi| m Xsi m | m .
umask() m m m m m | m/|m
uname() m m m m m | m|m . .
ungetc() m m m m m| m | m|m/|m
ungetwc() m m m m m | m m| 1

A Source Book from The Open Group (2010)

System Interface Table

System Interface Table

P
0

Interface

POSIX

uo3

PO1

uas

u9s

P96
P92

C99

C89

unlink()
unlinkat()
unlockpt()
unsetenv()
uselocale()
utime()
utimensat()
utimes()
va_arg()
va_copy()
va_end()
va_start()
vdprintf()
vfprintf()
vfscanf()
viwprintf()
viwscanf()
vprintf()
vscanf()
vsnprintf()
vsprintf()
vsscanf()
vswprintf()
vswscanf()
vwprintf()
vwscanf()
wait()
waitid ()
waitpid ()
wepcepy ()

wepnepy ()
wcertomb ()

wcscasecmp()
wcescasecmp_|()
wcescat()
wceschr()
wesemp ()
wescoll()
wescoll_I()
wescepy ()
wescespn ()
wesdup ()
wecsftime()
wcslen()
wcesncasecmp()
wcesncasecmp_I()
wcesncat()
wesnemp ()
wesnepy ()
weshlen()

33833333

XSi

3833

33%

33 -

3 -

3333333333333333- 3333-—"

3333~ 3 -

33 -

33 -

333-

XSi

w - 3

333353 -

33- 33 3333~ 3 - 3$533333333333333-

333~

33- 33- 3333- 3 - 333~

333~

333 -

o333~

3 3 -

o -

333 -

333333333333-

3333 - 3 -

33 -

33 -

333~

e

= -

=

The Single UNIX® Specification: Authorized Guide to Version 4

79

System Interface Table System Interface Table

P96
POSIX|UO3 PO1 U98|U95|P92|C99|C89

P
0

Interface

wcesnrtombs ()
wespbrk()
wesrchr()
wcesrtombs ()
wesspn()
wcsstr()
wcestod ()
wecstof()
wcestoimax ()
westok ()
wecstol ()
wcstold ()
wecstoll()
wcestombs ()
wcstoul ()
wecstoull ()
wcestoumax ()
weswidth()
wesxfrm ()
wesxfrm_I()
wctob()
wctomb ()
wctrans()
wctrans_I()
wetype()
wctype_|()
wewidth ()
wmemchr ()
wmemcecmp ()
wmemcpy ()
wmemmove ()
wmemset()
wordexp ()
wordfree()
wprintf()
write ()
writev ()
wscanf()
yo()

y1()

yn()

33 -

333333~
PR RRRE -

3 3 3 3

3 3 - 3 3 -
3333333333333333-

- 3 - - -

3%33333333333333353-

333333333333333333-

3 3 -
o 3 -
3.
[y

333
3 33
333 -
3
3 33
3P

3
3
3 .
3
3
[EEY

33333~
e =

5353333333335 -
33 -
33 -
3.
|_\

5 53$353333333333$33333333$33333333333333333

33-3
x
@,

3333333333333 33-
333333333333333-
o

333~

XSi XSi

80 A Source Book from The Open Group (2010)

Chapter 8

Utility Interface Table

8.1

Intr oduction

This chapter lists all the utilities described in XCU, Issue 7, complete with an indication of their
status for XSlI-conforming and POSIX-conforming systems, and indicates what other
specifications support the interfaces.

The following conventions are used in columns 2 through 8:

m
d

f
2d
0
ob

obo

opt

ob opt

Indicates that the interface is defined as mandatory.

Indicates that the interface is part of the DEVELOPMENT Option or Feature Group.
Indicates that the interface is part of the FORTRAN Option or Feature Group.
Indicates that the interface is part of IEEE Std 1003.2d-1994 (Batch Environment).
Indicates that the interface is optional.

Indicates that the interface is Obsolescent, and although mandatory for the
implementation, applications are discouraged from its use.

In the XSI column, indicates that the interface is Obsolescent, and is optional.
Applications are discouraged from its use.

In the POSIX and POSIX 01 columns, two or three letter option codes are used as
described in Section 1.4 (on page 2), denoting the option to which the interface
belongs.

Same as opt, but the interface is also obsolescent.

Indicates that the interface is not specified.

It should be noted that while another specification may support the interface, some of the
interface semantics may have changed with evolution and standardization. A developer should
not assume that because the interface appears in other specifications, it will behave exactly as
described in the Single UNIX Specification, Version 4.

The Single UNIX® Specification: Authorized Guide to Version 4 81

Utility Interface Table Utility Interface Table

8.2 Utility Interface Table

There are 160 utilities listed.

82 A Source Book from The Open Group (2010)

Utility Interface Table Utility Interface Table

Interface XSl POSIX | UNIX03 | POSIX01 | UNIX98 | UNIX95 | POSIX.2-92

admin d Xsi d Xsi d d

alias m m m up m m o]
ar m m m sd m m o]
asa o] fr o] fr m m o]
at m m m up m m o]
awk m m m m m m m
basename m m m m m m m
batch m m m up m m 0
bc m m m m m m m
bg m up m up m m 0
c99 m cd m cd . .

cal m XSi m XSi m m .
cat m m m m m m m
cd m m m m m m m
cflow d Xsi d Xsi d d

chgrp m m m m m m m
chmod m m m m m m m
chown m m m m m m m
cksum m m m m m m m
cmp m m m m m m m
comm m m m m m m m
command m m m up m m m
compress m XSi m Xsi m m .
cp m m m m m m m
crontab m m m up m m 0
csplit m m m up m m o]
ctags d|f sd d|f sd up d|f d|f 0
cut m m m m m m m
cxref d Xsi d XSi d d .
date m m m m m m m
dd m m m m m m m
delta d Xsi d Xsi d d .
df m m m up m m o]
diff m m m m m m m
dirname m m m m m m m
du m m m up m m 0
echo m m m m m m m
ed m m m m m m m
env m m m m m m m
ex m up m up m m o]
expand m m m up m m o]
expr m m m m m m m
false m m m m m m m
fc m up m up m m 0
fg m up m up m m 0
file m m m up m m o]
find m m m m m m m
fold m m m m m m m
fort77 f fd f fd f f o]
fuser m Xsi m XSi m .

gencat m m m Xsi m m

The Single UNIX® Specification: Authorized Guide to Version 4 83

Utility Interface Table Utility Interface Table

Interface XSl | POSIX | UNIX03 | POSIX01 | UNIX98 | UNIX95 | POSIX.2-92
get d XSi d Xsi d d
getconf m m m m m m
getopts m m m m m m .
grep m m m m m m m
hash m m m Xsi m m .
head m m m m m m m
iconv m m m m m m .
id m m m m m m m
ipcrm m XSi m XSi m
ipcs m XSi m XSi m . .
jobs m up m up m m 0
join m m m m m m m
kill m m m m m m m
lex d cd d cd d d o]
link m XSi m Xsi m . .
In m m m m m m m
locale m m m m m m m
localedef m m m m m m m
logger m m m m m m m
logname m m m m m m m
Ip m m m m m m m
Is m m m m m m m
m4 m m d Xsi d d .
mailx m m m m m m m
make d sd d sd d d o]
man m m m m m m o]
mesg m m m up m m 0
mkdir m m m m m m m
mkfifo m m m m m m m
more m up m up m m 0
mv m m m m m m m
newgrp m m m up m m 0
nice m m m up m m o]
nl m XSi m Xsi m m .
nm d xsi|sd d sd up d d o]
nohup m m m m m m m
od m m m m m m m
paste m m m m m m m
patch m m m up m m 0
pathchk m m m m m m m
pax m m m m m m m
pr m m m m m m m
printf m m m m m m m
prs d XSi d Xsi d d .
ps m m m up m m 0
pwd m m m m m m m
galter obo | obbe 0 be 2d
qdel obo | obbe o] be 2d
ghold obo | obbe 0 be 2d
gmove obo | obbe o] be 2d
gmsg obo | obbe o] be 2d

84 A Source Book from The Open Group (2010)

Utility Interface Table Utility Interface Table

Interface XSl | POSIX | UNIX03 | POSIX01 | UNIX98 | UNIX95 | POSIX.2-92
grerun obo | obbe o} be . . 2d
grls obo | obbe o} be . . 2d
gselect obo | obbe 0 be . . 2d
gsig obo | obbe o] be . . 2d
gstat obo | obbe o} be . . 2d
gsub obo | obbe o} be . . 2d
read m m m m m m m
renice m m m up m m 0
rm m m m m m m m
rmdel d XSi d Xsi d d .
rmdir m m m m m m m
sact d XSi d Xsi d d
sccs d XSi d Xsi d d .
sed m m m m m m m
sh m m m m m m m
sleep m m m m m m m
sort m m m m m m m
split m m m up m m o]
strings m m m up m m o}
strip d sd d sd d d o]
Sstty m m m m m m m
tabs m m m up m m 0
tail m m m m m m m
talk m up m up m m o]
tee m m m m m m .
test m m m m m m m
time m m m up m m o]
touch m m m m m m m
tput m m m up m m o]
tr m m m m m m m
true m m m m m m m
tsort m m m Xsi m m .
tty m m m m m m m
type m XSi m Xsi m m
ulimit m XSi m Xsi m m .
umask m m m m m m m
unalias m m m up m m o]
uname m m m m m m m
uncompress m XSi m Xsi m m .
unexpand m m m up m m o}
unget d XSi d Xsi d d .
uniq m m m m m m m
unlink m XSi m Xsi m .
uucp o] uu m Xsi m m .
uudecode m m m up m m 0
uuencode m m m up m m 0
uustat o] uu m Xsi m m
uux o] uu m Xsi m m
val d XSi d Xsi d d .
Vi m up m up m m o]
wait m m m m m m m

The Single UNIX® Specification: Authorized Guide to Version 4 85

Utility Interface Table

86

Utility Interface Table

Interface XSl | POSIX | UNIX03 | POSIX01 | UNIX98 | UNIX95 | POSIX.2-92
wce m m m m m m m
what d XSi d XSi d d .
who m m m up m m o]
write m m m up m m o]
xargs m m m m m m m
yacc d cd d cd d d 0
zcat m XSi m Xsi m m

A Source Book from The Open Group (2010)

Chapter 9

Header Interface Table

9.1 Intr oduction

This chapter lists all the headers defined in XBD, Issue 7, complete with an indication of their
status for XSl-conforming and POSIX-conforming systems, and their availability in UNIX 03,
UNIX 98, UNIX 95, POSIX.1-2001 (denoted PO01), the ISO POSIX-1:1996 standard (denoted
P96), the POSIX.2-1992 standard (denoted P92), the ISO C standard (denoted C99), and C89.

The following conventions are used in columns 2 through 10:

m Indicates that the interface is defined as mandatory.
o] Indicates that the interface is part of an Option or Feature Group.
ob Indicates that the interface is Obsolescent, and although mandatory for the

implementation, applications are discouraged from its use.

obo In the XSI column, indicates that the interface is Obsolescent, and is part of an Option
or Feature Group. Applications are discouraged from its use.

opt In the POSIX and P01 columns, two or three letter option codes are used as described
in XBD, Issue 7 (for the POSIX column) and XBD, Issue 6 (for the PO1 column),
denoting the option to which the interface belongs.

ob opt Same as opt, but the interface is also obsolescent.

r In the P96 column, indicates that the interface is part of the POSIX Realtime Extension.
t In the P96 column, indicates that the interface is part of the POSIX Threads Extension.
1 In the C89 column, indicates that the interface is part of the

ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Indicates that the interface is not specified.

The Single UNIX® Specification: Authorized Guide to Version 4 87

Header Interface Table Header Interface Table

9.2 Header Interface Table

There are 82 headers listed.

88 A Source Book from The Open Group (2010)

Header Interface Table Header Interface Table

Interface XSI |POSIX|UNIX 03| P01 |UNIX 98 |UNIX 95|P96 P92|C99|C89
<aio.h> m m 0 aio o] r
<arpal/inet.h> m m m m m m . .
<assert.h> m m m m m m m | m
<complex.h> m m m m . . m
<cpio.h> m m m XSi m m
<ctype.h> m m m m m m . m | m
<dirent.h> m m m m m m m
<dlfcn.h> m m m Xsi m .
<errno.h> m m m m m m m m | m
<fentl.h> m m m m m m m .
<fenv.h> m m m m . . . m .
<float.h> m m m m m m m m | m
<fmtmsg.h> m XSi m XSi m m m
<fnmatch.h> m m m m m m m
<ftw.h> m Xsi m XSi m m .
<glob.h> m m m m m m m
<grp.h> m m m m m m m
<iconv.h> m m m Xsi m m .
<inttypes.h> m m m m m m .
<is0646.h> m m m m m . m| 1
<langinfo.h> m m m XSi m m
<libgen.h> m XSi m XSi m m .
<limits.h> m m m m m m m m | m
<locale.h> m m m m m m m m | m
<math.h> m m m m m m m m | m
<monetary.h> m m m XSi m m
<mqueue.h> 0 | msg 0 msg o] . r
<ndbm.h> m Xsi m XSi m m
<net/if.h> m m m m m m
<netdb.h> m m m m m m m
<netinet/in.h> m m m m m m m
<netinet/tcp.h> m m m m m m m
<nl_types.h> m m m XSi m m
<poll.h> m m m m m m .
<pthread.h> m m m thr m . t
<pwd.h> m m m m m m m
<regex.h> m m m m m m m
<sched.h> m m 0 ps o] . r
<search.h> m Xsi m XSi m m .
<semaphore.h> | m m 0 sem o} . r .
<setjmp.h> m m m m m m m m | m
<signal.h> m m m m m m m m | m
<spawn.h> o] spn 0 spn . . .
<stdarg.h> m m m m m m m m | m
<stdbool.h> m m m m m m m m .
<stddef.h> m m m m m m m m | m
<stdint.h> m m m m . . m .
<stdio.h> m m m m m m m m | m
<stdlib.h> m m m m m m m m | m
<string.h> m m m m m m m m | m
<strings.h> m m m XSi m m

The Single UNIX® Specification: Authorized Guide to Version 4 89

Header Interface Table

90

Header Interface Table

Interface XSI |POSIX|UNIX 03| P01 |UNIX 98 |UNIX 95|P96 P92|C99|C89
<stropts.h> ob o| ob xsr 0 XSr m m
<sys/ipc.h> m Xsi m XSi m m .
<sys/mman.h> m m m m m m m
<sys/msg.h> m Xsi m XSi m m
<sys/resource.h>| m Xsi m XSi m m
<sys/select.h> m m m m m m .
<sys/sem.h> m Xsi m XSi m m m
<sys/shm.h> m Xsi m XSi m m
<sys/socket.h> m m m m m m .
<sys/stat.h> m m m m m m m
<sys/statvfs.h> m m m XSi m m m
<sys/time.h> m Xsi m XSi m m .
<sys/times.h> m m m m m m m
<sys/types.h> m m m m m m m
<sys/uio.h> m Xsi m XSi m m
<sys/un.h> m m m m m m .
<sys/utsname.h>| m m m m m m m
<sys/wait.h> m m m m m m m
<syslog.h> m Xsi m XSi m m .
<tar.h> m m m m m m m
<termios.h> m m m m m m m .
<tgmath.h> m m m m . m .
<time.h> m m m m m m m | m
<trace.h> obo| obtrc 0 trc . .
<ulimit.h> ob | ob xsi m XSi m m .
<unistd.h> m m m m m m m
<utime.h> ob ob m m m m m
<utmpx.h> m Xsi m XSi m m . .
<wchar.h> m m m m m m m| 1
<wctype.h> m m m m m m . m| 1
<wordexp.h> m m m m m m m

A Source Book from The Open Group (2010)

Chapter 10

XCURSES Interface Table

10.1

10.2

Intr oduction

This chapter contains tables of all the interfaces defined in X/Open Curses, Issue 7, complete
with an indication of their availability for the Single UNIX Specification (denoted by SUSv4), and
their availability in UNIX 03, UNIX 98, UNIX 95, and Curses, Issue 3. The XCURSES interfaces

are not specified for the POSIX base in POSIX.1-2008.

There is one table for system interfaces, one for headers, and one for utilities.

The following conventions are used in columns 2 through 6:

m Indicates that the interface is defined as mandatory.

ob Indicates that the interface is Obsolescent, and although mandatory for the implementation,
applications are discouraged from its use.

Indicates that the interface is not specified.

The tables are intended as a quick reference guide for programmers migrating to or developing

applications for the Single UNIX Specification, Version 4.

XCURSES Interface Table

System Interfaces

There are 379 system interfaces listed.

Interface

SUSv4

UNIX 03

UNIX 98

UNIX 95

Curses 3

COLOR_PAIR()
COLOR_PAIRS
COLORS

COoLs

LINES
PAIR_NUMBER()
add_wch()
add_wchnstr()
add_wchstr()
addch()
addchnstr()

33333333333

33333333333

33333333333

33333333333

3 3 -

The Single UNIX® Specification: Authorized Guide to Version 4

91

XCURSES Interface Table XCURSES Interface Table

Interface SUSv4 | UNIX 03 | UNIX98 | UNIX95 | Curses 3

addchstr()
addnstr()
addnwstr()
addstr()
addwstr()
attr_get()
attr_off()
attr_on()
attr_set()
attroff()
attron()
attrset()
baudrate ()
beep()
bkgd ()
bkgdset()
bkgrnd()
bkgrndset()
border()
border_set()
box ()
box_set()
can_change_color()
cbreak()
chgat()
clear()
clearok()
clrtobot()
clrtoeol ()
color_content()
color_set()
copywin()
cur_term
curs_set()
curscr

def _prog_mode()
def_shell_mode()
del_curterm()
delay_output()
delch()
deleteln()
delscreen()
delwin()
derwin()
doupdate()
dupwin()
echo()
echo_wchar()
echochar()
endwin()
erase()

33333 -

3 -

3333 -

3 3 -

33-3
333 -

33-3
33-3
33-3

3 3 -

92 A Source Book from The Open Group (2010)

XCURSES Interface Table XCURSES Interface Table

Interface SUSv4 | UNIX 03 | UNIX98 | UNIX95 | Curses 3

erasechar() m
erasewchar()
filter()
flash()
flushinp()
get_wch()
get_wstr()
getbegyx ()
getbkgd()
getbkgrnd()
getcchar()
getch()
getmaxyx()
getn_wstr()
getnstr()
getparyx()
getstr()
getwin()
getyx()
halfdelay ()
has_colors()
has_ic()
has_il()
hline()
hline_set()
idcok()
idlok ()
immedok()
in_wch()
in_wchnstr()
in_wechstr()
inch()
inchnstr()
inchstr()
init_color()
init_pair()
initscr()
innstr()
innwstr()
ins_nwstr()
ins_wch()
ins_wstr()
insch()
insdelln()
insertin()
insnstr()
insstr()
instr()
intrflush ()
inwstr()
is_linetouched()

3 3 -

3 3 -

33-3
33-3
33-3
33-3

The Single UNIX® Specification: Authorized Guide to Version 4 93

XCURSES Interface Table XCURSES Interface Table

Interface SUSv4 | UNIX 03 | UNIX98 | UNIX95 | Curses 3

is_wintouched()
isendwin()
key_name()
keyname ()
keypad()
killchar ()
killwchar ()
leaveok ()
longname ()
meta()
move ()
mvadd_wech()
mvadd_wchnstr()
mvadd_wchstr()
mvaddch()
mvaddchnstr()
mvaddchstr()
mvaddnstr()
mvaddnwstr()
mvaddstr()
mvaddwstr ()
mvchgat()
mvcur()
mvdelch()
mvderwin()
mvget_wch()
mvget_wstr()
mvgetch()
mvgetn_wstr()
mvgetnstr()
mvgetstr()
mvhline ()
mvhline_set()
mvin_wch ()
mvin_wchnstr()
mvin_wchstr()
mvinch()
mvinchnstr()
mvinchstr()
mvinnstr()
mvinnwstr ()
mvins_nwstr()
mvins_wech()
mvins_wstr()
mvinsch()
mvinsnstr()
mvinsstr()
mvinstr()
mvinwstr ()
mvprintw ()
mvscanw()

3 3 -

3 3 -

33-3
33-3
33-3
33-3

3 3 -

94 A Source Book from The Open Group (2010)

XCURSES Interface Table

XCURSES Interface Table

Interface

SUSv4

UNIX 03

UNIX 98

UNIX 95

Curses 3

mvvline()
mwvline_set()
mvwadd_wch()
mvwadd_wchnstr()
mvwadd_wchstr()
mvwaddch()
mvwaddchnstr()
mvwaddchstr()
mvwaddnstr()
mvwaddnwstr ()
mvwaddstr()
mvwaddwstr ()
mvwchgat()
mvwdelch ()
mvwget_wch ()
mvwget_wstr()
mvwgetch()
mvwgetn_wstr()
mvwgetnstr()
mvwgetstr ()
mvwhline()
mvwhline_set()
mvwin ()
mvwin_wch()
mvwin_wchnstr()
mvwin_wchstr()
mvwinch ()
mvwinchnstr()
mvwinchstr()
mvwinnstr ()
mvwinnwstr ()
mvwins_nwstr()
mvwins_wch()
mvwins_wstr()
mvwinsch()
mvwinsnstr()
mvwinsstr ()
mvwinstr()
mvwinwstr ()
mvwprintw ()
mvwscanw ()
mvwvline ()
mvwvline_set()
napms()
newpad()
newterm()
newwin ()

nl()

nocbreak()
nodelay ()
noecho()

33-3

33-3

33-3

33-3

33 -

3333333-

The Single UNIX® Specification: Authorized Guide to Version 4

95

XCURSES Interface Table XCURSES Interface Table

Interface SUSv4 | UNIX 03 | UNIX98 | UNIX95 | Curses 3
m

nonl()
nogiflush()
noraw ()
notimeout()
overlay()
overwrite()
pair_content()
pecho_wechar()
pechochar()
pnoutrefresh()
prefresh()
printw ()
putp()
putwin ()
giflush()
raw ()
redrawwin ()
refresh()
reset_prog_mode()
reset_shell_mode()
resetty()
restartterm()
ripoffline ()
savetty()
scanw()
scr_dump()
scr_init()
scr_restore()
scr_set()
scrl()

scroll()
scrollok()
set_curterm()
set_term()
setcchar()
setscrreg()
setupterm()
slk_attr_off()
slk_attr_on()
slk_attr_set()
slk_attroff()
slk_attron()
slk_attrset()
slk_clear()
slk_color()
slk_init()
slk_label()
slk_noutrefresh()
slk_refresh()
slk_restore()
slk_set()

3333- 3- 333~ 3 3 -

3 3 -

33-3
3 3 -

33-3
33-3
33-3

96 A Source Book from The Open Group (2010)

XCURSES Interface Table

XCURSES Interface Table

Interface

SUSv4

UNIX 03

UNIX 98

UNIX 95

Curses 3

slk_touch()
slk_wset()
standend()
standout()
start_color()
stdscr
subpad()
subwin()
syncok()
term_attrs()
termattrs()
termname()
tigetflag()
tigetnum ()
tigetstr()
timeout()
tiparm()
touchline()
touchwin()
tparm()
tputs()
typeahead()
unctrl()
unget_wch()
ungetch()
untouchwin()
use_env()
vid_attr()
vid_puts()
vidattr()
vidputs()
vline()
vline_set()
vw_printw ()
vw_scanw()
wadd_wch()
wadd_wchnstr()
wadd_wchstr()
waddch()
waddchnstr()
waddchstr()
waddnstr()
waddnwstr ()
waddstr()
waddwstr ()
wattr_get()
wattr_off()
wattr_on()
wattr_set()
wattroff()
wattron()

333333333333333333333333333333383333333333333333333

3333333333333333

3333333333333333333333333333333333-

3333333333333333

3333333333333333333333333333333333-

3333333333333333

3333333333333333333333333333333333-

33 -

3 3 -

3 3 -

The Single UNIX® Specification: Authorized Guide to Version 4

97

XCURSES Interface Table XCURSES Interface Table

Interface SUSv4 | UNIX 03 | UNIX98 | UNIX95 | Curses 3

wattrset() m
wbkgd ()
wbkgdset()
wbkgrnd()
wbkgrndset()
wborder ()
wborder_set()
wchgat()
wclear()
weclrtobot()
weclrtoeol ()
wecolor_set()
weursyncup()
wdelch()
wdeleteln()
wecho_wchar()
wechochar ()
werase()
wget_wch()
wget_wstr()
wgetbkgrnd()
wgetch()
wgetn_wstr()
wgetnstr()
wgetstr()
whline()
whline_set()
win_wch()
win_wchnstr()
win_wchstr()
winch()
winchnstr()
winchstr()
winnstr()
winnwstr()
wins_nwstr()
wins_wch()
wins_wstr()
winsch()
winsdelln()
winsertin()
winsnstr()
winsstr()
winstr()
winwstr ()
wmove ()
wnoutrefresh()
wprintw ()
wredrawin()
wrefresh()
wscanw ()

333 -

33 -

33-3
333~

33-3
33-3
33-3

33 -

98 A Source Book from The Open Group (2010)

XCURSES Interface Table XCURSES Interface Table

Interface SUSv4 | UNIX 03 | UNIX98 | UNIX95 | Curses 3

wscrl()
wsetscrreg()
wstandend()
wstandout()
wsyncdown ()
wsyncup()
wtimeout()
wtouchin()
wunctrl()
wvline ()

333~

wvline_set()

33333333333

333333333383

333333333383

333333333383

Headers

Interface

SuUSv4

UNIX 03

UNIX 98

UNIX 95

Curses 3

<curses.h>
<term.h>
<unctrl.h>

m
m
m

m

m

Utilities

Note that the tput entry here is for the fully-specified tput utility in X/Open Curses, Issue 7, not
the minimally-specified tput utility in XCU, Issue 7, which has an entry in the table in Chapter 8

(on page 81).

Interface SUSv4 | UNIX 03 | UNIX98 | UNIX95 | Curses 3
infocmp m
tic m
tput m
untic m

The Single UNIX® Specification: Authorized Guide to Version 4

99

XCURSES Interface Table

100 A Source Book from The Open Group (2010)

Chapter 11

System Interfaces Migration

11.1 Introduction

This chapter contains a section for each system interface defined in XSH, Issue 7. Each section
contains the SYNOPSIS and gives the derivation of the interface. For interfaces new to Issue 7,
a brief description is included, complete with examples where appropriate. For interfaces carried
forward from Issue 6, syntax and semantic changes made to the interface in Issue 7 are
identified (if any). Only changes that might affect an application programmer are included.

11.2 System Interfaces
_Exit, _exit
Purpose: Terminate a process.
Synopsis: #i ncl ude <stdlib. h>
void _Exit(int status);
#i ncl ude <uni std. h>
void _exit(int status);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #085 is applied, clarifying the text
regarding flushing of streams and closing of temporary files.

Functionality relating to the Asynchronous Input and Output, Memory Mapped
Files, and Semaphores options is moved to the Base.
_longjmp, _setjmp
Purpose: Non-local goto.
oB xsI Synopsis: #i ncl ude <setj np. h>

void _Iongj np(j mp_buf env, int val);
int _setjnmp(jnp_buf env);

Derivation: First released in Issue 4, Version 2.

The Single UNIX® Specification: Authorized Guide to Version 4 101

System Interfaces System Interfaces Migration

Issue 7: The _longjmp() and _setimp() functions are marked obsolescent. Applications
should use siglongjmp() and sigsetimp() respectively.
_tolower
Purpose: Transliterate uppercase characters to lowercase.
oB xsI Synopsis: #i ncl ude <ctype. h>

int tolower(int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: The _tolower() function is marked obsolescent. Applications should use the
tolower () function instead.
_toupper
Purpose: Transliterate lowercase characters to uppercase.
oB xsI Synopsis: #i ncl ude <ctype. h>

int _toupper(int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The _toupper() function is marked obsolescent. Applications should use the
toupper() function instead.

a64l, 164a
Purpose: Convert between a 32-bit integer and a radix-64 ASCII string.
XSl Synopsis: #i ncl ude <stdlib. h>

| ong a64l (const char *s);
char *| 64a(l ong val ue);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
abort
Purpose: Generate an abnormal process abort.

Synopsis: #i ncl ude <stdlib. h>
voi d abort (void);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

102 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

abs
Purpose:

Synopsis:

Derivation:

Issue 7:

accept
Purpose:

Synopsis:

Derivation:

Issue 7:

Return an integer absolute value.

#i ncl ude <stdlib. h>

int abs(int i);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Accept a new connection on a socket.
#i ncl ude <sys/socket. h>

int accept(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_|en);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

Austin Group Interpretation 1003.1-2001 #044 is applied, changing the “may fail”
[ENOBUFS] and [ENOMEM] errors to become “shall fail” errors.

Functionality relating to XSI STREAMS is marked obsolescent.

access, faccessat

Purpose:

Synopsis:

Derivation:

Determine accessibility of a file relative to directory file descriptor.
#i ncl ude <uni std. h>

i nt access(const char *path, int anode);
int faccessat(int fd, const char *path, int anpde, int flag);

The faccessat() function is equivalent to the access() function, except in the case
where path specifies a relative path. In this case the file whose accessibility is to
be determined is located relative to the directory associated with the file descriptor
fd instead of the current working directory. If the file descriptor was opened without
O_SEARCH, the function checks whether directory searches are permitted using
the current permissions of the directory underlying the file descriptor. If the file
descriptor was opened with O_SEARCH, the function does not perform the check.

The AT_EACCESS flag can be used to specify that checks for accessibility are
performed using the effective user and group IDs instead of the real user and
group ID.

The purpose of the faccessat() function is to enable the checking of the
accessibility of files in directories other than the current working directory without
exposure to race conditions. Any part of the path of a file could be changed in
parallel to a call to access(), resulting in unspecified behavior. By opening a file
descriptor for the target directory and using the faccessat() function it can be
guaranteed that the file tested for accessibility is located relative to the desired
directory.

First released in Issue 1. Derived from Issue 1 of the SVID.

The Single UNIX® Specification: Authorized Guide to Version 4 103

System Interfaces

Issue 7:

acos, acosf ,
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Austin Group Interpretation 1003.1-2001 #046 is applied.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The faccessat() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

acosl

Arc cosine functions.

#i ncl ude <mat h. h>

doubl e acos(doubl e x);
float acosf(float x);
| ong doubl e acosl (I ong doubl e x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

acosh, acoshf , acoshl

Purpose:

Synopsis:

Derivation:

Issue 7:

aio_cancel
Purpose:

Synopsis:

Derivation:

Issue 7:

104

Inverse hyperbolic cosine functions.
#i ncl ude <mat h. h>

doubl e acosh(doubl e x);
float acoshf(float Xx);
| ong doubl e acoshl (1 ong double x);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Cancel an asynchronous I/O request.
#i ncl ude <ai 0. h>
int aio_cancel (int fildes, struct aiocb *aiochp);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The aio_cancel() function is moved from the Asynchronous Input and Output
option to the Base.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

aio_error
Purpose:

Synopsis:

Derivation:

Issue 7:

aio_fsync
Purpose:

Synopsis:

Derivation:

Issue 7:

aio_read
Purpose:

Synopsis:

Derivation:

Issue 7:

aio_return
Purpose:

Synopsis:

Derivation:

Retrieve errors status for an asynchronous 1/O operation.
#i ncl ude <ai 0. h>
int aio_error(const struct aiocb *aiocbhp);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Austin Group Interpretation 1003.1-2001 #045 is applied, clarifying that the
behavior is undefined if the aiocb structure pointed to by aiocbp is not associated
with an operation that has been scheduled.

SD5-XSH-ERN-148 is applied, clarifying that when aio_error() fails it returns -1
and sets errno.

The aio_error() function is moved from the Asynchronous Input and Output option
to the Base.

Asynchronous file synchronization.
#i ncl ude <ai 0. h>
int aio_fsync(int op, struct aiocb *ai ochp);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The aio_fsync() function is moved from the Asynchronous Input and Output option
to the Base.

Asynchronous read from a file.
#i ncl ude <ai 0. h>
int aio_read(struct aioch *aiochp);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Austin Group Interpretation 1003.1-2001 #082 is applied.

The aio_read() function is moved from the Asynchronous Input and Output option
to the Base.

Retrieve return status of an asynchronous I/O operation.
#i ncl ude <ai 0. h>
ssize_t aio_return(struct aiocb *aiochp);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The Single UNIX® Specification: Authorized Guide to Version 4 105

System Interfaces System Interfaces Migration

Issue 7: SD5-XSH-ERN-148 is applied, clarifying that when aio_return() fails it returns -1
and sets errno.

The aio_return() function is moved from the Asynchronous Input and Output
option to the Base.

aio_suspend

Purpose: Wait for an asynchronous I/O request.

Synopsis: #i ncl ude <ai o. h>

i nt aio_suspend(const struct aiocb *const list[], int nent,
const struct tinmespec *tineout);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The aio_suspend() function is moved from the Asynchronous Input and Output
option to the Base.

aio_write

Purpose: Asynchronous write to a file.

Synopsis: #i ncl ude <ai 0. h>
int aio wite(struct aiocb *ai ochp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime

Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #082 is applied.
The aio_write() function is moved from the Asynchronous Input and Output option
to the Base.

alarm

Purpose: Schedule an alarm signal.

Synopsis: #i ncl ude <uni std. h>
unsi gned al ar m(unsi gned seconds);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

alphasort, scandir
Purpose: Scan a directory.
Synopsis: #i ncl ude <dirent. h>

i nt al phasort(const struct dirent **di,
const struct dirent **d2);
int scandir(const char *dir, struct dirent ***nanelist,
int (*sel)(const struct dirent *),
int (*conpar)(const struct dirent **,
const struct dirent **));

The alphasort() function can be used as the comparison function for the scandir()

106 A Source Book from The Open Group (2010)

System Interfaces Migration

OB

OB CX

Derivation:

Issue 7:

System Interfaces

function to sort the directory entries, d1 and d2, into alphabetical order. Sorting
happens as if by calling the strcoll() function on the d_name element of the dirent
structures passed as the two parameters. If the strcoll() function fails, the return

value of alphasort() is unspecified.

The scandir() function scans the directory dir, calling the function referenced by sel
on each directory entry. Entries for which the function referenced by sel returns
non-zero are stored in strings allocated as if by a call to malloc(), and sorted as if
by a call to gsort() with the comparison function compar, except that compar need
not provide total ordering. The strings are collected in array namelist which is

allocated as if by a call to malloc().

First released in Issue 7. Derived from The Open Group Technical Standard, 2006,

Extended API Set Part 1.

First released in Issue 7.

asctime, asctime_r

Purpose:

Synopsis:

Derivation:

Issue 7:

Convert date and time to a string.
#i ncl ude <tine. h>

char *asctinme(const struct tm *tinmeptr);

char *asctinme_r(const struct tm*restrict tm

char *restrict buf);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #053 is applied, marking these functions

obsolescent. Applications should use the strftime () function instead.

The asctime_r() function is moved from the Thread-Safe Functions option to the

Base.

asin, asinf , asinl

Purpose:

Synopsis:

Derivation:

Issue 7:

Arc sine function.
#i ncl ude <mat h. h>

doubl e asi n(doubl e x);
float asinf(float x);
| ong doubl e asinl (I ong double x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

asinh, asinhf , asinhl

Purpose:

Synopsis:

Inverse hyperbolic sine functions.
#i ncl ude <mat h. h>

doubl e asi nh(doubl e x);
float asinhf(float Xx);
| ong doubl e asinhl (1 ong double x);

The Single UNIX® Specification: Authorized Guide to Version 4

107

System Interfaces

Derivation:

Issue 7:

assert
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Insert program diagnostics.

#i ncl ude <assert. h>

voi d assert(scal ar expression);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

atan, atanf , atanl

Purpose:

Synopsis:

Derivation:

Issue 7:

Arc tangent function.
#i ncl ude <mat h. h>

doubl e atan(doubl e x);
float atanf(float x);
| ong doubl e atanl (I ong doubl e x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

atan2, atan2f , atan2l

Purpose:

Synopsis:

Derivation:

Issue 7:

Arc tangent functions.
#i ncl ude <mat h. h>

doubl e atan2(doubl e y, double x);
float atan2f(float y, float x);
| ong doubl e atan2l (1 ong double y, |ong double x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

atanh, atanhf , atanhl

Purpose:

Synopsis:

Derivation:

Issue 7:

108

Inverse hyperbolic tangent functions.
#i ncl ude <mat h. h>

doubl e atanh(doubl e x);
float atanhf(float Xx);
| ong doubl e at anhl (1 ong doubl e x);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

System Interfaces Migration

atexit
Purpose:

Synopsis:

Derivation:

Issue 7:

atof
Purpose:

Synopsis:

Derivation:

Issue 7:

atoi
Purpose:

Synopsis:

Derivation:

Issue 7:

atol, atoll
Purpose:

Synopsis:

Derivation:

Issue 7:

basename
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

Register a function to run at process termination.
#i ncl ude <stdlib. h>

int atexit(void (*func)(void));

First released in Issue 4. Derived from the ANSI C standard.

No functional changes are made in this issue.

Convert a string to a double-precision number.

#i ncl ude <stdlib. h>

doubl e atof (const char *str);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Convert a string to an integer.

#i ncl ude <stdlib. h>

int atoi (const char *str);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Convert a string to a long integer.
#i ncl ude <stdlib. h>

| ong atol (const char *str);
long long atoll (const char *nptr);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Return the last component of a pathname.
#i ncl ude <l i bgen. h>

char *basenane(char *path);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4

System Interfaces

109

System Interfaces

110

bind
Purpose:

Synopsis:

Derivation:

Issue 7:

bsearch
Purpose:

Synopsis:

Derivation:

Issue 7:

btowc
Purpose:

Synopsis:

Derivation:

Issue 7:

cabs, cabsf ,
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Bind a name to a socket.
#i ncl ude <sys/socket. h>

int bind(int socket, const struct sockaddr *address,
sockl en_t address_| en);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Austin Group Interpretation 1003.1-2001 #044 is applied, changing the “may fail”
[ENOBUFS] error to become a “shall fail” error.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

SD5-XSH-ERN-185 is applied, specifying asynchronous behavior for bind() when
O_NONBLOCK is set for the socket.

An example is added.

Binary search a sorted table.
#i nclude <stdlib. h>

voi d *bsearch(const void *key, const void *base, size t nel,
size t width, int (*conpar)(const void *, const void *));

First released in Issue 1. Derived from Issue 1 of the SVID.
The EXAMPLES section is revised.

Single byte to wide character conversion.

#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

wint t btowc(int c);

First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

No functional changes are made in this issue.

cabsl
Return a complex absolute value.
#i ncl ude <conpl ex. h>

doubl e cabs(doubl e conpl ex z);
float cabsf(float conplex z);
| ong doubl e cabsl (I ong doubl e conpl ex z);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

cacos, cacosf , cacosl
Purpose: Complex arc cosine functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex cacos(doubl e conplex z);
float conplex cacosf(float conplex z);
| ong doubl e conpl ex cacosl (1 ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

cacosh, cacoshf , cacoshl
Purpose: Complex arc hyperbolic cosine functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex cacosh(doubl e conpl ex z);
float conplex cacoshf(float conplex z);
| ong doubl e conpl ex cacoshl (1 ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

calloc
Purpose: A memory allocator.
Synopsis: #i ncl ude <stdlib. h>
void *calloc(size_t nelem size t elsize);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

carg, cargf , cargl
Purpose: Complex argument functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e carg(doubl e conplex z);
float cargf(float conplex z);
| ong doubl e cargl (I ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

casin, casinf , casinl
Purpose: Complex arc sine functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex casi n(doubl e conpl ex z);
float conplex casinf(float conplex z);
| ong doubl e conpl ex casinl (1 ong doubl e conplex z);

The Single UNIX® Specification: Authorized Guide to Version 4 111

System Interfaces System Interfaces Migration

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

casinh, casinhf , casinhl
Purpose: Complex arc hyperbolic sine functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex casi nh(doubl e conpl ex z);
float conplex casinhf(float conplex z);
| ong doubl e conpl ex casinhl (1 ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

catan, catanf , catanl
Purpose: Complex arc tangent functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex catan(doubl e conplex z);
float conplex catanf(float conplex z);
| ong doubl e conpl ex catanl (I ong doubl e conplex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

catanh, catanhf , catanhl
Purpose: Complex arc hyperbolic tangent functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex cat anh(doubl e conpl ex z);
float conplex catanhf(float conplex z);
| ong doubl e conpl ex catanhl (1 ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
catclose
Purpose: Close a message catalog descriptor.

Synopsis: #i ncl ude <nl _types. h>
int catclose(nl _catd catd);
Derivation: First released in Issue 2.

Issue 7: The catclose() function is moved from the XSI option to the Base.

112 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

catgets
Purpose:

Synopsis:

Derivation:

Issue 7:

catopen
Purpose:

Synopsis:

Derivation:

Issue 7:

Read a program message.
#i ncl ude <nl _types. h>

char *catgets(nl _catd catd, int set_id, int nsg_id,
const char *s);

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #044 is applied, changing the “may fail”
[EINTR] and [ENOMSG] errors to become “shall fail” errors, updating the RETURN
VALUE section, and updating the DESCRIPTION to note that the results are
undefined if catd is not a value returned by catopen() for a message catalog still
open in the process.

The catgets() function is moved from the XSI option to the Base.

Open a message catalog.

#i ncl ude <nl _types. h>

nl _catd catopen(const char *nane, int oflag);
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The catopen() function is moved from the XSI option to the Base.

cbrt, cbrtf , cbrtl

Purpose:

Synopsis:

Derivation:

Issue 7:

Cube root functions.
#i ncl ude <mat h. h>

doubl e chbrt(double x);
float cbrtf(float x);
| ong doubl e cbrtl (I ong double x);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

ccos, ccosf , ccosl

Purpose:

Synopsis:

Derivation:

Complex cosine functions.
#i ncl ude <conpl ex. h>

doubl e conpl ex ccos(doubl e conpl ex z);
float conplex ccosf(float conplex z);
| ong doubl e conpl ex ccosl (I ong doubl e conpl ex z);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

The Single UNIX® Specification: Authorized Guide to Version 4 113

System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.

ccosh, ccoshf , ccoshl
Purpose: Complex hyperbolic cosine functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex ccosh(doubl e conplex z);
float conplex ccoshf(float conplex z);
| ong doubl e conpl ex ccoshl (1 ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

cell, ceilf , ceill
Purpose: Ceiling value function.
Synopsis: #i ncl ude <nat h. h>

doubl e ceil (doubl e x);
float ceilf(float x);
| ong double ceill(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

cexp, cexpf , cexpl
Purpose: Complex exponential functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex cexp(doubl e conpl ex z);
float conplex cexpf(float conplex z);
| ong doubl e conpl ex cexpl (I ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
cfgetispeed
Purpose: Get input baud rate.

Synopsis: #i ncl ude <term os. h>
speed_t cfgetispeed(const struct term os *term os_p);
Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 7: No functional changes are made in this issue.

114 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

cfgetospeed
Purpose: Get output baud rate.
Synopsis: #i ncl ude <term os. h>
speed_t cfgetospeed(const struct termos *term os_p);

Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 7: No functional changes are made in this issue.
cfsetispeed
Purpose: Set input baud rate.

Synopsis: #i ncl ude <term os. h>
int cfsetispeed(struct termos *term os_p, speed t speed);

Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 7: No functional changes are made in this issue.
cfsetospeed
Purpose: Set output baud rate.

Synopsis: #i ncl ude <term os. h>
int cfsetospeed(struct termos *term os_p, speed t speed);

Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 7: No functional changes are made in this issue.
chdir
Purpose: Change working directory.

Synopsis: #i ncl ude <uni std. h>
int chdir(const char *path);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

chmod, fchmodat

Purpose: Change mode of a file relative to directory file descriptor.

Synopsis: #i ncl ude <sys/stat.h>

i nt chnod(const char *path, node_t node);
int fchnodat(int fd, const char *path, node t node, int flag);

The fchmodat() function is equivalent to the chmod() function except in the case
where path specifies a relative path. In this case the file to be changed is
determined relative to the directory associated with the file descriptor fd instead of
the current working directory. If the file descriptor was opened without O SEARCH,
the function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The Single UNIX® Specification: Authorized Guide to Version 4 115

System Interfaces System Interfaces Migration

The AT_SYMLINK_NOFOLLOW flag can be used to specify that if path names a
symbolic link, then the mode of the symbolic link is changed.

The purpose of the fchmodat() function is to enable changing the mode of files in
directories other than the current working directory without exposure to race
conditions. Any part of the path of a file could be changed in parallel to a call to
chmod(), resulting in unspecified behavior. By opening a file descriptor for the
target directory and using the fchmodat() function it can be guaranteed that the
changed file is located relative to the desired directory.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The fchmodat() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

chown, fchownat
Purpose: Change owner and group of a file relative to directory file descriptor.
Synopsis: #i ncl ude <uni std. h>

i nt chown(const char *path, uid_t owner, gid_t group);
int fchownat(int fd, const char *path, uid_t owner,
gid t group, int flag);

The fchownat() function is equivalent to the chown() and Ichown() functions
except in the case where path specifies a relative path. In this case the file to be
changed is determined relative to the directory associated with the file descriptor fd
instead of the current working directory. If the file descriptor was opened without
O_SEARCH, the function checks whether directory searches are permitted using
the current permissions of the directory underlying the file descriptor. If the file
descriptor was opened with O_SEARCH, the function does not perform the check.

The AT_SYMLINK_NOFOLLOW flag controls whether fchownat() behaves like
chown() or Ichown(): if AT_SYMLINK _NOFOLLOW is set and path names a
symbolic link, ownership of the symbolic link is changed.

The purpose of the fchownat() function is to enable changing ownership of files in
directories other than the current working directory without exposure to race
conditions. Any part of the path of a file could be changed in parallel to a call to
chown() or Ichown(), resulting in unspecified behavior. By opening a file descriptor
for the target directory and using the fchownat() function it can be guaranteed that
the changed file is located relative to the desired directory.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The fchownat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

116 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

cimag, cimagf , cimagl|

Purpose:

Synopsis:

Derivation:

Issue 7:

clearerr
Purpose:

Synopsis:

Derivation:

Issue 7:

clock
Purpose:

Synopsis:

Derivation:

Issue 7:

Complex imaginary functions.
#i ncl ude <conpl ex. h>

doubl e ci mag(doubl e conpl ex z);
float cimagf(float conplex z);
| ong doubl e ci magl (1 ong doubl e conpl ex z);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

Clear indicators on a stream.

#i ncl ude <stdi o. h>

void clearerr(FILE *stream;

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Report CPU time used.

#i ncl ude <time. h>

clock t clock(void);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

clock_getcpuc lockid

Purpose:

cPT Synopsis:

Derivation:

Issue 7:

Access a process CPU-time clock (ADVANCED REALTIME).
#i ncl ude <tine. h>

int clock_getcpucl ockid(pid_t pid, clockid_ t *clock_id);

First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 117

System Interfaces System Interfaces Migration

clock getres, clock gettime, clock settime
Purpose: Clock and timer functions.
cX Synopsis: #i ncl ude <tine. h>

int clock getres(clockid t clock_id, struct tinmespec *res);
int clock gettine(clockid_ t clock_ id, struct tinespec *tp);
int clock settine(clockid t clock id,

const struct tinespec *tp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Functionality relating to the Clock Selection option is moved to the Base.
The clock_getres(), clock_gettime(), and clock_settime() functions are moved
from the Timers option to the Base.
clock _nanosleep
Purpose: High resolution sleep with specifiable clock.
cX Synopsis: #i ncl ude <tine. h>

i nt clock _nanosl eep(clockid_t clock_id, int flags,
const struct tinmespec *rqgtp, struct tinespec *rntp);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The clock_nanosleep() function is moved from the Clock Selection option to the
Base.

clog, clogf , clogl

Purpose: Complex natural logarithm functions.

Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex cl og(doubl e conpl ex z);
float conplex clogf(float conplex z);
| ong doubl e conpl ex clogl (I ong doubl e conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
close
Purpose: Close a file descriptor.

Synopsis: #i ncl ude <uni std. h>
int close(int fildes);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Asynchronous Input and Output and Memory Mapped
Files options is moved to the Base.

118 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

closedir
Purpose:

Synopsis:

Derivation:

Issue 7:

Austin Group Interpretation 1003.1-2001 #139 is applied, clarifying that the
requirement for close() on a socket to block for up to the current linger interval is
not conditional on the O_NONBLOCK setting.

Close a directory stream.

#i ncl ude <dirent. h>

int closedir(DIR *dirp);
First released in Issue 2.

No functional changes are made in this issue.

closelog, openlog, setlogmask, syslog

Purpose:

XSl Synopsis:

Derivation:

Issue 7:

confstr
Purpose:

Synopsis:

Derivation:

Issue 7:

Control system log.
#i ncl ude <sysl og. h>

voi d cl osel og(voi d);
voi d openl og(const char *ident, int logopt, int facility);
int setlogmask(int maskpri);
void syslog(int priority, const char *nessage,
/* argunments */);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Get configurable variables.

#i ncl ude <uni std. h>

size_ t confstr(int nane, char *buf, size t len);
First released in Issue 4. Derived from the ISO POSIX-2 standard.

Austin Group Interpretation 1003.1-2001 #047 is applied, adding the _CS_V7_ENV
variable.

Austin Group Interpretations 1003.1-2001 #166 is applied to permit an additional
compiler flag to enable threads.

The V6 variables for the supported programming environments are marked
obsolescent.

The variables for the supported programming environments are updated to be V7.

The LEGACY variables and obsolescent values are removed.

The Single UNIX® Specification: Authorized Guide to Version 4 119

System Interfaces System Interfaces Migration

conj, conjf , conjl
Purpose: Complex conjugate functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex conj (doubl e conpl ex z);
float conplex conjf(float conplex z);
| ong doubl e conpl ex conjl (I ong double conpl ex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
connect
Purpose: Connect a socket.

Synopsis: #i ncl ude <sys/socket. h>

i nt connect (int socket, const struct sockaddr *address,
sockl en_t address_| en);

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: Austin Group Interpretation 1003.1-2001 #035 is applied, clarifying the description
of connected sockets.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #188 is applied, changing the method
used to reset a peer address for a datagram socket.

copysign, copysignf , copysignl

Purpose: Number manipulation function.

Synopsis: #i ncl ude <nat h. h>

doubl e copysi gn(doubl e x, double y);
float copysignf(float x, float y);
| ong doubl e copysignl (1 ong double x, |ong double y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

cos, cosf , cosl
Purpose: Cosine function.
Synopsis: #i ncl ude <nat h. h>

doubl e cos(doubl e x);
float cosf(float Xx);
| ong doubl e cosl (1 ong doubl e x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

120 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

cosh, coshf , coshl
Purpose: Hyperbolic cosine functions.
Synopsis: #i ncl ude <nat h. h>

doubl e cosh(doubl e x);
float coshf(float x);
| ong doubl e coshl (I ong doubl e x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

cpow, cpowf, cpowl
Purpose: Complex power functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex cpow doubl e conpl ex x, double conplex y);
float conplex cpowf (float conplex x, float conplex y);
| ong doubl e conpl ex cpow (I ong doubl e conpl ex x,

| ong doubl e conpl ex y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

cproj, cprojf , cprojl
Purpose: Complex projection functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex cproj (doubl e conplex z);
float conplex cprojf(float conplex z);
| ong doubl e conpl ex cprojl (long double conplex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

creal, crealf , creall
Purpose: Complex real functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e creal (doubl e conplex z);
float creal f(float conplex z);
| ong doubl e creall (Il ong double conplex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 121

System Interfaces System Interfaces Migration

creat
Purpose: Create a new file or rewrite an existing one.

OH Synopsis: #i ncl ude <sys/stat.h>
#i nclude <fcntl. h>

int creat(const char *path, node_t node);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

crypt
Purpose: String encoding function (CRYPT).
XSl Synopsis: #i ncl ude <uni std. h>

char *crypt(const char *key, const char *salt);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-178 is applied, clarifying the required contents of the salt
argument.

csin, csinf , csinl

Purpose: Complex sine functions.

Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex csin(doubl e conpl ex z);
float conplex csinf(float conplex z);
| ong doubl e conpl ex csinl(long double conplex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

csinh, csinhf |, csinhl
Purpose: Complex hyperbolic sine functions.
Synopsis: #i ncl ude <conpl ex. h>

doubl e conpl ex csi nh(doubl e conpl ex z);
float conplex csinhf(float conplex z);
| ong doubl e conpl ex csinhl (1 ong doubl e conplex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

122 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

csqrt, csqrtf , csqrtl

Purpose:

Synopsis:

Derivation:

Issue 7:

Complex square root functions.
#i ncl ude <conpl ex. h>

doubl e conpl ex csqrt (doubl e conplex z);
float conplex csqrtf(float conplex z);
| ong doubl e conpl ex csqrtl (Il ong doubl e conplex z);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

ctan, ctanf , ctanl

Purpose:

Synopsis:

Derivation:

Issue 7:

Complex tangent functions.
#i ncl ude <conpl ex. h>

doubl e conpl ex ctan(doubl e conpl ex z);
float conplex ctanf(float conplex z);
| ong doubl e conpl ex ctanl (I ong doubl e conpl ex z);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

ctanh, ctanhf , ctanhl

Purpose:

Synopsis:

Derivation:

Issue 7:

ctermid
Purpose:

cX Synopsis:

Derivation:

Issue 7:

Complex hyperbolic tangent functions.
#i ncl ude <conpl ex. h>

doubl e conpl ex ctanh(doubl e conpl ex z);
float conplex ctanhf(float conplex z);
| ong doubl e conpl ex ctanhl (1 ong doubl e conplex z);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

Generate a pathname for the controlling terminal.
#i ncl ude <stdi o. h>

char *ctermd(char *s);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying the thread-
safety requirements for the ctermid() function.

The Single UNIX® Specification: Authorized Guide to Version 4 123

System Interfaces System Interfaces Migration

ctime, ctime_r
Purpose: Convert a time value to a date and time string.
oB Synopsis: #i ncl ude <tine. h>

char *ctine(const tine_t *cl ock);
OB CX char *ctine_r(const tine_t *clock, char *buf);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-25 is applied, noting in APPLICATION USAGE that attempts to use
ctime() or ctime_r() for times before the Epoch or for times beyond the year 9999
produce undefined results.

Austin Group Interpretation 1003.1-2001 #053 is applied, marking these functions
obsolescent. Applications should use strftime() to generate strings from broken-
down times. Values for the broken-down time structure can be obtained by calling
gmtime () or localtime().

The ctime_r() function is moved from the Thread-Safe Functions option to the
Base.

dbm_clearerr , dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_fir stkey,
dbm_nextke y, dbm_open, dbm_store

Purpose: Database functions.
XSl Synopsis: #i ncl ude <ndbm h>

i nt dbm cl earerr (DBM *db) ;

voi d dbm cl ose(DBM *db) ;

i nt dbm del et e(DBM *db, dat um key) ;

i nt dbm error(DBM *db) ;

dat um dbm f et ch(DBM *db, datum key);

dat um dbm first key(DBM *db) ;

dat um dbm next key(DBM *db) ;

DBM *dbm open(const char *file, int open_fl ags,
node t fil e _node);

i nt dbm store(DBM *db, datum key, datum content,
i nt store_node);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #042 is applied so that the
DESCRIPTION permits newer implementations of the Berkeley DB interface.

difftime

Purpose: Compute the difference between two calendar time values.

Synopsis: #i ncl ude <tine. h>
double difftinme(tinme_t tinel, tinme_t tinme0);

Derivation: First released in Issue 4. Derived from the ISO C standard.

124 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7:

dirfd
Purpose:

Synopsis:

Derivation:

Issue 7:

dirname
Purpose:

XSl Synopsis:

Derivation:

Issue 7:
div
Purpose:

Synopsis:

Derivation:

No functional changes are made in this issue.

Extract the file descriptor used by a DIR stream.
#i ncl ude <dirent. h>
int dirfd(DIR *dirp);

The dirfd() function returns a file descriptor referring to the same directory as the
dirp argument. This file descriptor is closed by a call to closedir().

The dirfd() function is intended to be a mechanism by which an application may
obtain a file descriptor to use for the fchdir() function.

This interface was introduced because the Base Definitions volume of
POSIX.1-2008 does not make public the DIR data structure. Applications tend to
use the fchdir() function on the file descriptor returned by this interface, and this
has proven useful for security reasons; in particular, it is a better technique than
others where directory names might change.

The description uses the term “a file descriptor” rather than “the file descriptor”.
The implication intended is that an implementation that does not use an fd for
diropen() could still open() the directory to implement the dirfd() function. Such a
descriptor must be closed later during a call to closedir().

An implementation that does not support file descriptors referring to directories
may fail with [ENOTSUP].

If it is necessary to allocate an fd to be returned by dirfd(), it should be done at the
time of a call to opendir().

First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

First released in Issue 7.

Report the parent directory name of a file pathname.
#i ncl ude <l i bgen. h>

char *di rnane(char *path);

First released in Issue 4, Version 2.
The EXAMPLES section is revised.

Compute the quotient and remainder of an integer division.
#i ncl ude <stdlib. h>
div_t div(int numer, int denom;

First released in Issue 4. Derived from the ISO C standard.

The Single UNIX® Specification: Authorized Guide to Version 4 125

System Interfaces

XSl

126

Issue 7:

diclose
Purpose:

Synopsis:

Derivation:

Issue 7:

dlerror
Purpose:

Synopsis:

Derivation:

Issue 7:

dlopen
Purpose:

Synopsis:

Derivation:

Issue 7:

disym
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

No functional changes are made in this issue.

Close a dlopen() object.
#i ncl ude <dl fcn. h>
int dlclose(void *handl e);
First released in Issue 5.

The dlopen() function is moved from the XSI option to Base.

Get diagnostic information.
#i ncl ude <dl fcn. h>
char *dlerror(void);
First released in Issue 5.

The dlerror() function is moved from the XSI option to the Base.

Gain access to an executable object file.

#i ncl ude <dl fcn. h>

voi d *dl open(const char *file, int node);

First released in Issue 5.

The dlopen() function is moved from the XSI option to the Base.
The EXAMPLES section is updated to refer to disym().

Obtain the address of a symbol from a dlopen() object.

#i ncl ude <dl fcn. h>

void *dl sym(void *restrict handle, const char *restrict nane);
First released in Issue 5.

The disym() function is moved from the XSI option to the Base.

drand48, erand48, jrand48, Ilcong48, Irand48, mrand48, nrand48, seed48, srand48

Purpose:

Synopsis:

Generate uniformly distributed pseudo-random numbers.
#i ncl ude <stdlib. h>

doubl e drand48(void);

doubl e erand48(unsi gned short xsubi[3]);
| ong jrand48(unsi gned short xsubi[3]);
voi d | cong48(unsi gned short parani7]);

| ong | rand48(void);

| ong nrand48(void);

| ong nrand48(unsi gned short xsubi[3]);

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation:

Issue 7:

dup, dup2
Purpose:

Synopsis:

Derivation:

Issue 7:

duplocale
Purpose:

cX Synopsis:

unsi gned short *seed48(unsi gned short seedl6v[3]);
voi d srand48(l ong seedval);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Duplicate an open file descriptor.
#i ncl ude <uni std. h>

int dup(int fildes);
int dup2(int fildes, int fildes2);

First released in Issue 1. Derived from Issue 1 of the SVID.

SD5-XSH-ERN-187 is applied, clarifying several aspects of the behavior of dup2().

Duplicate a locale object.
#i ncl ude <l ocal e. h>

| ocal e_t dupl ocal e(l ocal e_t |ocobj);

The duplocale() function creates duplicate copy of the locale object referenced by
the locobj argument.

The use of the duplocale() function is recommended for situations where a locale
object is being used in multiple places, and it is possible that the lifetime of the
locale object might end before all uses are finished. Another reason to duplicate a
locale object is if a slightly modified form is needed. This can be achieved by a call
to newlocale () following the duplocale () call.

As with the newlocale() function, handles for locale objects created by the
duplocale() function should be released by a corresponding call to freelocale ().

The following example shows a code fragment to create a slightly altered version of
an existing locale object. The function takes a locale object and a locale name and
it replaces the LC_TIME category data in the locale object with that from the
named locale.

#i ncl ude <l ocal e. h>

| ocal e_t
with _changed Ic_ tine (locale_ t obj, const char *nane)

{

|l ocale t retval = duplocale (obj);
if (retval !'= (locale_t) 0)
{
| ocal e_t changed = new ocal e (LC Tl ME_MASK, nane,
retval);
if (changed == (locale_t) 0)
/* An error occurred. Free all allocated resources. */

The Single UNIX® Specification: Authorized Guide to Version 4 127

System Interfaces System Interfaces Migration

freelocale (retval);
retval = changed,;

}

return retval; }

}

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

Issue 7: First released in Issue 7.

encrypt
Purpose: Encoding function (CRYPT).
XSl Synopsis: #i ncl ude <uni std. h>

voi d encrypt (char bl ock[64], int edflag);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

endgrent, getgrent, setgrent
Purpose: Group database entry functions.
XSl Synopsis: #i ncl ude <grp. h>

voi d endgrent (voi d) ;
struct group *getgrent(void);
voi d setgrent (void);

Derivation: First released in Issue 4, Version 2.
Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

endhostent, gethostent, sethostent
Purpose: Network host database functions.
Synopsis: #i ncl ude <net db. h>

voi d endhost ent (voi d);
struct hostent *gethostent(void);
voi d sethostent (int stayopen);

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: No functional changes are made in this issue.

128 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

endnetent, getnetb yaddr, getnetb yname, getnetent, setnetent
Purpose: Network database functions.
Synopsis: #i ncl ude <net db. h>

voi d endnetent (void);

struct netent *getnetbyaddr(uint32 t net, int type);
struct netent *getnetbynane(const char *nane);
struct netent *getnetent(void);

voi d setnetent(int stayopen);

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: No functional changes are made in this issue.

endprotoent, getprotob yname, getprotobynumber , getprotoent, setprotoent
Purpose: Network protocol database functions.
Synopsis: #i ncl ude <net db. h>

voi d endpr ot oent (void);

struct protoent *getprotobynane(const char *nane);
struct protoent *getprotobynunber(int proto);
struct protoent *getprotoent(void);

voi d setprotoent(int stayopen);

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: No functional changes are made in this issue.

endpwent, getpwent, setpwent
Purpose: User database functions.
XSl Synopsis: #i ncl ude <pwd. h>

voi d endpwent (voi d);
struct passwd *get pwent (void);
voi d set pwent (voi d);

Derivation: First released in Issue 4, Version 2.
Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.
The EXAMPLES section is revised.

endservent, getservbyname, getservb yport, getservent, setservent
Purpose: Network services database functions.
Synopsis: #i ncl ude <netdb. h>

voi d endservent (voi d);
struct servent *getservbynane(const char *nane,
const char *proto);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservent(void);
voi d setservent (i nt stayopen);

The Single UNIX® Specification: Authorized Guide to Version 4

129

System Interfaces System Interfaces Migration

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.
Issue 7: SD5-XBD-ERN-14 is applied, clarifying the way in which port numbers are
converted to and from network byte order.
endutxent, getutxent, getutxid, g etutxline, pututxline, setutxent
Purpose: User accounting database functions.
XSl Synopsis: #i ncl ude <ut npx. h>

voi d endut xent (voi d);

struct utnpx *get utxent (void);

struct utnpx *getutxid(const struct utnpx *id);
struct utnmpx *getutxline(const struct utnpx *line);
struct utnmpx *pututxline(const struct utnpx *utnpx);
voi d set ut xent (void);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
erf, erff, erfl
Purpose: Error functions.

Synopsis: #i ncl ude <nat h. h>

doubl e erf (double x);
float erff(float x);
| ong doubl e erfl (long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

erfc, erfcf , erfcl
Purpose: Complementary error functions.
Synopsis: #i ncl ude <nat h. h>

doubl e erfc(double x);
float erfcf(float x);
| ong doubl e erfcl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
errno
Purpose: Error return value.

Synopsis: #i ncl ude <errno. h>
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

130 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

environ, e xecl, execle, execlp, execv, execve, execvp, fexecve

Purpose:

Synopsis:

Derivation:

Issue 7:

Execute a file.
#i ncl ude <uni std. h>

extern char **environ;
i nt execl (const char *path, const char *argoO,
/*, (char *)0 */);

i nt execle(const char *path, const char *arg0O, ... /*,
(char *)0, char *const envp[]*/);
i nt execlp(const char *file, const char *arg0O, ... /*,

(char *)0 */);
i nt execv(const char *path, char *const argv[]);
i nt execve(const char *path, char *const argv[],
char *const envp[]);
i nt execvp(const char *file, char *const argv[]);
int fexecve(int fd, char *const argv[], char *const envp[]);

The fexecve() function is equivalent to the execve() function except that the file to
be executed is determined by the file descriptor fd instead of a pathname. The file
offset of fd is ignored.

The purpose of the fexecve () function is to enable executing a file which has been
verified to be the intended file. It is possible to actively check the file by reading
from the file descriptor and be sure that the file is not exchanged for another
between the reading and the execution. Alternatively, an function like openat() can
be used to open a file which has been found by reading the content of a directory
using readdir().

Since execute permission is checked by fexecve(), the file descriptor fd need not
have been opened with the O _EXEC flag. However, if the file to be executed
denies read and write permission for the process preparing to do the exec, the
only way to provide the fd to fexecve() will be to use the O _EXEC flag when
opening fd. In this case, the application will not be able to perform a checksum
test since it will not be able to read the contents of the file.

Note that when a file descriptor is opened with O_RDONLY, O_RDWR, or
O_WRONLY mode, the file descriptor can be used to read, read and write, or write
the file, respectively, even if the mode of the file changes after the file was opened.
Using the O_EXEC open mode is different; fexecve () will ignore the mode that was
used when the file descriptor was opened and the exec will fail if the mode of the
file associated with fd does not grant execute permission to the calling process at
the time fexecve() is called.

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #047 is applied, adding a warning for
execle(), execve() and fexecve() to the APPLICATION USAGE that the new
process might be invoked in a nonconforming environment if the envp array does
not contain implementation-defined variables required by the implementation to
provide a conforming environment. See the _CS_V7_ENV entry in <unistd.h> ,
and confstr(), for details.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The fexecve() function is added from The Open Group Technical Standard, 2006,

The Single UNIX® Specification: Authorized Guide to Version 4 131

System Interfaces

132

exit
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Extended API Set Part 2.

Functionality relating to the Asynchronous Input and Output, Memory Mapped
Files, Threads, and Timers options is moved to the Base.

Changes are made related to support for finegrained timestamps.

Terminate a process.

#i ncl ude <stdlib. h>

void exit(int status);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #085 is applied, deleting the reference to
removal of files created by tmpfile().

exp, expf, expl

Purpose:

Synopsis:

Derivation:

Issue 7:

exp2, exp2f,
Purpose:

Synopsis:

Derivation:

Issue 7:

Exponential function.
#i ncl ude <mat h. h>

doubl e exp(doubl e x);
float expf(float x);
| ong doubl e expl (1 ong doubl e x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

exp2l
Exponential base 2 functions.
#i ncl ude <mat h. h>

doubl e exp2(doubl e x);
float exp2f(float Xx);
| ong doubl e exp2l (I ong doubl e x);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

expml, expmif , expmil

Purpose:

Synopsis:

Derivation:

Issue 7:

Compute exponential functions.
#i ncl ude <mat h. h>

doubl e expmi(doubl e Xx);
float expmilf(float Xx);
| ong doubl e expnil (1 ong doubl e Xx);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

fabs, fabsf , fabsl

Purpose:

Synopsis:

Derivation:

Issue 7:

fattach

Purpose:

OB XSR Synopsis:

Derivation:

Issue 7:

fchdir
Purpose:

Synopsis:

Derivation:

Issue 7:

fchmod
Purpose:

Synopsis:

Derivation:

Issue 7:

Absolute value function.
#i ncl ude <mat h. h>

doubl e fabs(double x);
float fabsf(float x);
| ong doubl e fabsl (I ong double x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Attach a STREAMS-based file descriptor to a file in the file system name space
(STREAMS).

#i ncl ude <stropts. h>

int fattach(int fildes, const char *path);

First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The fattach () function is marked obsolescent.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

Change working directory.

#i ncl ude <uni std. h>

int fchdir(int fildes);
First released in Issue 4, Version 2.

The fchdir() function is moved from the XSI option to the Base.

Change mode of a file.

#i ncl ude <sys/stat. h>

int fchnod(int fildes, node_t node);
First released in Issue 4, Version 2.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 133

System Interfaces System Interfaces Migration

fchown
Purpose: Change owner and group of a file.
Synopsis: #i ncl ude <uni std. h>
int fchowm(int fildes, uid_t owner, gid_t group);

Derivation: First released in Issue 4, Version 2.

Issue 7: Functionality relating to XSI STREAMS is marked obsolescent.
fclose
Purpose: Close a stream.

Synopsis: #i ncl ude <stdi o. h>
int fclose(FILE *stream;
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #002 is applied, clarifying the interaction
of file descriptors and streams.

The [ENOSPC] error condition is updated and the [ENOMEM] error is added from
The Open Group Technical Standard, 2006, Extended API Set Part 1.

Changes are made related to support for finegrained timestamps.

fentl
Purpose: File control.
Synopsis: #i nclude <fcntl. h>
int fentl(int fildes, int cmd, ...);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #150 is applied, clarifying the file status
flags returned when cmd is F_GETFL.

Austin Group Interpretation 1003.1-2001 #171 is applied, adding the
F_DUPFD_CLOEXEC flag.

The optional <unistd.h> header is removed from this function, since <fcntl.h> now
defines SEEK_SET, SEEK_CUR, and SEEK_END as part of the Base.
fdatasync
Purpose: Synchronize the data of a file (REALTIME).
slo Synopsis: #i ncl ude <uni std. h>

int fdatasync(int fildes);
Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime

Extension.

Issue 7: No functional changes are made in this issue.

134 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

fdetach
Purpose: Detach a name from a STREAMS-based file descriptor (3SSTREAMSTP).
oB xsrR Synopsis: #i ncl ude <stropts. h>

i nt fdetach(const char *path);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The fdetach() function is marked obsolescent.
The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

fdim, fdimf , fdiml

Purpose: Compute positive difference between two floating-point numbers.

Synopsis: #i ncl ude <nat h. h>

doubl e fdi mdoubl e x, double y);
float fdinf(float x, float y);
| ong double fdim (Il ong double x, |ong double y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

fdopen
Purpose: Associate a stream with a file descriptor.
cX Synopsis: #i ncl ude <stdi o. h>

FI LE *fdopen(int fildes, const char *node);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-149 is applied, adding the {STREAM_MAX} [EMFILE] error
condition.

Changes are made related to support for finegrained timestamps.

fdopendir , opendir
Purpose: Open directory associated with file descriptor.
Synopsis: #i ncl ude <dirent. h>

DIR *fdopendir(int fd);
DI R *opendir(const char *dirnane);

The fdopendir() function is equivalent to the opendir() function except that the
directory is specified by a file descriptor rather than by a name. The file offset
associated with the file descriptor at the time of the call determines which entries
are returned.

The Single UNIX® Specification: Authorized Guide to Version 4 135

System Interfaces

136

System Interfaces Migration

Upon successful return from fdopendir(), the file descriptor is under the control of
the system, and if any attempt is made to close the file descriptor, or to modify the
state of the associated description, other than by means of closedir(), readdir(),
readdir_r(), or rewinddir(), the behavior is undefined. Upon calling closedir() the
file descriptor is closed.

The purpose of the fdopendir() function is to enable opening files in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to opendir(), resulting
in unspecified behavior.

The following example program searches through a given directory looking for files
whose name does not begin with a dot and whose size is larger than 1 MiB.

#i ncl ude <stdio. h>
#i ncl ude <dirent. h>
#i ncl ude <fcntl. h>
#i ncl ude <sys/stat. h>
#i ncl ude <stdint. h>
#i ncl ude <stdlib. h>
#i ncl ude <unistd. h>

i nt
mai n(int argc, char *argv[])
{
struct stat statbuf;
DI R *d;
struct dirent *dp;
int dfd, ffd;
if ((d = fdopendir((dfd = open("./tnp", O RDONLY))))
== NULL) {
fprintf(stderr, "Cannot open ./tnp directory\n");
exit(1);
}
while ((dp = readdir(d)) !'= NULL) {
if (dp->d_name[0] ==".")
conti nue;
/* there is a possible race condition here as the file
* could be renaned between the readdir and the open */
if ((ffd = openat(dfd, dp->d_nanme, O RDONLY)) == -1) {
perror (dp->d_nane);
conti nue;
}
if (fstat(ffd, &statbuf) == 0 && statbuf.st_size >
(1024*1024)) {
/* found it ... */
printf("%: %dK\n", dp->d_nane,
(intmax_t) (statbuf.st_size / 1024));
}
cl ose(ffd);
}
closedir(d); // note this inplicitly closes dfd
return O;
}

A Source Book from The Open Group (2010)

System Interfaces Migration

Derivation:

Issue 7:

First released in Issue 2.

System Interfaces

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations

to support pathnames longer than {PATH_MAX}.
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The fdopendir() function is added from The Open Group Technical Standard,

2006, Extended API Set Part 2.

An additional example is added.

feclearexcept

Purpose:

Synopsis:

Derivation:

Issue 7:

Clear floating-point exception.

#i ncl ude <fenv. h>

i nt fecl earexcept(int excepts);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

fegeteny, fesetenv

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set current floating-point environment.
#i ncl ude <fenv. h>

int fegetenv(fenv_t *envp);
int fesetenv(const fenv_t *envp);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

fegetexceptflag, fesetexceptflag

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set floating-point status flags.
#i ncl ude <fenv. h>

int fegetexceptflag(fexcept t *flagp, int excepts);
int fesetexceptflag(const fexcept t *flagp, int excepts);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

fegetround, fesetround

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set current rounding direction.
#i ncl ude <fenv. h>

i nt fegetround(void);
int fesetround(int round);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4

137

System Interfaces System Interfaces Migration

feholdexcept
Purpose: Save current floating-point environment.
Synopsis: #i ncl ude <fenv. h>
i nt fehol dexcept (fenv_t *envp);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

feof
Purpose: Test end-of-file indicator on a stream.
Synopsis: #i ncl ude <stdi o. h>

int feof (FILE *stream;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
feraiseexcept
Purpose: Raise floating-point exception.

Synopsis: #i ncl ude <fenv. h>
int feraiseexcept(int excepts);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

ferror
Purpose: Test error indicator on a stream.
Synopsis: #i ncl ude <stdi o. h>
int ferror(FILE *stream;
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

fetestexcept
Purpose: Test floating-point exception flags.
Synopsis: #i ncl ude <fenv. h>
int fetestexcept(int excepts);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

138 A Source Book from The Open Group (2010)

System Interfaces

feupdateenv
Purpose:

Synopsis:

Derivation:

Issue 7:

fflush
Purpose:

Synopsis:

Derivation:

Issue 7:

ffs
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

fgetc
Purpose:

Synopsis:

Derivation:

Issue 7:

Migration System Interfaces

Update floating-point environment.

#i ncl ude <fenv. h>

i nt feupdateenv(const fenv_t *envp);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

Flush a stream.

#i ncl ude <stdio. h>

int fflush(FILE *stream;

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #002 is applied, clarifying the interaction
of file descriptors and streams.

The [ENOSPC] error condition is updated and the [ENOMEM] error is added from
The Open Group Technical Standard, 2006, Extended API Set Part 1.

The EXAMPLES section is revised.

Changes are made related to support for finegrained timestamps.

Find first set bit.
#i ncl ude <strings. h>
int ffs(int i);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Get a byte from a stream.

#i ncl ude <stdi o. h>

int fgetc(FILE *strean);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #051 is applied, updating the list of
functions that mark the last data access timestamp for update.

The Single UNIX® Specification: Authorized Guide to Version 4 139

System Interfaces System Interfaces Migration

fgetpos
Purpose: Get current file position information.
Synopsis: #i ncl ude <stdi o. h>
int fgetpos(FILE *restrict stream fpos_ t *restrict pos);

Derivation: First released in Issue 4. Derived from the ISO C standard.

Issue 7: No functional changes are made in this issue.
fgets
Purpose: Get a string from a stream.

Synopsis: #i ncl ude <stdi o. h>
char *fgets(char *restrict s, int n, FILE *restrict strean);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #051 is applied, updating the list of
functions that mark the last data access timestamp for update.

fgetwc

Purpose: Get a wide-character code from a stream.

Synopsis: #i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

wint t fgetwc(FILE *strean;
Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN
VALUE section.

Changes are made related to support for finegrained timestamps.

fgetws
Purpose: Get a wide-character string from a stream.

Synopsis: #i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

wchar _t *fgetws(wchar t *restrict ws, int n,
FILE *restrict stream;

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN
VALUE section.

Changes are made related to support for finegrained timestamps.

140 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

CX

CX

fileno
Purpose:

Synopsis:

Derivation:

Issue 7:

Map a stream pointer to a file descriptor.
#i ncl ude <stdi o. h>
int fileno(FILE *strean;

First released in Issue 1. Derived from Issue 1 of the SVID.
SD5-XBD-ERN-99 is applied, changing the definition of the [EBADF] error.

floc kfile, ftrylockfile, funlockfile

Purpose:

Synopsis:

Derivation:

Issue 7:

Stdio locking functions.
#i ncl ude <stdi o. h>

void flockfil e(FILE *file);
int ftrylockfile(FILE *file);
voi d funl ockfil e(FILE *file);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The flockfile(), ftrylockfile(), and funlockfile() functions are moved from the
Thread-Safe Functions option to the Base.

floor, floorf, floorl

Purpose:

Synopsis:

Derivation:

Issue 7:

Floor function.
#i ncl ude <mat h. h>

doubl e fl oor(double Xx);
float floorf(float Xx);
| ong doubl e floorl (long double Xx);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

fma, fmaf , fmal

Purpose:

Synopsis:

Derivation:

Issue 7:

Floating-point multiply-add.
#i ncl ude <mat h. h>

doubl e frma(doubl e x, double y, double z);
float frmaf(float x, float y, float z);
| ong doubl e fmal (1 ong double x, |ong double y, |ong double z);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #57 (SD5-XSH-ERN-69) is
applied, adding a “may fail” range error for non-MX systems.

The Single UNIX® Specification: Authorized Guide to Version 4 141

System Interfaces System Interfaces Migration

fmax, fmaxf , fmaxl
Purpose: Determine maximum numeric value of two floating-point numbers.
Synopsis: #i ncl ude <nat h. h>

doubl e frmax(doubl e x, double y);
float frmaxf(float x, float y);
| ong doubl e fmaxl (I ong double x, |ong double y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: Austin Group Interpretation 1003.1-2001 #007 is applied, adding MX shading
where the text refers to NaNs.
fmemopen
Purpose: Open a memory buffer stream.
cX Synopsis: #i ncl ude <stdi o. h>

FI LE *f nenopen(void *restrict buf, size_ t size,
const char *restrict node);

The fmemopen() function associates the buffer given by the buf and size
arguments with a stream.

This interface has been introduced to eliminate many of the errors encountered in
the construction of strings, notably overflowing of strings. This interface prevents
overflow.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

fmin, fminf , fminl
Purpose: Determine minimum numeric value of two floating-point numbers.
Synopsis: #i ncl ude <nat h. h>

doubl e fm n(double x, double y);
float fmnf(float x, float y);
| ong double fmnl(long double x, |ong double y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: Austin Group Interpretation 1003.1-2001 #008 is applied, adding MX shading
where the text refers to NaNs.

fmod, fmodf , fmodl

Purpose: Floating-point remainder value function.

Synopsis: #i ncl ude <nat h. h>

doubl e fnod(double x, double y);
float fnodf(float x, float y);
| ong doubl e fnodl (I ong double x, |ong double y);

142 A Source Book from The Open Group (2010)

System Interfaces Migration

Derivation:

Issue 7:

fmtmsg

Purpose:

XSl Synopsis:

Derivation:

Issue 7:

fnmatch
Purpose:

Synopsis:

Derivation:

Issue 7:

fopen
Purpose:

Synopsis:

Derivation:

Issue 7:

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

System Interfaces

Display a message in the specified format on standard error and/or a system

console.
#i ncl ude <fntnsg. h>

int fntnsg(long classification, const char *|abel,
int severity, const char *text,
const char *action, const char *tag);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Match a filename or a pathname.
#i ncl ude <fnmatch. h>

int fnmatch(const char *pattern, const char *string,
int flags);

First released in Issue 4. Derived from the ISO POSIX-2 standard.

No functional changes are made in this issue.

Open a stream.
#i ncl ude <stdio. h>

FILE *fopen(const char *restrict filenane,
const char *restrict node);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #025 is applied, clarifying the file creation

mode.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations

to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #159 is applied, clarifying requirements

for the flags set on the open file description.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-149 is applied, changing the {STREAM_MAX} [EMFILE] error

condition from a “may fail” to a “shall fail”.

Changes are made related to support for finegrained timestamps.

The Single UNIX® Specification: Authorized Guide to Version 4

143

System Interfaces

fork
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Create a new process.

#i ncl ude <uni std. h>

pidt fork(void);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #080 is applied, clarifying the status of
asynchronous input and asynchronous output operations and asynchronous
control lists in the DESCRIPTION.

Functionality relating to the Asynchronous Input and Output, Memory Mapped
Files, Timers, and Threads options is moved to the Base.

Functionality relating to message catalog descriptors is moved from the XSl option
to the Base.

fpathconf , pathconf

Purpose:

Synopsis:

Derivation:

Issue 7:

fpclassify
Purpose:

Synopsis:

Derivation:

Issue 7:

144

Get configurable pathname variables.
#i ncl ude <unistd. h>

I ong fpathconf(int fildes, int nane);
| ong pat hconf (const char *path, int nane);

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #160 is applied, clarifying the
requirements related to variables that have no limit.

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

Classify real floating type.

#i ncl ude <mat h. h>

int fpclassify(real-floating x);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

dprintf , fprintf , printf, snprintf , sprintf

Purpose:
Synopsis:

CX

Derivation:

Issue 7:

fputc
Purpose:

Synopsis:

Derivation:

Issue 7:

fputs
Purpose:

Synopsis:

Derivation:

Issue 7:

Print formatted output.

#i ncl ude <stdi o. h>

int dprintf(int fildes, const char *restrict format, ...);
int fprintf(FILE *restrict stream
const char *restrict format, ...);
int printf(const char *restrict format, ...);
int snprintf(char *restrict s, size t n,
const char *restrict format, ...);
int sprintf(char *restrict s,
const char *restrict format, ...);

The dprintf() function is equivalent to the fprintf() function, except that dprintf()
writes output to the file associated with the file descriptor specified by the fildes
argument rather than placing output on a stream.

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #161 is applied, updating the
DESCRIPTION of the 0 flag.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ)]
error condition from a “may fail” to a “shall fail”.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #68 (SD5-XSH-ERN-70) is
applied, revising the description of g and G

The dprintf() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Functionality relating to the %m$ form of conversion specification and the
<apostrophe> flag is moved from the XSI option to the Base.

Changes are made related to support for finegrained timestamps.

Put a byte on a stream.

#i ncl ude <stdi o. h>

int fputc(int ¢, FILE *stream;

First released in Issue 1. Derived from Issue 1 of the SVID.

Changes are made related to support for finegrained timestamps.

Put a string on a stream.

#i ncl ude <stdio. h>

int fputs(const char *restrict s, FILE *restrict stream;
First released in Issue 1. Derived from Issue 1 of the SVID.

Changes are made related to support for finegrained timestamps.

The Single UNIX® Specification: Authorized Guide to Version 4 145

System Interfaces

146

fputwc
Purpose:

Synopsis:

Derivation:

Issue 7:

fputws
Purpose:

Synopsis:

Derivation:

Issue 7:

fread
Purpose:

Synopsis:

Derivation:

Issue 7:

free
Purpose:

Synopsis:

Derivation:

Issue 7:

freeaddrinfo,
Purpose:

Synopsis:

System Interfaces Migration

Put a wide-character code on a stream.

#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

wint _t fputwec(wchar _t we, FILE *strean);
First released in Issue 4. Derived from the MSE working draft.

Changes are made related to support for finegrained timestamps.

Put a wide-character string on a stream.

#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

int fputws(const wchar _t *restrict ws, FILE *restrict stream;
First released in Issue 4. Derived from the MSE working draft.

Changes are made related to support for finegrained timestamps.

Binary input.
#i ncl ude <stdio. h>

size t fread(void *restrict ptr, size t size, size_t nitens,
FILE *restrict stream;

First released in Issue 1. Derived from Issue 1 of the SVID.

Changes are made related to support for finegrained timestamps.

Free allocated memory.

#i ncl ude <stdlib. h>

void free(void *ptr);

First released in Issue 1. Derived from Issue 1 of the SVID.

The DESCRIPTION is updated to clarify that if the pointer returned is not by a
function that allocates memory as if by malloc(), then the behavior is undefined.
getaddrinfo

Get address information.

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

void freeaddrinfo(struct addrinfo *ai);

i nt getaddrinfo(const char *restrict nodenane,
const char *restrict servnane,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: Austin Group Interpretation 1003.1-2001 #013 is applied, removing the
[EAI_OVERFLOW] error code.

Austin Group Interpretation 1003.1-2001 #146 is applied, eliminating the use of
“may” in relation to the hints argument.

An example is added.

freelocale
Purpose: Free resources allocated for a locale object.
cX Synopsis: #i ncl ude <l ocal e. h>

voi d freel ocal e(l ocale_t |ocobj);

The freelocale() function causes the resources allocated for a locale object
returned by a call to the newlocale () or duplocale () functions to be released.

The following example shows a code fragment to free a locale object created by
newlocale():

#i ncl ude <l ocal e. h>

/* Every locale object allocated with new ocal e() should be
* freed using freelocal e():
*/

| ocale t |oc;
/* Get the locale. */
loc = newl ocale (LC_CTYPE_MASK | LC TI ME_MASK, "locnanme", NULL);

/* ... Use the locale object ... */

/* Free the local e object resources. */
freelocale (loc);

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

Issue 7: First released in Issue 7.
freopen
Purpose: Open a stream.

Synopsis: #i ncl ude <stdi o. h>

FILE *freopen(const char *restrict filenang,
const char *restrict node, FILE *restrict strean;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #043 is applied, clarifying that the
freopen() function allocates a file descriptor as per open().

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations

The Single UNIX® Specification: Authorized Guide to Version 4 147

System Interfaces System Interfaces Migration

to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #159 is applied, clarifying requirements
for the flags set on the open file description.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.
SD5-XSH-ERN-150 is applied, clarifying the DESCRIPTION.
SD5-XSH-ERN-219 is applied, adding advice to the APPLICATION USAGE
relating to the use of a NULL filename argument.

frexp, frexpf , frexpl

Purpose: Extract mantissa and exponent from a double precision number.

Synopsis: #i ncl ude <nat h. h>

doubl e frexp(double num int *exp);
float frexpf(float num int *exp);
| ong doubl e frexpl (I ong double num int *exp);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

fscanf, scanf, sscanf
Purpose: Convert formatted input.
Synopsis: #i ncl ude <stdi o. h>

int fscanf(FILE *restrict stream

const char *restrict format, ...);
i nt scanf(const char *restrict format, ...);
i nt sscanf(const char *restrict s,

const char *restrict format, ...);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ)]
error condition from a “may fail” to a “shall fail”.

SD5-XSH-ERN-9 is applied, correcting fscanf() to scanf() in the DESCRIPTION.
SD5-XSH-ERN-132 is applied, adding the assignment-allocation character ' m .

Functionality relating to the %m$ form of conversion specification is moved from the
XSl option to the Base.

Changes are made related to support for finegrained timestamps.

fseek, fseeko
Purpose: Reposition a file-position indicator in a stream.
Synopsis: #i ncl ude <stdio. h>

int fseek(FILE *stream |ong offset, int whence);
cX int fseeko(FILE *stream off _t offset, int whence);

148 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation:

Issue 7:

fsetpos
Purpose:

Synopsis:

Derivation:

Issue 7:

fstat
Purpose:

Synopsis:

Derivation:

Issue 7:

First released in Issue 1. Derived from Issue 1 of the SVID.

Changes are made related to support for finegrained timestamps.

Set current file position.

#i ncl ude <stdio. h>

int fsetpos(FILE *stream const fpos_t *pos);

First released in Issue 4. Derived from the ISO C standard.
SD5-XSH-ERN-220 is applied, changing the first [EPIPE] to [ESPIPE].

Get file status.

#i ncl ude <sys/stat. h>

int fstat(int fildes, struct stat *buf);
First released in Issue 1. Derived from Issue 1 of the SVID.

XSH-SD5-ERN-161 is applied, updating the DESCRIPTION to clarify to which file
types st_nlink applies.

Changes are made related to support for finegrained timestamps.

fstatat, Istat, stat

Purpose:

Synopsis:

Get file status.
#i ncl ude <sys/stat. h>

int fstatat(int fd, const char *restrict path,
struct stat *restrict buf, int flag);

int |stat(const char *restrict path,
struct stat *restrict buf);

int stat(const char *restrict path,
struct stat *restrict buf);

The fstatat() function is equivalent to the stat() and Istat() functions, except in the
case where path specifies a relative path. In this case the status is retrieved from a
file relative to the directory associated with the file descriptor fd instead of the
current working directory. If the file descriptor was opened without O_SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The AT_SYMLINK_NOFOLLOW flag controls whether fchownat() behaves like
stat() or Istat(): if AT_SYMLINK_NOFOLLOW is set and path nhames a symbolic
link, the status of the symbolic link is returned.

The purpose of the fstatat() function is to obtain the status of files in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to stat() or Istat(),
resulting in unspecified behavior. By opening a file descriptor for the target
directory and using the fstatat() function it can be guaranteed that the file for which
status is returned is located relative to the desired directory.

The Single UNIX® Specification: Authorized Guide to Version 4 149

System Interfaces

Derivation:

Issue 7:

System Interfaces Migration

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

XSH-SD5-ERN-161 is applied, updating the DESCRIPTION to clarify to which file
types st_nlink applies.

The fstatat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

The Istat() function is now required to return meaningful data for symbolic links in
all stat structure fields, except for the permission bits of st_mode.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

fstatvfs, statvfs

Purpose:

Synopsis:

Derivation:

Issue 7:

fsync
Purpose:

FSC Synopsis:

Derivation:

Issue 7:

150

Get file system information.
#i ncl ude <sys/statvfs. h>

int fstatvfs(int fildes, struct statvfs *buf);
int statvfs(const char *restrict path,
struct statvfs *restrict buf);

First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

SD5-XSH-ERN-68 is applied, correcting the EXAMPLES section.
The fstatvfs() and statvfs() functions are moved from the XSI option to the Base.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

Synchronize changes to a file.
#i ncl ude <uni std. h>

int fsync(int fildes);

First released in Issue 3.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

ftell, ftello
Purpose:

Synopsis:

CX

Derivation:

Issue 7:

ftok
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

ftruncate
Purpose:

Synopsis:

Derivation:

Issue 7:

Return a file offset in a stream.
#i ncl ude <stdi o. h>

long ftell (FILE *stream;
off t ftell o(FILE *strean);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Generate an IPC key.
#i ncl ude <sys/ipc. h>

key t ftok(const char *path, int id);

First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

Truncate a file to a specified length.

#i ncl ude <uni std. h>

int ftruncate(int fildes, off _t length);
First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #056 is applied, revising the ERRORS
section (although the [EINVAL] “may fail” error was subsequently removed during
review of the XSI option).

Functionality relating to the Memory Protection and Memory Mapped Files options
is moved to the Base.

The DESCRIPTION is updated so that a call to ftruncate () when the file is smaller
than the size requested will increase the size of the file. Previously, non-XSI-
conforming implementations were allowed to increase the size of the file or fail.

Changes are made related to support for finegrained timestamps.

The Single UNIX® Specification: Authorized Guide to Version 4 151

System Interfaces

OB XSl

XSl

152

ftw
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Traverse (walk) a file tree.
#i ncl ude <ftw h>

int ftw(const char *path, int (*fn)(const char *,
const struct stat *ptr, int flag), int ndirs);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The ftw() function is marked obsolescent. Applications should use the nftw()
function instead.

futimens, utimensat, utimes

Purpose:

Synopsis:

Set file access and modification times.
#i ncl ude <sys/stat. h>

int futimens(int fd, const struct tinespec tines[2]);
int utinensat(int fd, const char *path,
const struct timespec tinmes[2], int flag);

#i ncl ude <sys/tine. h>

int utines(const char *path, const struct tineval tines[2]);

The futimens() and utimensat() functions set the access and modification times of
a file to the values of the times argument. The futimens() function changes the
times of the file associated with the file descriptor fd. The utimensat() function
changes the times of the file pointed to by the path argument, relative to the
directory associated with the file descriptor fd.

The times argument is an array of two timespec structures. The first array member
represents the date and time of last access, and the second member represents
the date and time of last modification. The times in the timespec structure are
measured in seconds and nanoseconds since the Epoch. The file's relevant
timestamp is set to the greatest value supported by the file system that is not
greater than the specified time.

If the tv_nsec field of a timespec structure has the special value UTIME_NOW, the
file's relevant timestamp is set to the greatest value supported by the file system
that is not greater than the current time. If the tv_nsec field has the special value
UTIME_OMIT, the file’s relevant timestamp is not changed. In either case, the
tv_sec field is ignored.

If utimensat() is passed a relative path in the path argument, the file to be used is
relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O _SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The AT_SYMLINK_NOFOLLOW flag can be used to specify that if path names a
symbolic link, then the access and modification times of the symbolic link are

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation:

Issue 7:

fwide
Purpose:

Synopsis:

Derivation:

Issue 7:

changed.

The purpose of the utimensat() function is to set the access and modification time
of files in directories other than the current working directory without exposure to
race conditions. Any part of the path of a file could be changed in parallel to a call
to utimes(), resulting in unspecified behavior. By opening a file descriptor for the
target directory and using the utimensat() function it can be guaranteed that the
changed file is located relative to the desired directory.

First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The LEGACY marking is removed from utimes().

The utimensat() function (renamed from futimesat()) is added from The Open
Group Technical Standard, 2006, Extended API Set Part 2, and changed to allow
modifying a symbolic link by adding a flag argument.

The futimens() function is added.
Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

Set stream orientation.

#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

int fwide(FILE *stream int node);

First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

No functional changes are made in this issue.

fwprintf , swprintf , wprintf

Purpose:

Synopsis:

Derivation:

Issue 7:

Print formatted wide-character output.

#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

int fwprintf(FILE *restrict stream

const wchar_t *restrict format, ...);
int swprintf(wchar _t *restrict ws, size_ t n,
const wchar_t *restrict format, ...);
int wprintf(const wchar _t *restrict format, ...);
First released in Issue 5. Included for alignment with

ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Austin Group Interpretation 1003.1-2001 #161 is applied, updating the
DESCRIPTION of the 0 flag.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ)]

The Single UNIX® Specification: Authorized Guide to Version 4 153

System Interfaces System Interfaces Migration

error condition from a “may fail” to a “shall fail”.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #68 (SD5-XSH-ERN-70) is
applied, revising the description of g and G

Functionality relating to the "%m$" form of conversion specification and the
<apostrophe> flag is moved from the XSl option to the Base.

The [EOVERFLOW] error is added for swprintf().

Changes are made related to support for finegrained timestamps.

fwrite
Purpose: Binary output.
Synopsis: #i ncl ude <stdi o. h>

size t fwite(const void *restrict ptr, size_ t size,
size t nitems, FILE *restrict stream;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.

fwscanf , swscanf , wscanf
Purpose: Convert formatted wide-character input.

Synopsis: #i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

int fwscanf(FILE *restrict stream

const wchar_t *restrict format, ...);
i nt swscanf(const wchar _t *restrict ws,
const wchar_t *restrict format, ...);
i nt wscanf(const wchar _t *restrict format, ...);
Derivation: First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).
Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ)]

error condition from a “may fail” to a “shall fail”.
SD5-XSH-ERN-132 is applied, adding the assignment-allocation character ' m .

Functionality relating to the " %m$" form of conversion specification is moved from
the XSI option to the Base.

Changes are made related to support for finegrained timestamps.

gai_strerror
Purpose: Address and name information error description.
Synopsis: #i ncl ude <netdb. h>
const char *gai _strerror(int ecode);
Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: No functional changes are made in this issue.

154 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

getc
Purpose:

Synopsis:

Derivation:

Issue 7:

Get a byte from a stream.

#i ncl ude <stdio. h>

int getc(FILE *stream;

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked

Purpose:

cX Synopsis:

Derivation:

Issue 7:

getchar
Purpose:

Synopsis:

Derivation:

Issue 7:

getcwd
Purpose:

Synopsis:

Derivation:

Issue 7:

Stdio with explicit client locking.
#i ncl ude <stdi o. h>

int getc_unl ocked(FILE *strean;

i nt getchar _unl ocked(void);

int putc_unlocked(int ¢, FILE *strean);
i nt putchar_unl ocked(int c);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The getc_unlocked(), getchar_unlocked(), putc_unlocked(), and
putchar_unlocked() functions are moved from the Thread-Safe Functions option to
the Base.

Get a byte from a stdin stream.

#i ncl ude <stdio. h>

i nt getchar(void);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Get the pathname of the current working directory.

#i ncl ude <uni std. h>

char *getcwd(char *buf, size t size);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #140 is applied, changing the text for
consistency with the pwd utility, adding text to address the case where the current
directory is deeper in the file hierarchy than {PATH_MAX} bytes, and adding the
requirements relating to pathnames beginning with two <slash> characters.

The Single UNIX® Specification: Authorized Guide to Version 4 155

System Interfaces System Interfaces Migration

getdate
Purpose: Convert user format date and time.
XSl Synopsis: #i ncl ude <tine. h>

struct tm *getdate(const char *string);

Derivation: First released in Issue 4, Version 2.

Issue 7: The description of the getdate_err value is expanded.

getdelim, getline
Purpose: Read a delimited record from stream.
cX Synopsis: #i ncl ude <stdi o. h>

ssize_t getdelin(char **restrict lineptr, size_t *restrict n,
int delimter, FILE *restrict stream;

ssize_t getline(char **restrict lineptr, size t *restrict n,
FILE *restrict stream;

The getdelim () function reads from stream until it encounters a character matching
the delimiter character.

The getline() function is equivalent to the getdelim() function with the delimiter
character equal to the <newline> character.

These functions are widely used to solve the problem that the fgets() function has
with long lines. The functions automatically enlarge the target buffers if needed.
These are especially useful since they reduce code needed for applications.

Application writers should note that setting *lineptr to a null pointer and *n to zero
are allowed and a recommended way to start parsing a file.

The ferror() or feof() functions should be used to distinguish between an error
condition and an end-of-file condition.

Although a NUL terminator is always supplied after the line, note that
strlen(*lineptr) will be smaller than the return value if the line contains embedded
NUL characters.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.
getegid
Purpose: Get the effective group ID.

Synopsis: #i ncl ude <uni std. h>
gid t getegid(void);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

156 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

getenv
Purpose:

Synopsis:

Derivation:

Issue 7:

geteuid
Purpose:

Synopsis:

Derivation:

Issue 7:
getgid
Purpose:

Synopsis:

Derivation:

Issue 7:

Get value of an environment variable.

#i nclude <stdlib. h>

char *getenv(const char *nane);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #062 is applied, clarifying that a call to
putenv() may also cause the string to be overwritten.

Austin Group Interpretation 1003.1-2001 #148 is applied, adding the FUTURE
DIRECTIONS.

Get the effective user ID.

#i ncl ude <uni std. h>

uid t geteuid(void);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Get the real group ID.

#i ncl ude <uni std. h>

gid t getgid(void);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

getgrgid, getgrgid_r

Purpose:

Synopsis:

Derivation:

Issue 7:

Get group database entry for a group ID.
#i ncl ude <grp. h>

struct group *getgrgid(gid t gid);
int getgrgid r(gid t gid, struct group *grp, char *buffer,
size t bufsize, struct group **result);

First released in Issue 1. Derived from System V Release 2.0.
SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied, changing sysconf(_SC_GETGR_R_SIZE_MAX)
from the maximum size to an initial value suggested for the size, and adding an
example of its use to the EXAMPLES section.

The getgrgid_r() function is moved from the Thread-Safe Functions option to the
Base.

A minor addition is made to the EXAMPLES section, reminding the application
developer to free memory allocated as if by malloc().

The Single UNIX® Specification: Authorized Guide to Version 4 157

System Interfaces System Interfaces Migration

XSl

158

getgrnam, getgrnam_r
Purpose: Search group database for a name.
Synopsis: #i ncl ude <grp. h>

struct group *getgrnam(const char *nane);

int getgrnamr(const char *name, struct group *grp,
char *buffer, size_t bufsize,
struct group **result);

Derivation: First released in Issue 1. Derived from System V Release 2.0.

Issue 7: Austin Group Interpretation 1003.1-2001 #081 is applied, clarifying the RETURN
VALUE section.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied, changing sysconf(_SC_GETGR_R_SIZE_MAX)
from the maximum size to an initial value suggested for the size, and adding an
example of its use to the EXAMPLES section.

The getgrnam_r() function is moved from the Thread-Safe Functions option to the
Base.

A minor addition is made to the EXAMPLES section, reminding the application
developer to free memory allocated as if by malloc().

getgroups

Purpose: Get supplementary group IDs.

Synopsis: #i ncl ude <uni std. h>
int getgroups(int gidsetsize, gid t grouplist[]);

Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 7: No functional changes are made in this issue.
gethostid
Purpose: Get an identifier for the current host.

Synopsis: #i ncl ude <uni std. h>

| ong get hosti d(void);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
gethostname
Purpose: Get name of current host.

Synopsis: #i ncl ude <uni std. h>
i nt gethost name(char *nane, size_t nanel en);

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.

getitimer , setitimer
Purpose: Get and set value of interval timer.
oB xsI Synopsis: #i ncl ude <sys/tine. h>

int getitiner(int which, struct itinerval *val ue);
int setitiner(int which,
const struct itinmerval *restrict val ue,
struct itinmerval *restrict oval ue);

Derivation: First released in Issue 4, Version 2.

Issue 7: The getitimer() and setitimer() functions are marked obsolescent. Applications
should use the timer_gettime() and timer_settime () functions, respectively.

getlogin, getlogin_r

Purpose: Get login name.

Synopsis: #i ncl ude <uni std. h>

char *getl ogi n(void);
int getlogin_r(char *nane, size_t nanesize);

Derivation: First released in Issue 1. Derived from System V Release 2.0.
Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.
The getlogin_r() function is moved from the Thread-Safe Functions option to the
Base.
getmsg, getpmsg
Purpose: Receive next message from a STREAMS file (STREAMS).
oB xsrR Synopsis: #i ncl ude <stropts. h>

int getnsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict flagsp);

int getpnsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict bandp,
int *restrict flagsp);

Derivation: First released in Issue 4, Version 2.

Issue 7: The getmsg() and getpmsg() functions are marked obsolescent.

getnameinfo
Purpose: Get name information.

Synopsis: #i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

i nt getnanei nfo(const struct sockaddr *restrict sa,
socklen_t salen, char *restrict node,
sockl en_t nodel en, char *restrict service,

The Single UNIX® Specification: Authorized Guide to Version 4 159

System Interfaces System Interfaces Migration

socklen_t servicelen, int flags);
Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.
Issue 7: SD5-XSH-ERN-127 is applied, clarifying the behavior if the address is the IPv6
unspecified address.
getopt, optarg, opterr , optind, optopt
Purpose: Command option parsing.
Synopsis: #i ncl ude <uni std. h>

int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;
extern int opterr, optind, optopt;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
getpeername
Purpose: Get the name of the peer socket.

Synopsis: #i ncl ude <sys/socket. h>

i nt getpeernane(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_|en);

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: No functional changes are made in this issue.
getpgid
Purpose: Get the process group ID for a process.

Synopsis: #i ncl ude <uni std. h>

pidt getpgid(pid_t pid);
Derivation: First released in Issue 4, Version 2.

Issue 7: The getpgid() function is moved from the XSI option to the Base.
getpgrp
Purpose: Get the process group ID of the calling process.

Synopsis: #i ncl ude <uni std. h>
pid t getpgrp(void);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

160 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

getpid

Purpose: Get the process ID.

Synopsis: #i ncl ude <uni std. h>
pid t getpid(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
getppid
Purpose: Get the parent process ID.

Synopsis: #i ncl ude <uni std. h>
pid t getppid(void);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

getpriority , setpriority
Purpose: Get and set the nice value.
XSl Synopsis: #i ncl ude <sys/resource. h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int value);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

getpwnam, getpwnam_r
Purpose: Search user database for a name.
Synopsis: #i ncl ude <pwd. h>

struct passwd *get pwnan{const char *nane);

i nt getpwnamr(const char *nane, struct passwd *pwd,
char *buffer, size_ t bufsize,
struct passwd **result);

Derivation: First released in Issue 1. Derived from System V Release 2.0.
Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied, changing sysconf(SC_GETPW_R_SIZE_MAX)
from the maximum size to an initial value suggested for the size, and adding an
example of its use to the EXAMPLES section.

The getpwnam_r() function is moved from the Thread-Safe Functions option to the
Base.

A minor addition is made to the EXAMPLES section, reminding the application
developer to free memory allocated as if by malloc().

The Single UNIX® Specification: Authorized Guide to Version 4 161

System Interfaces System Interfaces Migration

getpwuid, getpwuid_r
Purpose: Search user database for a user ID.
Synopsis: #i ncl ude <pwd. h>

struct passwd *get pwui d(uid_t uid);
int getpwiid r(uid t uid, struct passwd *pwd, char *buffer,
size t bufsize, struct passwd **result);

Derivation: First released in Issue 1. Derived from System V Release 2.0.
Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied, changing sysconf(SC_GETPW_R_SIZE_MAX)
from the maximum size to an initial value suggested for the size, and adding an
example of its use to the EXAMPLES section.

The getpwuid_r() function is moved from the Thread-Safe Functions option to the
Base.

A minor addition is made to the EXAMPLES section, reminding the application
developer to free memory allocated as if by malloc().
getrlimit, setrlimit
Purpose: Control maximum resource consumption.
XSl Synopsis: #i ncl ude <sys/resource. h>

int getrlimt(int resource, struct rlimt *rlp);
int setrlimt(int resource, const struct rlimt *rlp);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
getrusage
Purpose: Get information about resource utilization.

XSl Synopsis: #i ncl ude <sys/resource. h>

i nt getrusage(int who, struct rusage *r_usage);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
gets
Purpose: Get a string from a stdin stream.

oB Synopsis: #i ncl ude <stdi o. h>

char *gets(char *s);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

162 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7:

getsid
Purpose:

Synopsis:

Derivation:

Issue 7:

getsockname

Purpose:

Synopsis:

Derivation:

Issue 7:

getsoc kopt
Purpose:

Synopsis:

Derivation:

Issue 7:

getsubopt
Purpose:

Synopsis:

Derivation:

Issue 7:

Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN
VALUE section.

The gets() function is marked obsolescent. Applications should use the fgets()
function instead.

Changes are made related to support for finegrained timestamps.

Get the process group ID of a session leader.
#i ncl ude <uni std. h>

pidt getsid(pid t pid);

First released in Issue 4, Version 2.

The getsid() function is moved from the XSI option to the Base.

Get the socket name.
#i ncl ude <sys/socket. h>

i nt getsocknane(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_|en);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

No functional changes are made in this issue.

Get the socket options.
#i ncl ude <sys/socket. h>

i nt getsockopt(int socket, int |evel,
int option_nanme, void *restrict option_val ue,
socklen_t *restrict option_|len);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Austin Group Interpretation 1003.1-2001 #158 is applied, removing text relating to
socket options that is now in XSH Section 2.10.16 .

Parse suboption arguments from a string.
#i nclude <stdlib. h>

i nt getsubopt(char **optionp, char * const *keylistp,
char **val uep);

First released in Issue 4, Version 2.

The getsubopt() function is moved from the XSI option to the Base.

The Single UNIX® Specification: Authorized Guide to Version 4 163

System Interfaces System Interfaces Migration

gettimeofday
Purpose: Get the date and time.
oB xsI Synopsis: #i ncl ude <sys/tine. h>

int gettinmeofday(struct tinmeval *restrict tp,
void *restrict tzp);

Derivation: First released in Issue 4, Version 2.

Issue 7: The gettimeofday () function is marked obsolescent. Applications should use the
clock gettime () function instead.

getuid

Purpose: Get a real user ID.

Synopsis: #i ncl ude <uni std. h>
uid t getuid(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
getwc
Purpose: Get a wide character from a stream.

Synopsis: #i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

wint t getwc(FILE *strean);

Derivation: First released as a World-wide Portability Interface in Issue 4. Derived from the
MSE working draft.

Issue 7: No functional changes are made in this issue.

getwchar
Purpose: Get a wide character from a stdin stream.
Synopsis: #i ncl ude <wchar. h>

wi nt _t getwchar(void);

Derivation: First released as a World-wide Portability Interface in Issue 4. Derived from the
MSE working draft.

Issue 7: No functional changes are made in this issue.

glob, globfree
Purpose: Generate pathnames matching a pattern.
Synopsis: #i ncl ude <gl ob. h>

int glob(const char *restrict pattern, int flags,
int(*errfunc)(const char *epath, int eerrno),
glob_t *restrict pglob);

void gl obfree(glob t *pglob);

164 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 7: No functional changes are made in this issue.

gmtime, gmtime_r
Purpose: Convert a time value to a broken-down UTC time.
Synopsis: #i ncl ude <tine. h>

struct tm*gntinme(const tinme_t *tiner);
cX struct tm*gntime_r(const time t *restrict tiner,
struct tm*restrict result);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The gmtime_r() function is moved from the Thread-Safe Functions option to the
Base.
grantpt
Purpose: Grant access to the slave pseudo-terminal device.
XSl Synopsis: #i ncl ude <stdlib. h>

int grantpt(int fildes);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

hcreate, hdestr oy, hsearch
Purpose: Manage hash search table.
XSl Synopsis: #i ncl ude <search. h>

int hcreate(size_ t nel);
voi d hdest roy(void);
ENTRY *hsear ch(ENTRY item ACTION acti on);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

htonl, htons, ntohl, ntohs
Purpose: Convert values between host and network byte order.
Synopsis: #i ncl ude <arpalinet. h>

uint32_t htonl (uint32_t hostlong);
uintl6 t htons(uintl6_t hostshort);
uint32_t ntohl (uint32_t netlong);
uintl16 t ntohs(uintl6_t netshort);

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The Single UNIX® Specification: Authorized Guide to Version 4 165

System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.

hy pot, hypotf , hypotl
Purpose: Euclidean distance function.
Synopsis: #i ncl ude <nmat h. h>

doubl e hypot (doubl e x, double y);
float hypotf(float x, float y);
| ong doubl e hypotl (1 ong doubl e x, |ong double y);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
iconv
Purpose: Codeset conversion function.

Synopsis: #i ncl ude <i conv. h>

size_ t iconv(iconv_t cd, char **restrict inbuf,
size t *restrict inbytesleft, char **restrict outbuf,
size t *restrict outbytesleft);

Derivation: First released in Issue 4. Derived from the HP-UX Manual.

Issue 7: The iconv() function is moved from the XSI option to the Base.
iconv_close
Purpose: Codeset conversion deallocation function.

Synopsis: #i ncl ude <i conv. h>
int iconv_close(iconv_t cd);

Derivation: First released in Issue 4. Derived from the HP-UX Manual.

Issue 7: The iconv_close () function is moved from the XSl option to the Base.
iconv_open
Purpose: Codeset conversion allocation function.

Synopsis: #i ncl ude <i conv. h>

iconv_t iconv_open(const char *tocode, const char *frontode);
Derivation: First released in Issue 4. Derived from the HP-UX Manual.
Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The iconv_open() function is moved from the XSI option to the Base.

166 A Source Book from The Open Group (2010)

System Interfaces Migration

if freenameindex

Purpose:

Synopsis:

Derivation:

Issue 7:

Free memory allocated by if nameindex.
#i nclude <net/if.h>

void if_freenanei ndex(struct if_namei ndex *ptr);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

No functional changes are made in this issue.

if indextoname

Purpose:

Synopsis:

Derivation:

Issue 7:

if _nameindex

Purpose:

Synopsis:

Derivation:

Issue 7:

Map a network interface index to its corresponding name.
#i nclude <net/if.h>

char *if _indextonane(unsigned ifindex, char *ifname);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

No functional changes are made in this issue.

Return all network interface names and indexes.
#i ncl ude <net/if.h>

struct if_nanei ndex *if_nanei ndex(void);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

No functional changes are made in this issue.

if _nametoindex

Purpose:

Synopsis:

Derivation:

Issue 7:

Map a network interface name to its corresponding index.
#i nclude <net/if.h>

unsi gned i f_nanet oi ndex(const char *ifnane);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

No functional changes are made in this issue.

ilogb, ilogbf , ilogbl

Purpose:

Synopsis:

Derivation:

Issue 7:

Return an unbiased exponent.
#i ncl ude <mat h. h>

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

First released in Issue 4, Version 2.

System Interfaces

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #48 (SD5-XSH-ERN-71),

#49, and #79 (SD5-XSH-ERN-72) are applied.

The Single UNIX® Specification: Authorized Guide to Version 4

167

System Interfaces System Interfaces Migration

imaxabs
Purpose: Return absolute value.
Synopsis: #i ncl ude <inttypes. h>
intmax_t inmaxabs(intmax_t j);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.
imaxdiv
Purpose: Return quotient and remainder.

Synopsis: #i ncl ude <inttypes. h>
i maxdiv_t inmaxdiv(intmax_t numer, intmax_t denonj;
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

inet_addr , inet_ntoa
Purpose: IPv4 address manipulation.
Synopsis: #i ncl ude <arpalinet. h>

i n_addr_t inet_addr(const char *cp);
char *inet _ntoa(struct in_addr in);

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: No functional changes are made in this issue.

inet_ntop, inet_pton
Purpose: Convert IPv4 and IPv6 addresses between binary and text form.
Synopsis: #i ncl ude <arpalinet. h>

const char *inet_ntop(int af, const void *restrict src,
char *restrict dst, socklen_t size);

int inet_pton(int af, const char *restrict src,
void *restrict dst);

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: No functional changes are made in this issue.

initstate, random, setstate , srandom
Purpose: Pseudo-random number functions.
XSl Synopsis: #i ncl ude <stdlib. h>

char *initstate(unsigned seed, char *state, size t size);
| ong randon{voi d);

char *setstate(char *state);

voi d srandon{unsi gned seed);

168 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation:

Issue 7:

First released in Issue 4, Version 2.

The type of the first argument to setstate() is changed from const ¢ har * to char *.

insque, remque

Purpose:

XSl Synopsis:

Derivation:

Issue 7:

ioctl
Purpose:

OB XSR Synopsis:

Derivation:

Issue 7:

Insert or remove an element in a queue.
#i ncl ude <search. h>

voi d i nsque(void *el enent, void *pred);
voi d rengue(voi d *el enent);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Control a STREAMS device (STREAMS).
#i ncl ude <stropts. h>

int ioctl(int fildes, int request, ... /[* arg */);

First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #155 is applied, adding a “may fail”
[EINVAL] error condition for the |_SENDFD command.

SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error
condition.

The ioctl() function is marked obsolescent.

isalnum, isalnum_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for an alphanumeric character.
#i ncl ude <ctype. h>

int isalnun(int c);
int isalnuml(int c, locale t l|ocale);

The isalnum_I() function tests whether c is a character of class alpha or digit in
the locale represented by locale. A handle for use as locale can be obtained using
newlocale () or duplocale().

First released in Issue 1. Derived from Issue 1 of the SVID.

The isalnum_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

The Single UNIX® Specification: Authorized Guide to Version 4 169

System Interfaces System Interfaces Migration

isalpha, isalpha_|
Purpose: Test for an alphabetic character.
Synopsis: #i ncl ude <ctype. h>

int isalpha(int c);
cX int isalpha_l(int c, locale_t |ocale);

The isalpha_I() function tests whether c is a character of class alpha in the locale
represented by locale. A handle for use as locale can be obtained using
newlocale () or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: The isalpha_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.
isascii
Purpose: Test for a 7-bit US-ASCII character.
oB xsI Synopsis: #i ncl ude <ctype. h>

int isascii(int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isascii() function is marked obsolescent.

isastream
Purpose: Test a file descriptor (STREAMS).
oB xsrR Synopsis: #i ncl ude <stropts. h>

int isastrean(int fildes);

Derivation: First released in Issue 4, Version 2.

Issue 7: The isastream() function is marked obsolescent.

isatty
Purpose: Test for a terminal device.
Synopsis: #i ncl ude <uni std. h>
int isatty(int fildes);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error
condition.

170 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

isblank, isblank_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for a blank character.
#i ncl ude <ctype. h>

int isblank(int c);
int isblank | (int c, locale t l|ocale);

The isblank_I() function tests whether c is a character of class blank in the locale
represented by locale. A handle for use as locale can be obtained using
newlocale () or duplocale().

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

The isblank_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iscntrl, iscntrl_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for a control character.
#i ncl ude <ctype. h>

int iscntrl(int c);
int iscntrl |I(int c, locale t locale);

The iscntrl_I() function tests whether ¢ is a character of class cntrl in the locale
represented by locale. A handle for use as locale can be obtained using
newlocale () or duplocale().

First released in Issue 1. Derived from Issue 1 of the SVID.

The iscntrl_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isdigit, isdigit_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for a decimal digit.
#i ncl ude <ctype. h>

int isdigit(int c);
int isdigit I(int c, locale t locale);

The isdigit_I() function tests whether c is a character of class digit in the locale
represented by locale. A handle for use as locale can be obtained using
newlocale () or duplocale().

First released in Issue 1. Derived from Issue 1 of the SVID.

The isdigit_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

The Single UNIX® Specification: Authorized Guide to Version 4 171

System Interfaces System Interfaces Migration

isfinite
Purpose: Test for finite value.
Synopsis: #i ncl ude <nmat h. h>
int isfinite(real-floating x);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

isgraph, isgraph_|
Purpose: Test for a visible character.
Synopsis: #i ncl ude <ctype. h>

int isgraph(int c);
cX int isgraph_I(int c, locale_t |ocale);

The isgraph_I() function tests whether c is a character of class graph in the locale
represented by locale. A handle for use as locale can be obtained using
newlocale () or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isgraph_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isgreater

Purpose: Test if x greater than y.

Synopsis: #i ncl ude <nat h. h>
int isgreater(real-floating x, real-floating y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

isgreaterequal
Purpose: Test if x is greater than orequal to y.
Synopsis: #i ncl ude <nat h. h>
int isgreaterequal (real-floating x, real-floating y);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

172 A Source Book from The Open Group (2010)

System Interfaces

isinf
Purpose:

Synopsis:

Derivation:

Issue 7:

isless
Purpose:

Synopsis:

Derivation:

Issue 7:

islessequal
Purpose:

Synopsis:

Derivation:

Issue 7:

islessgreater
Purpose:

Synopsis:

Derivation:

Issue 7:

Migration System Interfaces

Test for infinity.

#i ncl ude <mat h. h>

int isinf(real-floating x);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

Testif xis lessthany.

#i ncl ude <mat h. h>

int isless(real-floating x, real-floating y);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

Test if x is less than orequal to y.

#i ncl ude <mat h. h>

int islessequal (real-floating x, real-floating y);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

Test if x is less than or greater than y.

#i ncl ude <mat h. h>

int islessgreater(real-floating x, real-floating y);
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

islower , islower_|

Purpose:

Synopsis:

CX

Derivation:

Test for a lowercase letter.
#i ncl ude <ctype. h>

int islower(int c);
int islower |I(int c, locale t locale);

The islower_I() function tests whether c is a character of class lower in the locale
represented by locale. A handle for use as locale can be obtained using
newlocale () or duplocale().

First released in Issue 1. Derived from Issue 1 of the SVID.

The Single UNIX® Specification: Authorized Guide to Version 4 173

System Interfaces System Interfaces Migration

Issue 7: The islower_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isnan

Purpose: Test for a NaN.

Synopsis: #i ncl ude <nat h. h>
int isnan(real-floating x);

Derivation: First released in Issue 3.

Issue 7: No functional changes are made in this issue.

isnormal
Purpose: Test for a normal value.
Synopsis: #i ncl ude <nat h. h>
int isnormal (real -floating x);
Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

isprint, isprint_|
Purpose: Test for a printable character.
Synopsis: #i ncl ude <ctype. h>

int isprint(int c);
cX int isprint_I(int ¢, locale_t |ocale);

The isprint_I() function tests whether ¢ is a character of class print in the locale
represented by locale. A handle for use as locale can be obtained using
newlocale () or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isprint_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

ispunct, ispunct_|

Purpose: Test for a punctuation character.

Synopsis: #i ncl ude <ctype. h>

int ispunct(int c);
cX int ispunct_I(int ¢, locale_t |ocale);

The ispunct_I() function tests whether c is a character of class punct in the locale
represented by locale. A handle for use as locale can be obtained using
newlocale () or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

174 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7:

The ispunct_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isspace, isspace_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

isunordered
Purpose:

Synopsis:

Derivation:

Issue 7:

Test for a white-space character.
#i ncl ude <ctype. h>

int isspace(int c);
int isspace_|I(int ¢, locale_t |ocale);

The isspace_I() function tests whether c is a character of class space in the locale
represented by locale. A handle for use as locale can be obtained using
newlocale () or duplocale().

First released in Issue 1. Derived from Issue 1 of the SVID.

The isspace_|() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

Test if arguments are unordered.

#i ncl ude <mat h. h>

int isunordered(real-floating x, real-floating y);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

isupper , isupper_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for an uppercase letter.
#i ncl ude <ctype. h>

int isupper(int c);
int isupper_I(int ¢, locale_t |ocale);

The isupper_I() function tests whether c is a character of class upper in the locale
represented by locale. A handle for use as locale can be obtained using
newlocale () or duplocale().

First released in Issue 1. Derived from Issue 1 of the SVID.

The isupper_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

The Single UNIX® Specification: Authorized Guide to Version 4 175

System Interfaces System Interfaces Migration

iswalnum, iswalnum_|
Purpose: Test for an alphanumeric wide-character code.
Synopsis: #i ncl ude <wctype. h>

int iswal num(wint t wc);
cX int iswal numl(wint t we, locale t locale);

The iswalnum_I() function tests whether wc is a wide-character code representing
a character of class alpha or digit in the locale represented by locale. A handle
for use as locale can be obtained using newlocale() or duplocale().

Derivation: First released as a World-wide Portability Interface in Issue 4.

Issue 7: The iswalnum_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswalpha, iswalpha_|

Purpose: Test for an alphabetic wide-character code.

Synopsis: #i ncl ude <wctype. h>

int iswal pha(wint_t wc);
cX int iswal pha_l(wint_t we, locale_t |ocale);

The iswalpha_I() function tests whether wc is a wide-character code representing
a character of class alpha in the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswalpha_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswblank, iswblank_|

Purpose: Test for a blank wide-character code.

Synopsis: #i ncl ude <wctype. h>

int iswblank(wint t wc);
cX int iswblank I (wint t we, locale t locale);

The iswblank_I() function tests whether wc is a wide-character code representing
a character of class blank in the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: The iswblank () function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

176 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

iswentrl, iswentrl_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for a control wide-character code.
#i ncl ude <wctype. h>

int iswentrl(wint_t we);
int iswentrl I (wint t we, locale_ t l|ocale);

The iswentrl_I() function tests whether wc is a wide-character code representing a
character of class cntrl in the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

First released in Issue 4.

The iswentrl_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iswctype, iswctype_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test character for a specified class.
#i ncl ude <wctype. h>

int iswtype(wint t w, wetype t charcl ass);
int iswtype | (wint_t we, wetype_t charcl ass,
|l ocale t locale);

The iswctype_|() function determines whether the wide-character code wc has the
character class charclass in the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

First released as World-wide Portability Interfaces in Issue 4.

The iswctype_|() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswdigit, iswdigit_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for a decimal digit wide-character code.
#i ncl ude <wctype. h>

int iswdigit(wint_t wc);
int iswdigit I(wint t w, locale_ t I|ocale);

The iswdigit_I() function tests whether wc is a wide-character code representing a
character of class digit in the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

First released in Issue 4.

The iswdigit_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

The Single UNIX® Specification: Authorized Guide to Version 4 177

System Interfaces System Interfaces Migration

iswgraph, iswgraph_|
Purpose: Test for a visible wide-character code.
Synopsis: #i ncl ude <wctype. h>

int iswgraph(wint t wc);
cX int iswgraph_|I(wint_t we, locale_t |ocale);

The iswgraph_I() function tests whether wc is a wide-character code representing
a character of class graph in the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswgraph_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswlower , iswlower_|

Purpose: Test for a lowercase letter wide-character code.

Synopsis: #i ncl ude <wctype. h>

int iswower(wint t we);
cX int iswWwower | (wint t we, locale t I|ocale);

The iswlower_I() function tests whether wc is a wide-character code representing
a character of class lower in the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswlower_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswprint, iswprint_|

Purpose: Test for a printable wide-character code.

Synopsis: #i ncl ude <wctype. h>

int iswprint(wint_t we);
cX int iswprint_I(wint_t we, locale_t |ocale);

The iswprint_I() function tests whether wc is a wide-character code representing a
character of class print in the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswprint_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

178 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

iswpunct, iswpunct_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for a punctuation wide-character code.
#i ncl ude <wctype. h>

int iswpunct(wint t wc);
int iswpunct | (wint_t we, locale_t |ocale);

The iswpunct_I() function tests whether wc is a wide-character code representing
a character of class punct in the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

First released in Issue 4.

The iswpunct_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswspace, iswspace_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for a white-space wide-character code.
#i ncl ude <wctype. h>

int iswspace(wint_t wc);
int iswspace_ | (wint_t we, locale_t |ocale);

The iswspace_|() function tests whether wc is a wide-character code representing
a character of class space in the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

First released in Issue 4.

The iswspace_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswupper , iswupper_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Test for an uppercase letter wide-character code.
#i ncl ude <wctype. h>

int iswupper(wint_t wc);
int iswupper_|(wint_t we, locale_t |ocale);

The iswupper_I() function tests whether wc is a wide-character code representing
a character of class upper in the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

First released in Issue 4.

The iswupper_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

The Single UNIX® Specification: Authorized Guide to Version 4 179

System Interfaces System Interfaces Migration

iswxdigit, iswxdigit_|
Purpose: Test for a hexadecimal digit wide-character code.
Synopsis: #i ncl ude <wctype. h>

int iswxdigit(wint_t wc);
cX int iswdigit I(wint t w, locale t |ocale);

The iswxdigit_I() function tests whether wc is a wide-character code representing a
character of class xdigit in the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswxdigit_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

isxdigit, isxdigit_|

Purpose: Test for a hexadecimal digit.

Synopsis: #i ncl ude <ctype. h>

int isxdigit(int c);
cX int isxdigit I(int ¢, locale_ t |ocale);

The isxdigit_I() function tests whether ¢ is a character of class xdigit in the locale
represented by locale. A handle for use as locale can be obtained using
newlocale () or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isxdigit_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.
i0, 1, jn
Purpose: Bessel functions of the first kind.
XSl Synopsis: #i ncl ude <mat h. h>

doubl e j O(doubl e Xx);
doubl e j 1(doubl e Xx);
doubl e jn(int n, double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

180 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

kill
Purpose:

cX Synopsis:

Derivation:

Issue 7:

killpg
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

labs, llabs
Purpose:

Synopsis:

Derivation:

Issue 7:

Ichown
Purpose:

Synopsis:

Derivation:

Issue 7:

Send a signal to a process or a group of processes.
#i ncl ude <si gnal . h>

int kill(pid_t pid, int sig);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Send a signal to a process group.

#i ncl ude <si gnal . h>

int killpg(pid_t pgrp, int sig);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Return a long integer absolute value.
#i ncl ude <stdlib. h>

I ong labs(long i);
long long Ilabs(long long i);

First released in Issue 4. Derived from the ISO C standard.

No functional changes are made in this issue.

Change the owner and group of a symbolic link.

#i ncl ude <uni std. h>

int |chown(const char *path, uid t owner, gid t group);
First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The Ichown() function is moved from the XSI option to the Base.
The [EOPNOTSUPP] error is removed.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

The Single UNIX® Specification: Authorized Guide to Version 4 181

System Interfaces

System Interfaces Migration

Idexp, ldexpf , Idexpl

Purpose:

Synopsis:

Derivation:

Issue 7:

Idiv, lldiv
Purpose:

Synopsis:

Derivation:

Issue 7:

Load exponent of a floating-point number.
#i ncl ude <mat h. h>

doubl e | dexp(doubl e x, int exp);
float |dexpf(float x, int exp);
| ong doubl e | dexpl (1 ong double x, int exp);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Compute quotient and remainder of a long division.
#i ncl ude <stdlib. h>

Idiv_t Idiv(long nuner, |ong denom;
I1div_t Ildiv(long |Iong nuner, |long | ong denon;

First released in Issue 4. Derived from the ISO C standard.

No functional changes are made in this issue.

Igamma, lgammaf , I[gammal, signgam

Purpose:

Synopsis:

XSl

Derivation:

Issue 7:
link, linkat

Purpose:

Synopsis:

182

Log gamma function.
#i ncl ude <mat h. h>

doubl e | gamma(doubl e x);

float | ganmmaf(float x);

| ong doubl e | ganmal (|1 ong doubl e x);
extern int signgam

First released in Issue 3.

The DESCRIPTION is clarified regarding the value of signgam when x is Nan, —Inf,
or a negative integer.

Link one file to another file relative to two directory file descriptors.
#i ncl ude <unistd. h>

int link(const char *pathl, const char *path2);
int linkat(int fdl, const char *pathl, int fd2,
const char *path2, int flag);

The linkat() function is equivalent to the link() function except in the case where
either pathl or path2 or both are relative paths. In this case a relative path pathl is
interpreted relative to the directory associated with the file descriptor fd1 instead of
the current working directory and similarly for path2 and the file descriptor fd2. If
the file descriptor was opened without O_SEARCH, the function checks whether
directory searches are permitted using the current permissions of the directory
underlying the file descriptor. If the file descriptor was opened with O_SEARCH,
the function does not perform the check.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation:

Issue 7:

lio_listio
Purpose:

Synopsis:

Derivation:

Issue 7:

listen
Purpose:

Synopsis:

Derivation:

Issue 7:

The AT_SYMLINK_FOLLOW flag can be used to specify that if pathl names a
symbolic link, a new link for the target of the symbolic link is created. By default a
new link for the symbolic link itself is created.

The purpose of the linkat() function is to link files in directories other than the
current working directory without exposure to race conditions. Any part of the path
of a file could be changed in parallel to a call to link(), resulting in unspecified
behavior. By opening a file descriptor for the directory of both the existing file and
the target location and using the linkat() function it can be guaranteed that the
both filenames are in the desired directories.

First released in Issue 1. Derived from Issue 1 of the SVID.

If pathl names a symbolic link, the link() function is no longer required to follow
the link: it is implementation-defined whether link() follows the link, or creates a
new link to the symbolic link itself. Applications which need control over whether
the link is followed can use the new linkat() function, setting the flag argument
appropriately.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The linkat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Functionality relating to XSI STREAMS is marked obsolescent.

Changes are made related to support for finegrained timestamps.

List directed 1/0.
#i ncl ude <ai o. h>

int lio_ listio(int node,
struct aiocb *restrict const list[restrict],
int nent, struct sigevent *restrict sig);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The lio_listio() function is moved from the Asynchronous Input and Output option
to the Base.

Listen for socket connections and limit the queue of incoming connections.
#i ncl ude <sys/socket. h>

int listen(int socket, int backlog);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 183

System Interfaces System Interfaces Migration

lIrint, llrintf , [Irintl
Purpose: Round to the nearest integer value using current rounding direction.
Synopsis: #i ncl ude <nat h. h>

long long Ilrint(double x);
long long Ilrintf(float x);
long long Ilrintl(long double x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.
Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #53 is applied.

lIround, llroundf , llroundl
Purpose: Round to nearest integer value.
Synopsis: #i ncl ude <nat h. h>

I ong long Ilround(double x);
long long Ilroundf(float x);
long long Ilroundl (I ong double Xx);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #54 (SD5-XSH-ERN-75) is
applied.

localeconv

Purpose: Return locale-specific information.

Synopsis: #i ncl ude <l ocal e. h>
struct | conv *| ocal econv(void);

Derivation: First released in Issue 4. Derived from the ANSI C standard.

Issue 7: The definitions of int_curr_symbol and currency_symbol are updated.
The examples in the APPLICATION USAGE section are updated.

localtime, localtime_r
Purpose: Convert a time value to a broken-down local time.
Synopsis: #i ncl ude <tine. h>

struct tm*localtinme(const time_t *tinmer);
cX struct tm*localtinme_r(const time_t *restrict tiner,
struct tm*restrict result);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The localtime_r() function is moved from the Thread-Safe Functions option to the
Base.

Changes are made to the EXAMPLES section related to support for finegrained
timestamps.

184 A Source Book from The Open Group (2010)

System Interfaces Migration

XSl

lockf
Purpose:

Synopsis:

Derivation:

Issue 7:

log, logf , logl
Purpose:

Synopsis:

Derivation:

Issue 7:

log10, log10f
Purpose:

Synopsis:

Derivation:

Issue 7:

loglp, loglpf
Purpose:

Synopsis:

Derivation:

Issue 7:

Record locking on files.

#i ncl ude <uni std. h>

System Interfaces

int lockf(int fildes, int function, off _t size);

First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #054 is applied, updating the
DESCRIPTION to change “other threads” to “threads in other processes”.

Natural logarithm function.
#i ncl ude <mat h. h>

doubl e | og(doubl e x);
float |ogf(float Xx);
| ong doubl e | ogl (1 ong doubl e x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

, log10l
Base 10 logarithm function.
#i ncl ude <mat h. h>

doubl e 1 0g10(doubl e x);
float |oglOf (float Xx);
| ong doubl e | 0gl0l (1 ong doubl e x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

, loglpl
Compute a natural logarithm.
#i ncl ude <mat h. h>

doubl e | oglp(double x);
float |oglpf(float Xx);
| ong doubl e | oglpl (1 ong double Xx);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4

185

System Interfaces System Interfaces Migration

log2, log2f , log2l
Purpose: Compute base 2 logarithm functions.
Synopsis: #i ncl ude <nat h. h>

doubl e | og2(doubl e x);
float |og2f(float x);
| ong doubl e | 0og2l (I ong doubl e x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

logh, logbf , logbhl
Purpose: Radix-independent exponent.
Synopsis: #i ncl ude <nat h. h>

doubl e | ogb(doubl e x);
float |ogbf(float x);
| ong doubl e | ogbl (I ong doubl e x);

Derivation: First released in Issue 4, Version 2.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #50 (SD5-XSH-ERN-76) is
applied.

longjmp

Purpose: Non-local goto.

Synopsis: #i ncl ude <setj np. h>
voi d | ongj nmp(j np_buf env, int val);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

Irint, Irintf , Irintl
Purpose: Round to nearest integer value using current rounding direction.
Synopsis: #i ncl ude <nat h. h>

long Irint(double x);
long Irintf(float x);
long Irintl(long double x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #53 (SD5-XSH-ERN-77) is
applied.

186 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Iround, Iroundf , lIroundl
Purpose: Round to nearest integer value.
Synopsis: #i ncl ude <nat h. h>

| ong | round(doubl e x);
| ong | roundf (float x);
I ong I roundl (I ong doubl e x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #54 (SD5-XSH-ERN-78) is
applied.
Isearch, Ifind
Purpose: Linear search and update.
XSl Synopsis: #i ncl ude <search. h>

voi d *l search(const void *key, void *base, size_t *nelp,
size_t width, int (*conpar)(const void *, const void *));

void *Ifind(const void *key, const void *base, size_t *nelp,
size_t width, int (*conpar)(const void *, const void *));

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
Iseek
Purpose: Move the read/write file offset.

Synopsis: #i ncl ude <uni std. h>
off t Iseek(int fildes, off _t offset, int whence);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

malloc
Purpose: A memory allocator.
Synopsis: #i ncl ude <stdlib. h>
void *nal l oc(size_t size);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 187

System Interfaces

mblen
Purpose:

Synopsis:

Derivation:

Issue 7:

mbrlen
Purpose:

Synopsis:

Derivation:

Issue 7:

mbrto wc
Purpose:

Synopsis:

Derivation:

Issue 7:
mbsinit
Purpose:

Synopsis:

Derivation:

Issue 7:

188

System Interfaces Migration

Get number of bytes in a character.

#i ncl ude <stdlib. h>

i nt nblen(const char *s, size_t n);

First released in Issue 4. Aligned with the ISO C standard.

No functional changes are made in this issue.

Get number of bytes in a character (restartable).
#i ncl ude <wchar. h>

size_ t nbrlen(const char *restrict s, size t n,
nbstate t *restrict ps);

First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ)]
error condition from a “may fail” to a “shall fail”.

Convert a character to a wide-character code (restartable).
#i ncl ude <wchar. h>

size t nbrtowc(wchar t *restrict pwc, const char *restrict s,
size t n, nbstate t *restrict ps);

First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ)]
error condition from a “may fail” to a “shall fail”.

Determine conversion object status.
#i ncl ude <wchar. h>
int nbsinit(const nbstate t *ps);

First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

mbsnrto wcs, mbsrtowcs

Purpose:
Synopsis:

CX

Derivation:

Issue 7:

mbstowcs
Purpose:

Synopsis:

Derivation:

Issue 7:

mbtowc
Purpose:

Synopsis:

Derivation:

Issue 7:

Convert a character string to a wide-character string (restartable).
#i ncl ude <wchar. h>

size t nbsnrtowcs(wchar t *restrict dst,
const char **restrict src, size t nnt,
size t len, nbstate_t *restrict ps);

size t nbsrtowcs(wchar _t *restrict dst,
const char **restrict src, size t len
nbstate t *restrict ps);

The mbsnrtowcs() function is equivalent to the mbsrtowcs() function, except that
the conversion of characters pointed to by src is limited to at most nmc bytes (the
size of the input buffer).

First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ)]
error condition from a “may fail” to a “shall fail”.

The mbsnrtowcs() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 1.

Convert a character string to a wide-character string.
#i ncl ude <stdlib. h>

size_ t nbstowcs(wchar t *restrict pwes, const char *restrict s,
size t n);

First released in Issue 4. Aligned with the ISO C standard.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ)]
error condition from a “may fail” to a “shall fail”.

Convert a character to a wide-character code.
#i ncl ude <stdlib. h>

i nt nmbtowc(wchar t *restrict pwc, const char *restrict s,
size t n);

First released in Issue 4. Aligned with the ISO C standard.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ)]
error condition from a “may fail” to a “shall fail”.

The Single UNIX® Specification: Authorized Guide to Version 4 189

System Interfaces

XSl

190

memccpy
Purpose:

Synopsis:

Derivation:

Issue 7:

memchr
Purpose:

Synopsis:

Derivation:

Issue 7:

memcmp
Purpose:

Synopsis:

Derivation:

Issue 7:

memcpy
Purpose:

Synopsis:

Derivation:

Issue 7:

memmove
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Copy bytes in memory.
#i ncl ude <string. h>

void *menccpy(void *restrict sl, const void *restrict s2,
int ¢, size t n);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Find byte in memory.

#i ncl ude <string. h>

void *nenchr(const void *s, int ¢, size t n);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Compare bytes in memory.

#i ncl ude <string. h>

int nmencnp(const void *sl1, const void *s2, size t n);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Copy bytes in memory.
#i ncl ude <string. h>

void *nencpy(void *restrict sl1, const void *restrict s2,
size t n);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Copy bytes in memory with overlapping areas.

#i ncl ude <string. h>

voi d *nemove(void *sl, const void *s2, size t n);
First released in Issue 4. Derived from the ANSI C standard.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

CX

memset
Purpose:

Synopsis:

Derivation:

Issue 7:

Set bytes in memory.

#i ncl ude <string. h>

void *nenset(void *s, int ¢, size_t n);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

mkdir , mkdirat

Purpose:

Synopsis:

Derivation:

Issue 7:

Make a directory relative to directory file descriptor.
#i ncl ude <sys/stat. h>

int nkdir(const char *path, node_t node);
int nkdirat(int fd, const char *path, node_t node);

The mkdirat() function is equivalent to the mkdir() function except in the case
where path specifies a relative path. In this case the newly created directory is
created relative to the directory associated with the file descriptor fd instead of the
current working directory. If the file descriptor was opened without O_ SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the mkdirat() function is to create a directory in directories other
than the current working directory without exposure to race conditions. Any part of
the path of a file could be changed in parallel to the call to mkdir(), resulting in
unspecified behavior. By opening a file descriptor for the target directory and using
the mkdirat() function it can be guaranteed that the newly created directory is
located relative to the desired directory.

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The mkdirat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

mkdtemp, mkstemp

Purpose:

Synopsis:

Create a unique directory or file.
#i ncl ude <stdlib. h>

char *nkdtenp(char *tenplate);
i nt nkstenp(char *tenpl ate);

The mkdtemp() function uses the contents of template to construct a unique
directory name. The string provided in template is a filename ending with six
trailing * X' s. The mkdtemp() function replaces each ' X' with a character from
the portable filename character set. The characters are chosen such that the
resulting name does not duplicate the name of an existing file at the time of a call
to mkdtemp(). The unique directory name is used to attempt to create the

The Single UNIX® Specification: Authorized Guide to Version 4 191

System Interfaces

XSl

192

Derivation:

Issue 7:

System Interfaces Migration

directory using mode 0700 as modified by the file creation mask.
First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

SD5-XSH-ERN-168 is applied, clarifying file permissions upon creation.
The mkstemp () function is moved from the XSI option to the Base.

The mkdtemp() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 1.

mkfifo, mkfifoat

Purpose:

Synopsis:

Derivation:

Issue 7:

Make a FIFO special file relative to directory file descriptor.
#i ncl ude <sys/stat. h>

int nkfifo(const char *path, node t node);
int nkfifoat(int fd, const char *path, nobde_t node);

The mkfifoat() function is equivalent to the mkfifo() function except in the case
where path specifies a relative path. In this case the newly created FIFO is created
relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O _SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the mkfifoat() function is to create a FIFO special file in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to mkfifo(), resulting
in unspecified behavior. By opening a file descriptor for the target directory and
using the mkfifoat() function it can be guaranteed that the newly created FIFO is
located relative to the desired directory.

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The mkfifoat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

mknod, mknodat

Purpose:

Synopsis:

Make directory, special file, or regular file.
#i ncl ude <sys/stat. h>

i nt nmknod(const char *path, node_t node, dev_t dev);
i nt nmknodat (i nt fd, const char *path, node t node, dev_t dev);

The mknodat() function is equivalent to the mknod() function except in the case
where path specifies a relative path. In this case the newly created directory,
special file, or regular file is located relative to the directory associated with the file
descriptor fd instead of the current working directory. If the file descriptor was

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation:

Issue 7:

mktime
Purpose:

Synopsis:

Derivation:

Issue 7:

opened without O_SEARCH, the function checks whether directory searches are
permitted using the current permissions of the directory underlying the file
descriptor. If the file descriptor was opened with O_SEARCH, the function does not
perform the check.

The purpose of the mknodat() function is to create directories, special files, or
regular files in directories other than the current working directory without exposure
to race conditions. Any part of the path of a file could be changed in parallel to a
call to mknod(), resulting in unspecified behavior. By opening a file descriptor for
the target directory and using the mknodat() function it can be guaranteed that the
newly created directory, special file, or regular file is located relative to the desired
directory.

First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The mknodat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

Convert broken-down time into time since the Epoch.
#i ncl ude <tine. h>
time_t nktinme(struct tm*tineptr);

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard
and the ANSI C standard.

No functional changes are made in this issue.

mlock, munlock

Purpose:

MLR Synopsis:

Derivation:

Issue 7:

Lock or unlock a range of process address space (REALTIME).
#i ncl ude <sys/ nmman. h>

int mock(const void *addr, size t len);
i nt nmunl ock(const void *addr, size t |len);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

No functional changes are made in this issue.

mlockall, munlockall

Purpose:

ML Synopsis:

Lock/unlock the address space of a process (REALTIME).
#i ncl ude <sys/ nmman. h>

int mockall(int flags);
i nt munl ockal | (voi d) ;

The Single UNIX® Specification: Authorized Guide to Version 4 193

System Interfaces

Derivation:

Issue 7:

mmap
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

No functional changes are made in this issue.

Map pages of memory.
#i ncl ude <sys/ nman. h>

void *nmap(void *addr, size t len, int prot, int flags,
int fildes, off _t off);

First released in Issue 4, Version 2.

Austin Group Interpretations 1003.1-2001 #078 and #079 are applied, clarifying
page alignment requirements and adding a note about the state of synchronization
objects becoming undefined when a shared region is unmapped.

Functionality relating to the Memory Protection and Memory Mapped Files options
is moved to the Base.

Changes are made related to support for finegrained timestamps.

modf , modff, modfl

Purpose:

Synopsis:

Derivation:

Issue 7:

mprotect
Purpose:

Synopsis:

Derivation:

Issue 7:

194

Decompose a floating-point number.
#i ncl ude <mat h. h>

doubl e nodf (doubl e x, double *iptr);
float nodff(float value, float *iptr);
| ong doubl e nodfl (I ong doubl e val ue, | ong double *iptr);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Set protection of memory mapping.

#i ncl ude <sys/nman. h>

int nprotect(void *addr, size_ t len, int prot);
First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The mprotect() function is moved from the Memory Protection option to the Base.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

mq_close
Purpose:

MSG Synopsis:

Derivation:

Issue 7:

mqg_getattr
Purpose:

MSG Synopsis:

Derivation:

Issue 7:

mq_notify
Purpose:

MSG Synopsis:

Derivation:

Issue 7:

mqg_open
Purpose:

MSG Synopsis:

Derivation:

Issue 7:

Close a message queue (REALTIME).
#i ncl ude <ngueue. h>

int ny_close(ngd_t nmdes);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

No functional changes are made in this issue.

Get message queue attributes (REALTIME).
#i ncl ude <ngueue. h>

int ng_getattr(ngd_t nmgdes, struct ng_attr *nystat);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

No functional changes are made in this issue.

Notify process that a message is available (REALTIME).

#i ncl ude <ngueue. h>

int nmg_notify(md_t ngdes,
const struct sigevent *notification);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

SD5-XSH-ERN-38 is applied, adding the mq_timedreceive() function to the
DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #032 is applied, adding the [EINVAL]
error.

An example is added.

Open a message queue (REALTIME).
#i ncl ude <ngueue. h>

ngd_t ng_open(const char *nane, int oflag, ...);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name
argument and changing [ENAMETOOLONG] from a “shall fail” to a “may fail” error.

The Single UNIX® Specification: Authorized Guide to Version 4 195

System Interfaces

mg_receive,
Purpose:

MSG Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording
for setting the user ID and group ID of the message queue.

mg_timedreceive

Receive a message from a message queue (REALTIME).

#i ncl ude <ngueue. h>

ssize_t ng_receive(nmyd_t nmgdes, char *nsg_ptr, size_t nsg_| en,
unsi gned *nmsg_pri o) ;

#i ncl ude <ngueue. h>
#i ncl ude <ti me. h>

ssize_t ng_tinmedreceive(ngd_t ngdes, char *restrict nmsg_ptr,
size t nmsg_len, unsigned *restrict nsg_prio,
const struct timespec *restrict abstine);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The mq_timedreceive() function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

mg_send, mq_timedsend

Purpose:

MSG Synopsis:

Derivation:

Issue 7:

196

Send a message to a message queue (REALTIME).
#i ncl ude <ngueue. h>

int ng_send(ngd_t ngdes, const char *msg_ptr, size t nsg_len,
unsi gned nmsg_pri o) ;

#i ncl ude <ngueue. h>
#i ncl ude <ti me. h>

int ng_tinmedsend(ngd_t ngdes, const char *nsg_ptr,
size_t nmsg_l en, unsigned nsg_pri o,
const struct tinmespec *abstine);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The mq_timedsend() function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

mq_setattr
Purpose:

MSG Synopsis:

Derivation:

Issue 7:

mg_unlink
Purpose:

MSG Synopsis:

Derivation:

Issue 7:

msgctl
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

msg get
Purpose:

XSl Synopsis:

Derivation:

Set message queue attributes (REALTIME).
#i ncl ude <ngueue. h>

int ng_setattr(ngd_t nmdes,
const struct ng_attr *restrict nystat,
struct ng_attr *restrict ongstat);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

No functional changes are made in this issue.

Remove a message queue (REALTIME).
#i ncl ude <ngueue. h>

int nmg_unlink(const char *nane);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Austin Group Interpretation 1003.1-2001 #077 is applied, changing
[ENAMETOOLONG] from a “shall fail” to a “may fail” error .

Austin Group Interpretation 1003.1-2001 #141 is applied, requiring that after a
successful call to mqg_unlink(), reuse of the name shall subsequently cause
mg_open() to behave as if no message queue of that name exists (that is,
mqg_open() will fail if O_CREAT is not set, or will create a new message queue if
O_CREAT is set). Previously, attempts to recreate the message queue were
allowed to fail.

XSI message control operations.
#i ncl ude <sys/ nsg. h>

int megctl (int nsqgid, int cnd, struct nsqid_ds *buf);
First released in Issue 2. Derived from Issue 2 of the SVID.

No functional changes are made in this issue.

Get the XSI message queue identifier.
#i ncl ude <sys/ nsg. h>

i nt nsgget (key t key, int nsgflg);

First released in Issue 2. Derived from Issue 2 of the SVID.

The Single UNIX® Specification: Authorized Guide to Version 4 197

System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.
msgrcv
Purpose: XSI message receive operation.

XSl Synopsis: #i ncl ude <sys/nsg. h>

ssize_t nmegrcv(int nsqid, void *nsgp, Size_t nsgsz,
long msgtyp, int nsgflg);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.
msgsnd
Purpose: XSI message send operation.

XSl Synopsis: #i ncl ude <sys/ nsg. h>

int negsnd(int nsqid, const void *nsgp, Size_t nsgsz,
int nsgflg);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.
msync
Purpose: Synchronize memory with physical storage.

xsiisio Synopsis: #i ncl ude <sys/ nman. h>

int nmeync(void *addr, size t len, int flags);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The msync() function is marked as part of the Synchronized Input and Output
option or XSI option as the Memory Mapped Files is moved to the Base.

Changes are made related to support for finegrained timestamps.

munmap
Purpose: Unmap pages of memory.
Synopsis: #i ncl ude <sys/ mman. h>

i nt nmunmap(void *addr, size_ t len);
Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The munmap() function is moved from the Memory Mapped Files option to the
Base.

198 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

nan, nanf, nanl

Purpose:

Synopsis:

Derivation:

Issue 7:

nanosleep
Purpose:

cX Synopsis:

Derivation:

Issue 7:

Return quiet NaN.
#i ncl ude <mat h. h>

doubl e nan(const char *tagp);
float nanf(const char *tagp);
| ong doubl e nanl (const char *tagp);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

High resolution sleep.
#i ncl ude <tine. h>

i nt nanosl eep(const struct tinmespec *rqtp,
struct timespec *rntp);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

SD5-XBD-ERN-33 is applied, clarifying that the rgtp and rmtp arguments may point
to the same object.

The nanosleep() function is moved from the Timers option to the Base.

nearbyint, nearbyintf , nearbyintl

Purpose:

Synopsis:

Derivation:

Issue 7:

newlocale
Purpose:

cX Synopsis:

Floating-point rounding functions.
#i ncl ude <mat h. h>

doubl e near byi nt (doubl e x);
float nearbyintf(float x);
| ong doubl e nearbyintl (I ong doubl e x);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

Create or modify a locale object.
#i ncl ude <l ocal e. h>

| ocal e t new ocal e(int category mask, const char *I ocal e,
| ocal e t base);

The newlocale () function creates a new locale object or modifies an existing one.

Application writers should note that handles for locale objects created by the
newlocale() function should be released by a corresponding call to freelocale().
Also, the special locale object LC_GLOBAL_LOCALE must not be passed for the
base argument, even when returned by the uselocale () function.

The following example shows the construction of a locale where the LC_CTYPE

The Single UNIX® Specification: Authorized Guide to Version 4 199

System Interfaces System Interfaces Migration

category data comes from a locale locl, and the LC_TIME category data from a
locale tok2:

#i ncl ude <l ocal e. h>

|l ocale t loc, new.loc;
/* Get the "locl" data. */

loc = new ocal e (LC CTYPE MASK, "locl", NULL);
if (loc == (locale_t) 0)
abort ();

/* Get the "loc2" data. */

new | oc = newl ocale (LC TIME MASK, "loc2", loc);
if (newloc != (locale t) 0)
/* W don 't abort if this fails. In this case this
sinmply used to unchanged | ocal e object. */
| oc = new | oc;

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

Issue 7: First released in Issue 7.

nextafter , nextafterf , nextafterl, nexttoward, nexttowardf , nexttoward|
Purpose: Next representable floating-point number.
Synopsis: #i ncl ude <nat h. h>

doubl e nextafter(double x, double y);

float nextafterf(float x, float y);

| ong doubl e nextafterl (Il ong double x, |ong double y);
doubl e nexttoward(doubl e x, |ong double y);

float nexttowardf(float x, |ong double y);

| ong doubl e nexttowardl (I ong doubl e x, |ong double y);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

nftw
Purpose: Walk a file tree.
XSl Synopsis: #i ncl ude <ftw. h>

int nftw(const char *path, int (*fn)(const char *,
const struct stat *, int, struct FTW*), int fd limt,
int flags);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

200 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

APPLICATION USAGE is added and the EXAMPLES section is replaced with a
new example.

nice
Purpose: Change the nice value of a process.
XSl Synopsis: #i ncl ude <uni std. h>

int nice(int incr);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

nl_langinfo, nl_langinfo_|
Purpose: Language information.
Synopsis: #i ncl ude <l angi nfo. h>

char *nl _langinfo(nl _itemitem;
char *nl _langinfo I(nl _itemitem locale t |ocale);

Derivation: First released in Issue 2.

Issue 7: The nl_langinfo() function is moved from the XSI option to the Base.
The nl_langinfo_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

open, openat

Purpose: Open file relative to directory file descriptor.
OH Synopsis: #i ncl ude <sys/stat.h>
#i nclude <fcntl. h>
i nt open(const char *path, int oflag, ...);
int openat(int fd, const char *path, int oflag, ...);

The openat() function is equivalent to the open() function except in the case
where path specifies a relative path. In this case the file to be opened is
determined relative to the directory associated with the file descriptor fd instead of
the current working directory. If the file descriptor was opened without O SEARCH,
the function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the openat() function is to enable opening files in directories other
than the current working directory without exposure to race conditions. Any part of
the path of a file could be changed in parallel to a call to open(), resulting in
unspecified behavior. By opening a file descriptor for the target directory and using
the openat() function it can be guaranteed that the opened file is located relative to
the desired directory.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #113 is applied, requiring the O_SYNC
flag to be supported for regular files, even if the Synchronized Input and Output
option is not supported.

The Single UNIX® Specification: Authorized Guide to Version 4 201

System Interfaces System Interfaces Migration

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #144 is applied, adding the O_TTY_INIT
flag.

Austin Group Interpretation 1003.1-2001 #171 is applied, adding support to set the
FD_CLOEXEC flag atomically at open(), and adding the F_DUPFD_CLOEXEC
flag.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

This page is revised and the openat() function is added from The Open Group
Technical Standard, 2006, Extended API Set Part 2.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Changes are made related to support for finegrained timestamps.

open_memstream, open_wmemstream
Purpose: Open a dynamic memory buffer stream.
cX Synopsis: #i ncl ude <stdi o. h>
FI LE *open_nenstrean(char **bufp, size t *sizep);
#i ncl ude <wchar. h>

FI LE *open_wnenst rean(wchar _t **bufp, size t *sizep);

The open_memstream() and open_wmemstream() functions create an I/O stream
associated with a dynamically allocated memory buffer.

These functions are similar to fmemopen(), except that the memory is always
allocated dynamically by the function, and the stream is opened only for output.

Application writers should note that the buffer created by these functions should be
freed by the application after closing the stream, by means of a call to free().

An example program using the open_memstream() interface follows:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt

mai n (voi d)

{
FILE *stream
char *buf;
size t len;
of f _t eob;

stream = open_nenstream (&buf, & en);
if (stream == NULL)

/* handl e error */ ;
fprintf (stream "hello ny world");
fflush (stream;
printf ("buf=%, |en=%u\n", buf, len);
eob = ftello(stream;
fseeko (stream 0, SEEK SET);

202 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

fprintf (stream "good-bye");

fseeko (stream eob, SEEK SET);

fclose (stream;

printf ("buf=%, |en=%u\n", buf, len);
free (buf);

return O;

}

This program produces the following output:

buf =hell o ny world, |en=14
buf =good- bye worl d, |en=14

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.
pause
Purpose: Suspend the thread until a signal is received.

Synopsis: #i ncl ude <uni std. h>
i nt pause(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
pclose
Purpose: Close a pipe stream to or from a process.

cX Synopsis: #i ncl ude <stdi o. h>

i nt pcl ose(FILE *stream;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

perror
Purpose: Write error messages to standard error.
Synopsis: #i ncl ude <stdi o. h>
voi d perror(const char *s);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.

The Single UNIX® Specification: Authorized Guide to Version 4 203

System Interfaces System Interfaces Migration

pipe
Purpose: Create an interprocess channel.
Synopsis: #i ncl ude <uni std. h>
int pipe(int fildes[2]);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-156 is applied, updating the DESCRIPTION to state the setting of
the pipe’s user ID and group ID.

Changes are made related to support for finegrained timestamps.

poll
Purpose: Input/output multiplexing.
Synopsis: #i ncl ude <pol |l . h>
int poll(struct pollfd fds[], nfds_t nfds, int tinmeout);
Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #209 is applied, clarifying the POLLHUP
event.

The poll() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

popen
Purpose: Initiate pipe streams to or from a process.
cX Synopsis: #i ncl ude <stdi o. h>

FI LE *popen(const char *command, const char *node);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #029 is applied, clarifying the values for
mode in the DESCRIPTION.

SD5-XSH-ERN-149 is applied, changing the {STREAM_MAX} [EMFILE] error
condition from a “may fail” to a “shall fail”.
posix_fadvise
Purpose: File advisory information (ADVANCED REALTIME).
ADV Synopsis: #i ncl ude <fcntl. h>

int posix _fadvise(int fd, off_t offset, off_t |en,
i nt advice);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: Austin Group Interpretation 1003.1-2001 #024 is applied, changing the definition of
the [EINVAL] error.

204 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

ADV

ADV

TYM

ADV

posix_fallocate
Purpose: File space control (ADVANCED REALTIME).
Synopsis: #i ncl ude <fcntl. h>

int posix fallocate(int fd, off _t offset, off _t len);

Derivation: First released in Issue 6. Derived from |IEEE Std 1003.1d-1999.

Issue 7: Austin Group Interpretations 1003.1-2001 #022, #024, and #162 are applied,
changing the definition of the [EINVAL] error.

posix_madvise

Purpose: Memory advisory information and alignment control (ADVANCED REALTIME).

Synopsis: #i ncl ude <sys/ mman. h>

i nt posix_madvi se(void *addr, size_ t len, int advice);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_mem_offset
Purpose: Find offset and length of a mapped typed memory block (ADVANCED REALTIME).
Synopsis: #i ncl ude <sys/ mman. h>

i nt posix_nmem of fset(const void *restrict addr, size_t |en,
off t *restrict off, size t *restrict contig_|en,
int *restrict fildes);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: No functional changes are made in this issue.

posix_memalign
Purpose: Aligned memory allocation (ADVANCED REALTIME).
Synopsis: #i ncl ude <stdlib. h>

i nt posix_nmemalign(void **menptr, size_t alignnment,
size t size);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: Austin Group Interpretation 1003.1-2001 #058 is applied, clarifying the value of the
alignment argument in the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #152 is applied, clarifying the behavior
when the size of the space requested is 0.

The Single UNIX® Specification: Authorized Guide to Version 4 205

System Interfaces System Interfaces Migration

posix_openpt
Purpose: Open a pseudo-terminal device.

XSl Synopsis: #i ncl ude <stdlib. h>
#i ncl ude <fcntl. h>

i nt posi x_openpt (int oflag);

Derivation: First released in Issue 6.
Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.
SD5-XSH-ERN-51 is applied, correcting an error in the EXAMPLES section.

posix_spawn, posiXx_spawnp
Purpose: Spawn a process (ADVANCED REALTIME).
SPN Synopsis: #i ncl ude <spawn. h>

i nt posix_spawn(pid_t *restrict pid,

const char *restrict path,

const posi x_spawn_file_actions_t *file_actions

const posi x_spawnattr_t *restrict attrp

char *const argv[restrict], char *const envp[restrict]);
i nt posix_spawnp(pid_t *restrict pid,

const char *restrict file,

const posi x_spawn_file_actions_t *file_actions

const posi x_spawnattr_t *restrict attrp

char *const argv[restrict], char *const envp[restrict]);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: Functionality relating to the Threads option is moved to the Base.

posix_spawn_file_actions_addc lose, posix_spawn_file_actions_addopen
Purpose: Add close or open action to spawn file actions object (ADVANCED REALTIME).
SPN Synopsis: #i ncl ude <spawn. h>

i nt posix_spawn_file_actions_addcl ose(
posi x_spawn_file_actions_t
*file actions, int fildes);
i nt posix_spawn_file_actions_addopen(
posi x_spawn_file_actions_t
*restrict file actions, int fildes,
const char *restrict path, int oflag, node_t node);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

206 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

posix_spawn_file_actions_ad ddup2
Purpose: Add dup2 action to spawn file actions object (ADVANCED REALTIME).
SPN Synopsis: #i ncl ude <spawn. h>

i nt posix_spawn_file_actions_adddup2(
posi x_spawn_file_actions_t
*file actions, int fildes, int newfildes);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawn_file_actions_destr oy, posix_spawn_file_actions_init
Purpose: Destroy and initialize spawn file actions object (ADVANCED REALTIME).
SPN Synopsis: #i ncl ude <spawn. h>

i nt posix_spawn_file_actions_destroy(
posi x_spawn_file_actions_t
*file_actions);

i nt posix_spawn_file_actions_init(posix_spawn_file_actions_t
*file_actions);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawnattr_destr oy, posix_spawnattr_init
Purpose: Destroy and initialize spawn attributes object (ADVANCED REALTIME).
SPN Synopsis: #i ncl ude <spawn. h>

i nt posix_spawnattr_destroy(posix_spawnattr_t *attr);
i nt posix_spawnattr _init(posix_spawnattr_t *attr);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spa wnattr_getfla gs, posix_spawnattr_setflags

Purpose: Get and set the spawn-flags attribute of a spawn attributes object (ADVANCED
REALTIME).

SPN Synopsis: #i ncl ude <spawn. h>

i nt posix_spawnattr_getfl ags(
const posi x_spawnattr_t *restrict attr,
short *restrict flags);

i nt posix_spawnattr_setfl ags(
posi Xx_spawnattr_t *attr, short flags);

The Single UNIX® Specification: Authorized Guide to Version 4 207

System Interfaces System Interfaces Migration

SPN

SPN PS

SPN PS

208

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spa wnattr_getpgr oup, posix_spawnattr_setpgroup

Purpose: Get and set the spawn-pgroup attribute of a spawn attributes object (ADVANCED
REALTIME).

Synopsis: #i ncl ude <spawn. h>

i nt posi x_spawnattr_get pgroup(
const posi x_spawnattr_t *restrict attr,
pid_t *restrict pgroup);

i nt posix_spawnattr_set pgroup(posi x_spawnattr_t *attr,
pi d_t pgroup);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spa wnattr_getsc hedparam, posix_spawnattr_setschedparam

Purpose: Get and set the spawn-schedparam attribute of a spawn attributes object
(ADVANCED REALTIME).

Synopsis: #i ncl ude <spawn. h>
#i ncl ude <sched. h>

i nt posi x_spawnattr_get schedparan(const posix_spawnattr _t
*restrict attr, struct sched_param *restrict schedparan;
i nt posi x_spawnattr_set schedpar an{
posi Xx_spawnattr_t *restrict attr,
const struct sched_param *restrict schedparan;

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spa wnattr_getsc hedpolic y, posix_spawnattr_setschedpolicy

Purpose: Get and set the spawn-schedpolicy attribute of a spawn attributes object
(ADVANCED REALTIME).

Synopsis: #i ncl ude <spawn. h>
#i ncl ude <sched. h>

i nt posi x_spawnattr_get schedpol i cy(const posix_spawnattr _t
*restrict attr, int *restrict schedpolicy);

i nt posix_spawnattr_set schedpolicy(posi x_spawnattr_t *attr,
i nt schedpolicy);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

SPN

SPN

OB TRC

posix_spa whnattr_getsigdefault, posix_spawnattr_setsigdefault

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the spawn-sigdefault attribute of a spawn attributes object
(ADVANCED REALTIME).

#i ncl ude <si gnal . h>
#i ncl ude <spawn. h>

i nt posix_spawnattr_getsi gdefault (const posix_spawnattr _t
*restrict attr, sigset t *restrict sigdefault);

i nt posix_spawnattr_set si gdefaul t (
posi Xx_spawnattr_t *restrict attr,
const sigset t *restrict sigdefault);

First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

No functional changes are made in this issue.

posix_spa wnattr_getsigmask, posix_spawnattr_setsigmask

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the spawn-sigmask attribute of a spawn attributes object (ADVANCED
REALTIME).

#i ncl ude <si gnal . h>
#i ncl ude <spawn. h>

i nt posi x_spawnattr_getsi gmask(
const posi x_spawnattr_t *restrict attr,
sigset t *restrict signmask);
i nt posi x_spawnattr_set si gmask(
posi Xx_spawnattr_t *restrict attr,
const sigset t *restrict sigmask);

First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

No functional changes are made in this issue.

posix_trace_attr_destr oy, posix_trace_attr_init

Purpose:

Synopsis:

Derivation:

Issue 7:

Destroy and initialize the trace stream attributes object (TRACING).
#i ncl ude <trace. h>

int posix_trace_ attr_destroy(trace_attr_t *attr);
int posix_trace_attr_init(trace_attr_t *attr);

First released in Issue 6. Derived from IEEE Std 1003.19-2000.

The posix_trace_attr_destroy() and posix_trace_attr_init() functions are marked
obsolescent.

The Single UNIX® Specification: Authorized Guide to Version 4 209

System Interfaces System Interfaces Migration

posix_trace_attr_getc lockres, posix_trace attr g etcreatetime,
posix_trace_attr_getgen version, posix_trace_attr g etname, posix_trace_attr_setname

Purpose: Retrieve and set information about a trace stream (TRACING).

oB TRC Synopsis: #i ncl ude <tine. h>
#i ncl ude <trace. h>

int posix_trace_attr_getcl ockres(const trace_attr_t *attr,
struct timespec *resol ution);

int posix trace_attr_getcreatetine(const trace attr_t *attr,
struct timespec *createtine);

#i ncl ude <trace. h>

int posix_trace_attr_getgenversion(const trace attr_t *attr,
char *genversi on);

int posix trace_attr_getnane(const trace_attr_t *attr,
char *tracenane);

int posix_trace attr_setname(trace_attr_t *attr,
const char *tracenane);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.19-2000.

Issue 7: The posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(),
posix_trace_attr_getgenversion(), posix_trace_attr_getname(), and
posix_trace_attr_setname() functions are marked obsolescent.

posix_trace_attr_getinherited, posix_trace_attr_getlogfullpolic Y,
posix_trace_attr_getstreamfullpolic vy, posix_trace_attr_setinherited,
posix_trace_attr_setlogfullpolic vy, posix_trace_attr_setstreamfullpolicy

Purpose: Retrieve and set the behavior of a trace stream (TRACING).
oB TRC Synopsis: #i ncl ude <trace. h>

TRI int posix_ trace_attr_getinherited(
const trace_attr_t *restrict attr,
int *restrict inheritancepolicy);

TRL int posix_trace_attr_getlogfull policy(
const trace_attr_t *restrict attr,
int *restrict |ogpolicy);

int posix_trace_attr_getstreanfullpolicy(
const trace_attr_t *restrict
attr, int *restrict streanpolicy);

TRI int posix_trace_attr_setinherited(trace_attr_t *attr,
i nt inheritancepolicy);

TRL int posix_trace_attr_setlogfullpolicy(trace attr_t *attr,
i nt | ogpolicy);

int posix_ trace attr_setstreanfullpolicy(trace attr_t *attr,
i nt streanpolicy);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.19-2000.

Issue 7: SD5-XSH-ERN-116 is applied, adding the missing restrict keyword to the
posix_trace_attr_getstreamfullpolicy() function declaration.

These functions are marked obsolescent.

210 A Source Book from The Open Group (2010)

System Interfaces Migration

OB TRC

TRL

TRL

OB TRC

posix_trace_attr_getlogsize, posix_trace_attr getmaxdatasize,

posix_trace_attr _getmaxsystemeventsize, posix_trace_attr_getmaxusereventsize,
posix_trace_attr_getstreamsize, posix_trace_attr_setlogsize,
posix_trace_attr_setmaxdatasize, posix_trace_attr_setstreamsize

Purpose:

Synopsis:

Derivation:

Issue 7:

Retrieve and set trace stream size attributes (TRACING).

#i ncl ude <sys/types. h>
#i ncl ude <trace. h>

int posix_trace_attr_getl ogsi ze(
const trace_attr_t *restrict attr,
size t *restrict |ogsize);
int posix_trace_attr_get naxdat asi ze(
const trace_attr_t *restrict attr,
size t *restrict naxdatasize);
int posix_trace_attr_get naxsysteneventsi ze(
const trace_attr_t *restrict attr,
size_ t *restrict eventsize);
int posix_trace_attr_get maxusereventsi ze(
const trace_attr_t *restrict attr,
size t data len, size t *restrict eventsize);
int posix_trace_attr_getstreansi ze(
const trace_attr_t *restrict attr,
size_ t *restrict streansize);
int posix_trace_attr_setlogsize(trace_attr_t *attr,
size t |ogsize);
int posix_trace_attr_setnaxdatasi ze(trace_ attr_t *attr,
size_t naxdat asi ze);
int posix_ trace attr_setstreansize(trace_ attr_t *attr,
size_t streansize);

First released in Issue 6. Derived from IEEE Std 1003.19-2000.

These functions are marked obsolescent.

posix_trace_clear

Purpose:

Synopsis:

Derivation:

Issue 7:

Clear trace stream and trace log (TRACING).

#i ncl ude <sys/types. h>
#i ncl ude <trace. h>

int posix trace clear(trace_id_ t trid);

First released in Issue 6. Derived from IEEE Std 1003.19-2000.

The posix_trace_clear() function is marked obsolescent.

The Single UNIX® Specification: Authorized Guide to Version 4

System Interfaces

211

System Interfaces System Interfaces Migration

posix_trace_c lose, posix_trace_open, posix_trace rewind
Purpose: Trace log management (TRACING).
oB TRC Synopsis: #i ncl ude <trace. h>

TRL int posix_trace_close(trace_id t trid);
int posix_trace_open(int file_desc, trace_id_ t *trid);
int posix_ trace rewind(trace_id_t trid);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: The posix_trace_close(), posix_trace_open(), and posix_trace_rewind() functions
are marked obsolescent.

posix_trace_create, posix_trace_create withlog, posix_trace_flush,
posix_trace_shutdown

Purpose: Trace stream initialization, flush, and shutdown from a process (TRACING).

oB TRC Synopsis: #i ncl ude <sys/types. h>
#i ncl ude <trace. h>

int posix_ trace _create(pid_t pid,
const trace_attr_t *restrict attr,
trace id t *restrict trid);

TRL int posix trace create withlog(pid_t pid,

const trace attr_t *restrict attr, int file_desc,
trace id t *restrict trid);

int posix_trace_flush(trace_id t trid);

i nt posix_trace_shutdown(trace id t trid);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.
Issue 7: These functions are marked obsolescent.

SD5-XSH-ERN-154 is applied, updating the DESCRIPTION to remove the
posix_trace_trygetnext_event() function from the list of functions that use the trid
argument.

posix_trace_event, posix_trace_eventid_open

Purpose: Trace functions for instrumenting application code (TRACING).

oB TRC Synopsis: #i ncl ude <sys/types. h>
#i ncl ude <trace. h>

voi d posi x_trace_event(trace_event _id_t event_id,
const void *restrict data ptr, size_t data_len);

i nt posix_trace_eventid_open(const char *restrict event_nane,
trace _event id t *restrict event id);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.19-2000.

Issue 7: The posix_trace_event() and posix_trace_eventid_open() functions are marked
obsolescent.

212 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

posix_trace_eventid_equal, posix_trace_e ventid_get_name,
posix_trace_trid_eventid_open

Purpose: Manipulate the trace event type identifier (TRACING).
oB TRC Synopsis: #i ncl ude <trace. h>

int posix_trace_eventid_equal (trace_id_t trid,
trace _event id t eventl,
trace _event _id t event2);

int posix_trace_eventid_get_nanme(trace_id_t trid,
trace _event _id t event, char *event nane);

TEF int posix_trace_trid eventid open(trace_id_t trid,

const char *restrict event_ nane,
trace event id t *restrict event);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: These functions are marked obsolescent.

posix_trace_eventset ad d, posix_trace_e ventset_del, posix_trace_e ventset _empty,
posix_trace_eventset fill, posix_trace_eventset_ismember

Purpose: Manipulate trace event type sets (TRACING).
oB TRC Synopsis: #i ncl ude <trace. h>

TEF int posix_trace_eventset _add(trace_event _id_t event_id,

trace_event _set t *set);

int posix_trace_eventset _del (trace_event _id_t event_id,
trace_event _set t *set);

int posix_trace_eventset _enpty(trace_event_set t *set);

int posix_trace_eventset fill(trace_event_set t *set,
i nt what);

i nt posix_trace_eventset _isnenber(trace_event id_t event _id,
const trace_event_set_t *restrict set,
int *restrict ismenber);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: The posix_trace eventset_add(), posix_trace_eventset_del(),
posix_trace_eventset_empty(), posix_trace_eventset fill(), and
posix_trace_eventset_ismember() functions are marked obsolescent.

posix_trace_e venttypelist_getne xt _id, posix_trace_eventtypelist_rewind

Purpose: Iterate over a mapping of trace event types (TRACING).

oB TRC Synopsis: #i ncl ude <trace. h>

int posix_trace_eventtypelist _getnext_id(trace_id_ t trid,
trace _event id t *restrict event,
int *restrict unavail abl e);

int posix trace_eventtypelist rewind(trace_id_t trid);

The Single UNIX® Specification: Authorized Guide to Version 4 213

System Interfaces System Interfaces Migration

OB TRC

OB TRC

TEF

OB TRC

214

Derivation: First released in Issue 6. Derived from IEEE Std 1003.19-2000.

Issue 7: The posix_trace_eventtypelist_getnext_id() and
posix_trace_eventtypelist_rewind() functions are marked obsolescent.

posix_trace_get attr , posix_trace_get_ status
Purpose: Retrieve the trace attributes or trace status (TRACING).
Synopsis: #i ncl ude <trace. h>

int posix trace get_attr(trace_id t trid, trace_attr_t *attr);
int posix_trace_get_status(trace_id_t trid,
struct posix_trace_status_info *statusinfo);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.19-2000.

Issue 7: The posix_trace get attr() and posix_trace get status() functions are marked
obsolescent.

posix_trace_get filter , posix_trace_set filter
Purpose: Retrieve and set the filter of an initialized trace stream (TRACING).
Synopsis: #i ncl ude <trace. h>

int posix trace_get filter(trace_id_t trid,
trace_event _set t *set);

int posix_ trace_set filter(trace_id_t trid,
const trace_event _set t *set, int how;

Derivation: First released in Issue 6. Derived from IEEE Std 1003.19-2000.

Issue 7: The posix_trace_get filter() and posix_trace_set filter() functions are marked
obsolescent.

posix_trace_getne xt_event, posix_trace_timedgetnext_event,
posix_trace_trygetne xt_event

Purpose: Retrieve a trace event (TRACING).

Synopsis: #i ncl ude <sys/types. h>
#i ncl ude <trace. h>

i nt posix_trace_getnext_event(trace_id_t trid,
struct posix_trace_event _info *restrict event,
void *restrict data, size t num bytes,
size t *restrict data len, int *restrict unavail abl e);
int posix_trace_tinmedget next_event(trace_id_t trid,
struct posix_trace_event _info *restrict event,
void *restrict data, size t num bytes,
size t *restrict data len, int *restrict unavail abl e,
const struct timespec *restrict abstine);
int posix_trace_trygetnext_event(trace_id_t trid,
struct posix_trace_event _info *restrict event,
void *restrict data, size t num bytes,
size t *restrict data len, int *restrict unavail abl e);

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 6. Derived from IEEE Std 1003.19-2000.

Issue 7: The posix_trace_getnext_event(), posix_trace_timedgetnext_event(), and
posix_trace_trygetnext_event() functions are marked obsolescent.
Functionality relating to the Timers option is moved to the Base.
posix_trace_start, posix_trace_stop
Purpose: Trace start and stop (TRACING).
oB TRC Synopsis: #i ncl ude <trace. h>
int posix trace_start(trace_id t trid);
int posix_ trace_stop (trace_id_ t trid);
Derivation: First released in Issue 6. Derived from IEEE Std 1003.19-2000.
Issue 7: The posix_trace_start() and posix_trace stop() functions are marked
obsolescent.
posix_typed_mem_get inf o
Purpose: Query typed memory information (ADVANCED REALTIME).
TYM Synopsis: #i ncl ude <sys/ mman. h>
i nt posix_typed_nemget _info(int fildes,
struct posix_typed_nmem.info *info);
Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.
Issue 7: No functional changes are made in this issue.
posix_typed_mem_open
Purpose: Open a typed memory object (ADVANCED REALTIME).
TYM Synopsis: #i ncl ude <sys/ mman. h>
int posix_typed_nem open(const char *name, int oflag,
int tflag);
Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.
Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.
pow, powf, powl
Purpose: Power function.
Synopsis: #i ncl ude <nat h. h>
doubl e pow(doubl e x, double y);
float powf(float x, float y);
| ong doubl e pow (|1 ong double x, |ong double y);
The Single UNIX® Specification: Authorized Guide to Version 4 215

System Interfaces System Interfaces Migration

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #51 (SD5-XSH-ERN-81) is
applied.

pselect, select
Purpose: Synchronous I/0O multiplexing.
Synopsis: #i ncl ude <sys/sel ect. h>

int pselect(int nfds, fd set *restrict readfds,
fd set *restrict witefds, fd _set *restrict errorfds,
const struct tinmespec *restrict timeout,
const sigset t *restrict sigmask);

int select(int nfds, fd_set *restrict readfds,
fd set *restrict witefds, fd set *restrict errorfds,
struct tineval *restrict tineout);

void FD CLR(int fd, fd _set *fdset);

int FD ISSET(int fd, fd_set *fdset);

void FD SET(int fd, fd _set *fdset);

void FD ZERQ(fd_set *fdset);

Derivation: First released in Issue 4, Version 2.

Issue 7: SD5-XSH-ERN-122 is applied, adding text to the DESCRIPTION for when a thread
is canceled during a call to pselect(), and adding example code to the
RATIONALE.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Threads option is moved to the Base.

psiginfo, psignal
Purpose: Print signal information to standard error.
cX Synopsis: #i ncl ude <si gnal . h>

voi d psiginfo(const siginfo t *pinfo, const char *nessage);
voi d psignal (int signum const char *nmessage);

The psiginfo() and psignal() functions print a message out on stderr associated
with a signal number.

Application writers should note that System V historically has psignal() and
psiginfo() in <siginfo.h> . However, the <siginfo.h> header is not specified in the
Base Definitions volume of POSIX.1-2008, and the type siginfo_t is defined in
<signal.h> .

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

216 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

pthread_atfork

Purpose:

Synopsis:

Derivation:

Issue 7:

Register fork handlers.
#i ncl ude <pt hread. h>

int pthread atfork(void (*prepare)(void), void (*parent)(void),
void (*child)(void));

First released in Issue 5. Derived from the POSIX Threads Extension.
The pthread_atfork() function is moved from the Threads option to the Base.

SD5-XSH-ERN-145 is applied, updating the RATIONALE to confirm the
requirement that a child of a multi-threaded process may only execute async-
signal-safe operations until such time as one of the exec functions is called.

pthread_attr_destr oy, pthread_attr_init

Purpose:

Synopsis:

Derivation:

Issue 7:

Destroy and initialize the thread attributes object.
#i ncl ude <pt hread. h>

int pthread attr_destroy(pthread attr_t *attr);
int pthread attr_init(pthread attr_t *attr);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_attr_destroy() and pthread_attr_init() functions are moved from the
Threads option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

The [EBUSY] error for an already initialized thread attributes object is removed;
this condition results in undefined behavior.

pthread_attr_getdetachstate, pthread_attr setdetachstate

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the detachstate attribute.
#i ncl ude <pt hread. h>

int pthread attr_getdetachstate(const pthread attr t *attr,
i nt *detachstate);

int pthread attr_setdetachstate(pthread attr_t *attr,
i nt detachstate);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_attr_setdetachstate() and pthread_attr _getdetachstate() functions
are moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

The Single UNIX® Specification: Authorized Guide to Version 4 217

System Interfaces System Interfaces Migration

pthread_attr_getguardsize, pthread_attr_setguar dsize
Purpose: Get and set the thread guardsize attribute.
Synopsis: #i ncl ude <pt hr ead. h>

int pthread attr_getguardsi ze(
const pthread attr_t *restrict attr,
size_ t *restrict guardsize);

int pthread attr_setguardsi ze(pthread attr _t *attr,
size_t guardsize);

Derivation: First released in Issue 5.

Issue 7: SD5-XSH-ERN-111 is applied, removing the reference to the stack attribute in the
DESCRIPTION.

SD5-XSH-ERN-175 is applied, updating the DESCRIPTION to note that the default
size of the guard area is implementation-defined.

The pthread_attr_getguardsize() and pthread_attr_setguardsize() functions are
moved from the XSI option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.
pthread_attr_getinheritsc hed, pthread_attr_setinheritsched
Purpose: Get and set the inheritsched attribute (REALTIME THREADS).
TPS Synopsis: #i ncl ude <pt hr ead. h>

int pthread_attr_getinheritsched(
const pthread_attr_t *restrict attr,
int *restrict inheritsched);

int pthread_attr_setinheritsched(pthread_attr_t *attr,
i nt inheritsched);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions
are moved from the Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_attr_getsc hedparam, pthread_attr_setschedparam

Purpose: Get and set the schedparam attribute.

Synopsis: #i ncl ude <pt hr ead. h>

int pthread attr_get schedparan
const pthread attr_t *restrict attr,
struct sched param *restrict paran);

int pthread attr_setschedparanm(pthread attr_t *restrict attr,
const struct sched param *restrict param;

218 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

TPS

TPS

Derivation:

Issue 7:

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions
are moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy
requirements for the sched_ss_repl_period and sched_ss_init_budget values.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_attr_getsc hedpolic y, pthread_attr_setschedpolicy

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the schedpolicy attribute (REALTIME THREADS).
#i ncl ude <pt hr ead. h>

int pthread_attr_getschedpolicy(
const pthread_attr_t *restrict attr,
int *restrict policy);

int pthread_attr_setschedpolicy(pthread_attr_t *attr,
int policy);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions
are moved from the Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_attr_getscope, pthread_attr_setscope

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the contentionscope attribute (REALTIME THREADS).
#i ncl ude <pt hread. h>

int pthread_attr_getscope(const pthread_attr_t *restrict attr,
int *restrict contentionscope);

int pthread_attr_setscope(pthread_attr_t *attr,
i nt contentionscope);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_attr_getscope() and pthread_attr_setscope() functions are moved
from the Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

The Single UNIX® Specification: Authorized Guide to Version 4 219

System Interfaces

TSA TSS

TSS

220

System Interfaces Migration

pthread_attr_getstac k, pthread_attr_setstack

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set stack attributes.
#i ncl ude <pt hr ead. h>

int pthread_attr_getstack(const pthread_attr_t *restrict attr,
void **restrict stackaddr, size t *restrict stacksize);
int pthread_attr_setstack(pthread_attr_t *attr,
voi d *stackaddr, size t stacksize);

First released in Issue 6.

SD5-XSH-ERN-66 is applied, correcting the use of attr in the [EINVAL] error
condition.

Austin Group Interpretation 1003.1-2001 #057 is applied, clarifying the behavior if
the function is called before the stackaddr attribute is set.

SD5-XSH-ERN-157 is applied, updating the APPLICATION USAGE section.

The description of the stackaddr attribute is updated in the DESCRIPTION and
APPLICATION USAGE sections.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_attr_getstacksize, pthread_attr_setstac ksize

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the stacksize attribute.
#i ncl ude <pt hread. h>

int pthread_attr_getstacksize(
const pthread_attr_t *restrict attr,
size t *restrict stacksize);

int pthread_attr_setstacksize(pthread_ attr_t *attr,
size_t stacksize);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions are
moved from the Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_barrier_destr oy, pthread_barrier_init

Purpose:

Synopsis:

Destroy and initialize a barrier object.
#i ncl ude <pt hread. h>

int pthread barrier_destroy(pthread barrier_t *barrier);

int pthread barrier_init(pthread barrier_t *restrict barrier
const pthread barrierattr_t *restrict attr,
unsi gned count);

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

TSH

Derivation:

Issue 7:

First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

The pthread_barrier_destroy() and pthread_barrier_init() functions are moved
from the Barriers option to the Base.

The [EINVAL] error for an uninitialized barrier object and an uninitialized barrier
attributes object is removed; this condition results in undefined behavior.

The [EBUSY] error for a barrier that is in use or an already initialized barrier object
is removed; this condition results in undefined behavior.

pthread_barrier_wait

Purpose:

Synopsis:

Derivation:

Issue 7:

Synchronize at a barrier.

#i ncl ude <pt hread. h>

int pthread barrier_wait(pthread barrier_t *barrier);

First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

The pthread_barrier_wait() function is moved from the Barriers option to the Base.

The [EINVAL] error for an uninitialized barrier object is removed; this condition
results in undefined behavior.

pthread_barrierattr_destr oy, pthread_barrierattr_init

Purpose:

Synopsis:

Derivation:

Issue 7:

Destroy and initialize the barrier attributes object.
#i ncl ude <pt hread. h>

int pthread barrierattr_destroy(pthread barrierattr_t *attr);
int pthread barrierattr_init(pthread _barrierattr_t *attr);

First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

The pthread_barrierattr_destroy() and pthread_barrierattr_init() functions are
moved from the Barriers option to the Base.

The [EINVAL] error for an uninitialized barrier attributes object is removed; this
condition results in undefined behavior.

pthread_barrierattr_getpshared, pthread_barrierattr_setpshared

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the process-shared attribute of the barrier attributes object.
#i ncl ude <pt hread. h>

int pthread_barrierattr_getpshared(
const pthread_barrierattr_t *restrict attr,
int *restrict pshared);

int pthread_barrierattr_setpshared(
pthread_barrierattr_t *attr, int pshared);

First released in Issue 6. Derived from IEEE Std 1003.1j-2000

The pthread_barrierattr_getpshared() and pthread_barrierattr_setpshared()
functions are moved from the Barriers option.

The [EINVAL] error for an uninitialized barrier attributes object is removed; this
condition results in undefined behavior.

The Single UNIX® Specification: Authorized Guide to Version 4 221

System Interfaces System Interfaces Migration

pthread_cancel
Purpose: Cancel execution of a thread.
Synopsis: #i ncl ude <pt hr ead. h>
i nt pthread cancel (pthread_t thread);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_cancel() function is moved from the Threads option to the Base.
Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

pthread_cleanup_pop, pthread_cleanup_push

Purpose: Establish cancellation handlers.

Synopsis: #i ncl ude <pt hr ead. h>

voi d pt hread_cl eanup_pop(i nt execute);
voi d pt hread_cl eanup_push(void (*routine)(void*), void *arg);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_cleanup_pop() and pthread cleanup_push() functions are moved
from the Threads option to the Base.

pthread_cond_broadcast, pthread _cond_signal

Purpose: Broadcast or signal a condition.

Synopsis: #i ncl ude <pt hr ead. h>

i nt pthread _cond _broadcast (pthread cond_t *cond);
int pthread cond_signal (pthread cond_t *cond);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_cond_broadcast() and pthread _cond_signal() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized condition variable is removed; this condition
results in undefined behavior.

pthread_cond_destr oy, pthread _cond_init

Purpose: Destroy and initialize condition variables.

Synopsis: #i ncl ude <pt hr ead. h>

int pthread cond destroy(pthread cond t *cond);

int pthread cond init(pthread cond t *restrict cond,
const pthread condattr_t *restrict attr);

pt hread_cond_t cond = PTHREAD COND | NI TI ALI ZER;

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

222 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7:

The pthread_cond_destroy() and pthread _cond_init() functions are moved from
the Threads option to the Base.

The [EINVAL] error for an uninitialized condition variable and an uninitialized
condition variable attributes object is removed; this condition results in undefined
behavior.

The [EBUSY] error for a condition variable already in use or an already initialized
condition variable is removed; this condition results in undefined behavior.

pthread_cond_timedwait, pthread_cond_wait

Purpose:

Synopsis:

Derivation:

Issue 7:

Wait on a condition.
#i ncl ude <pt hread. h>

int pthread cond tinedwait(pthread cond t *restrict cond,
pthread _nmutex t *restrict nutex,
const struct timespec *restrict abstine);

int pthread cond wait(pthread cond t *restrict cond,
pthread _nmutex t *restrict nutex);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

SD5-XSH-ERN-44 is applied, changing the definition of the “shall fail” case of the
[EINVAL] error.

Changes are made from The Open Group Technical Standard, 2006, Extended
API Set Part 3.

The pthread_cond_timedwait() and pthread cond_wait() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized condition variable or uninitialized mutex
object is removed; this condition results in undefined behavior"

The [EPERM)] error is revised and moved to the “shall fail” list of error conditions
for the pthread_cond_timedwait() function.

The DESCRIPTION is updated to clarify the behavior when mutex is a robust
mutex.

The ERRORS section is updated to include *“shall fail” cases for
PTHREAD_MUTEX_ERRORCHECK mutexes.

The DESCRIPTION is rewritten to clarify that undefined behavior occurs only for
mutexes where the [EPERM] error is not mandated.

pthread_condattr_destr oy, pthread_condattr_init

Purpose:

Synopsis:

Derivation:

Destroy and initialize the condition variable attributes object.
#i ncl ude <pt hread. h>

int pthread condattr_destroy(pthread _condattr t *attr);
int pthread condattr_init(pthread_condattr_t *attr);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The Single UNIX® Specification: Authorized Guide to Version 4 223

System Interfaces System Interfaces Migration

Issue 7: The pthread_condattr_destroy() and pthread_condattr_init() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized condition variable attributes object is
removed; this condition results in undefined behavior.

pthread_condattr_getc lock, pthread_condattr_setclock

Purpose: Get and set the clock selection condition variable attribute.

Synopsis: #i ncl ude <pt hr ead. h>

int pthread condattr_getcl ock(
const pthread condattr_t *restrict attr,
clockid t *restrict clock_ id);

int pthread condattr_setcl ock(pthread condattr_t *attr,
clockid t clock id);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_condattr_getclock() and pthread_condattr_setclock() functions are
moved from the Clock Selection option to the Base.

The [EINVAL] error for an uninitialized condition variable attributes object is
removed; this condition results in undefined behavior.
pthread_condattr_getpshared, pthread_condattr_setpshared
Purpose: Get and set the process-shared condition variable attributes.
TSH Synopsis: #i ncl ude <pt hr ead. h>

i nt pthread_condattr_get pshared(
const pthread_condattr_t *restrict attr,
int *restrict pshared);

i nt pthread_condattr_setpshared(pthread_condattr_t *attr,
i nt pshared);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_condattr_getpshared() and pthread_condattr_setpshared() functions
are moved from the Threads option.

The [EINVAL] error for an uninitialized condition variable attributes object is
removed; this condition results in undefined behavior.

pthread_create

Purpose: Thread creation.

Synopsis: #i ncl ude <pt hr ead. h>

int pthread create(pthread t *restrict thread,
const pthread attr_t *restrict attr,
void *(*start_routine)(void*), void *restrict arg);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

224 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

OB XSl

Issue 7:

The pthread_create () function is moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_detach

Purpose:

Synopsis:

Derivation:

Issue 7:

Detach a thread.
#i ncl ude <pt hread. h>
int pthread detach(pthread_ t thread);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_detach() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

The [EINVAL] error for a non-joinable thread is removed; this condition results in
undefined behavior.

pthread_equal

Purpose:

Synopsis:

Derivation:

Issue 7:

pthread_exit
Purpose:

Synopsis:

Derivation:

Issue 7:

Compare thread IDs.
#i ncl ude <pt hread. h>
int pthread equal (pthread t t1, pthread t t2);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_equal() function is moved from the Threads option to the Base.

Thread termination.
#i ncl ude <pt hread. h>
void pthread exit(void *value ptr);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_exit() function is moved from the Threads option to the Base.

pthread_getconcurrenc vy, pthread_setconcurrency

Purpose:

Synopsis:

Derivation:

Get and set the level of concurrency.
#i ncl ude <pt hr ead. h>

i nt pthread_getconcurrency(void);
i nt pthread_setconcurrency(int new_ | evel);

First released in Issue 5.

The Single UNIX® Specification: Authorized Guide to Version 4 225

System Interfaces

TCT

TPS

226

Issue 7:

System Interfaces Migration

The pthread_getconcurrency() and pthread_setconcurrency() functions are
marked obsolescent.

pthread_getcpuc lockid

Purpose:

Synopsis:

Derivation:

Issue 7:

Access a thread CPU-time clock (ADVANCED REALTIME THREADS).

#i ncl ude <pt hr ead. h>
#i ncl ude <tine. h>

i nt pthread_get cpucl ockid(pthread_t thread_id,
clockid t *clock id);

First released in Issue 6. Derived from IEEE Std 1003.1d-1999.
The pthread_getcpuclockid () function is moved from the Threads option.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH)]
error condition.

pthread_getsc hedparam, pthread_setschedparam

Purpose:

Synopsis:

Derivation:

Issue 7:

Dynamic thread scheduling parameters access (REALTIME THREADS).
#i ncl ude <pt hr ead. h>

i nt pthread_get schedparan(pthread_t thread,
int *restrict policy,
struct sched_param *restrict param;

i nt pthread_setschedparan(pthread_t thread, int policy,
const struct sched_param *paran);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_getschedparam() and pthread_setschedparam() functions are
moved from the Threads option.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy
requirements for the sched_ss_repl_period and sched_ss_init_budget values.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH)]
error condition.

pthread_getspecific, pthread_setspecific

Purpose:

Synopsis:

Derivation:

Issue 7:

Thread-specific data management.
#i ncl ude <pt hread. h>

voi d *pthread_getspecific(pthread key t key);
int pthread setspecific(pthread key t key, const void *val ue);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_getspecific() and pthread_setspecific() functions are moved from the
Threads option to the Base.

The [EINVAL] error for a key value not obtained from pthread_key create() or a

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

key deleted with pthread key delete() is removed; this condition results in
undefined behavior.

pthread_join

Purpose: Wait for thread termination.

Synopsis: #i ncl ude <pt hr ead. h>
int pthread join(pthread t thread, void **value _ptr);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_join() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH)]
error condition.

The [EINVAL] error for a non-joinable thread is removed; this condition results in
undefined behavior.

The [EDEADLK] error for the calling thread is removed; this condition results in
undefined behavior.

pthread_key create

Purpose: Thread-specific data key creation.

Synopsis: #i ncl ude <pt hr ead. h>

int pthread key create(pthread_key t *key,
void (*destructor)(void*));

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_key_create() function is moved from the Threads option to the Base.

pthread_key delete
Purpose: Thread-specific data key deletion.
Synopsis: #i ncl ude <pt hr ead. h>
i nt pthread key del ete(pthread_key t key);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_key_delete() function is moved from the Threads option to the Base.

The [EINVAL] error for a key value not obtained from pthread_key create() or a
key deleted with pthread key delete() is removed; this condition results in
undefined behavior.

The Single UNIX® Specification: Authorized Guide to Version 4 227

System Interfaces

CX

228

pthread_Kill
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Send a signal to a thread.
#i ncl ude <si gnal . h>

int pthread_kill (pthread_t thread, int sig);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_Kkill() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

pthread_mutex_consistent

Purpose:

Synopsis:

Derivation:

Issue 7:

Mark state protected by robust mutex as consistent.
#i ncl ude <pt hread. h>
int pthread nutex_consistent(pthread nutex t *nutex);

If mutex is a robust mutex in an inconsistent state, the pthread_mutex_consistent()
function can be used to mark the state protected by the mutex referenced by mutex
as consistent again.

Application writers should note that the pthread mutex_consistent() function is
only responsible for notifying the implementation that the state protected by the
mutex has been recovered and that normal operations with the mutex can be
resumed. It is the responsibility of the application to recover the state so it can be
reused. If the application is not able to perform the recovery, it can notify the
implementation that the situation is unrecoverable by a call to
pthread_mutex_unlock() without a prior call to pthread mutex_consistent(), in
which case subsequent threads that attempt to lock the mutex will fail to acquire
the lock and be returned [ENOTRECOVERABLE].

First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 3.

First released in Issue 7.

pthread_mutex_destr oy, pthread_mutex_init

Purpose:

Synopsis:

Derivation:

Issue 7:

Destroy and initialize a mutex.
#i ncl ude <pt hread. h>

int pthread nutex_destroy(pthread nutex_ t *mutex);

int pthread nutex_init(pthread nutex_ t *restrict nutex,
const pthread nutexattr_t *restrict attr);

pt hread_nmutex t nutex = PTHREAD MJTEX | NI Tl ALI ZER;

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Changes are made from The Open Group Technical Standard, 2006, Extended
API Set Part 3.

The pthread_mutex_destroy() and pthread_mutex_init() functions are moved from

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

RPP|TPP

the Threads option to the Base.

The [EINVAL] error for an uninitialized mutex or an uninitialized mutex attributes
object is removed; this condition results in undefined behavior.

The [EBUSY] error for a locked mutex, a mutex that is referenced, or an already
initialized mutex is removed; this condition results in undefined behavior.

pthread_mute x_getprioceiling, pthread_mutex_setprioceiling

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the priority ceiling of a mutex (REALTIME THREADS).
#i ncl ude <pt hr ead. h>

i nt pthread_mnutex_getprioceiling(
const pthread_nutex_t *restrict mutex,
int *restrict prioceiling);
i nt pthread_nutex_setprioceiling(
pthread_nutex_t *restrict mutex,
int prioceiling, int *restrict old_ceiling);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Austin Group Interpretation 1003.1-2001 #052 is applied, adding [EDEADLK] as a
“may fail” error.

SD5-XSH-ERN-158 is applied, updating the ERRORS section to include a “shall
fail” error case for when the protocol attribute of mutex is PTHREAD_PRIO_NONE.

The pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions
are moved from the Threads option to require support of either the Robust Mutex
Priority Protection option or the Non-Robust Mutex Priority Protection option.

The DESCRIPTION and ERRORS sections are updated to account properly for all
of the various mutex types.

pthread_mutex_lock, pthread_mute x_tryloc k, pthread_mutex_unlock

Purpose:

Synopsis:

Derivation:

Issue 7:

Lock and unlock a mutex.
#i ncl ude <pt hread. h>

int pthread nutex_ | ock(pthread nutex_ t *mutex);
int pthread nutex_tryl ock(pthread nutex_ t *mutex);
i nt pthread _nutex_unl ock(pthread nutex_t *nutex);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

SD5-XSH-ERN-43 is applied, marking the “shall fail” case of the [EINVAL] error as
dependent on the Thread Priority Protection option.

Changes are made from The Open Group Technical Standard, 2006, Extended
API Set Part 3.

The pthread_mutex_lock(), pthread_mutex_trylock(), and
pthread_mutex_unlock() functions are moved from the Threads option to the Base.

The PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_ERRORCHECK,
PTHREAD_MUTEX_RECURSIVE, and PTHREAD_MUTEX_DEFAULT extended

The Single UNIX® Specification: Authorized Guide to Version 4 229

System Interfaces System Interfaces Migration

mutex types are moved from the XSI option to the Base.

The DESCRIPTION is updated to clarify the behavior when mutex does not refer to
an initialized mutex.

The ERRORS section is updated to account properly for all of the various mutex
types.

pthread_mutex_timedlock

Purpose: Lock a mutex.

Synopsis: #i ncl ude <pt hr ead. h>
#i ncl ude <tine. h>

int pthread nutex_tinedl ock(pthread nutex_t *restrict nutex,
const struct timespec *restrict abstine);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: Changes are made from The Open Group Technical Standard, 2006, Extended
API Set Part 3.

The pthread_mutex_timedlock() function is moved from the Timeouts option to the
Base.

Functionality relating to the Timers option is moved to the Base.

The DESCRIPTION is updated to clarify the behavior when mutex does not refer to
an initialized mutex.

The ERRORS section is updated to account properly for all of the various mutex
types.

pthread_mutexattr_destr oy, pthread_mutexattr_init

Purpose: Destroy and initialize the mutex attributes object.

Synopsis: #i ncl ude <pt hr ead. h>

int pthread nutexattr_destroy(pthread nutexattr t *attr);
int pthread nutexattr _init(pthread nutexattr t *attr);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_mutexattr_destroy() and pthread_mutexattr_init() functions are
moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.
pthread_mute xattr_getprioceiling, pthread_mutexattr_setprioceiling

Purpose: Get and set the prioceiling attribute of the mutex attributes object (REALTIME
THREADS).

RPPITPP Synopsis: #i ncl ude <pt hr ead. h>

int pthread_nutexattr_getprioceiling(
const pthread_nutexattr_t *restrict attr,
int *restrict prioceiling);

int pthread_nutexattr_setprioceiling(

230 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

MC1

TSH

Derivation:

Issue 7:

pthread_nutexattr_t *attr, int prioceiling);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_mutexattr_getprioceiling() and pthread mutexattr_setprioceiling()
functions are moved from the Threads option to require support of either the
Robust Mutex Priority Protection option or the Non-Robust Mutex Priority
Protection option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

pthread_mute xattr_getpr otocol, pthread_mutexattr _setprotocol

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the protocol attribute of the mutex attributes object (REALTIME
THREADS).

#i ncl ude <pt hr ead. h>

i nt pthread_nutexattr_get protocol (const pthread_nutexattr t
*restrict attr, int *restrict protocol);

int pthread_nutexattr_setprotocol (pthread_nutexattr_t *attr,
i nt protocol);

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

SD5-XSH-ERN-135 is applied, updating the DESCRIPTION to define a default
value for the protocol attribute.

SD5-XSH-ERN-188 is applied, clarifying that propagation of the priority inheritance
effect only applies if the other mutex has the protocol attribute
PTHREAD_PRIO_INHERIT.

The pthread _mutexattr_getprotocol() and pthread _mutexattr_setprotocol()
functions are moved from the Threads option to require support of either the Non-
Robust Mutex Priority Protection option or the Non-Robust Mutex Priority
Inheritance option or the Robust Mutex Priority Protection option or the Robust
Mutex Priority Inheritance option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

pthread_mute xattr_getpshared, pthread_mutexattr_setpshared

Purpose:

Synopsis:

Get and set the process-shared attribute.
#i ncl ude <pt hr ead. h>

i nt pthread_nutexattr_get pshared(const pthread_nutexattr _t
*restrict attr, int *restrict pshared);

int pthread_nutexattr_set pshared(pthread mutexattr_t *attr,
i nt pshared);

The Single UNIX® Specification: Authorized Guide to Version 4 231

System Interfaces System Interfaces Migration

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared()
functions are moved from the Threads option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

pthread_mute xattr_getr obust, pthread_mutexattr_setrobust
Purpose: Get and set the mutex robust attribute.
Synopsis: #i ncl ude <pt hr ead. h>

int pthread nutexattr_getrobust(
const pthread nutexattr_t *restrict attr,
int *restrict robust);

int pthread nutexattr_setrobust(pthread nutexattr_t *attr,
i nt robust);

The pthread_mutexattr_getrobust() and pthread_mutexattr_setrobust() functions,
respectively, get and set the mutex robust attribute.

Valid values for robust include:

PTHREAD_MUTEX_STALLED
No special actions are taken if the owner of the mutex is terminated while
holding the mutex lock. This can lead to deadlocks if no other thread can
unlock the mutex.
This is the default value.

PTHREAD_MUTEX_ROBUST

If the process containing the owning thread of a robust mutex terminates while
holding the mutex lock, the next thread that acquires the mutex is notified
about the termination by the return value [EOWNERDEAD] from the locking
function. If the owning thread of a robust mutex terminates while holding the
mutex lock, the next thread that acquires the mutex may be notified about the
termination by the return value [EOWNERDEAD]. The notified thread can
then attempt to mark the state protected by the mutex as consistent again by a
call to pthread_mutex_consistent(). After a subsequent successful call to
pthread_mutex_unlock(), the mutex lock is released and can be used
normally by other threads. If the mutex is unlocked without a call to
pthread_mutex_consistent(), it is placed in a permanently unusable state and
all attempts to lock the mutex fail with the error [ENOTRECOVERABLE]. The
only permissible operation on such a mutex is pthread_mutex_destroy/().

Application writers should note that the actions required to make the state
protected by the mutex consistent again are solely dependent on the application. If
it is not possible to make the state of a mutex consistent, robust mutexes can be
used to notify this situation by calling pthread_mutex_unlock() without a prior call
to pthread_mutex_consistent().

If the state is declared inconsistent by calling pthread_mutex_unlock() without a
prior call to pthread_mutex_consistent(), a possible approach could be to destroy
the mutex and then reinitialize it. However, it should be noted that this is possible
only in certain situations where the state protected by the mutex has to be
reinitialized and coordination achieved with other threads blocked on the mutex,

232 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

XSl

Derivation:

Issue 7:

because otherwise a call to a locking function with a reference to a mutex object
invalidated by a call to pthread_mutex_destroy() results in undefined behavior.

First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 3.

First released in Issue 7.

pthread_mute xattr_gettype, pthread_mutexattr_settype

Purpose:

Synopsis:

Derivation:

Issue 7:

Get and set the mutex type attribute.
#i ncl ude <pt hread. h>

int pthread nutexattr_gettype(
const pthread nutexattr_t *restrict attr,
int *restrict type);

int pthread nutexattr_settype(pthread nutexattr t *attr,
int type);

First released in Issue 5.

The pthread_mutexattr_gettype() and pthread mutexattr_settype() functions are
moved from the XSI option to the Base.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

pthread_once

Purpose:

Synopsis:

Derivation:

Issue 7:

Dynamic package initialization.
#i ncl ude <pt hread. h>

int pthread _once(pthread once_t *once_control,
void (*init_routine)(void));
pt hread_once_t once_control = PTHREAD ONCE I NI T;

First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The pthread_once() function is moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized pthread_once_t object is removed; this
condition results in undefined behavior.

pthread_rwlock_destr oy, pthread_rwlock init

Purpose:

Synopsis:

Derivation:

Destroy and initialize a read-write lock object.
#i ncl ude <pt hread. h>

int pthread rw ock _destroy(pthread rw ock t *rw ock);

int pthread rw ock _init(pthread rwock t *restrict rw ock,
const pthread rw ockattr_t *restrict attr);

pthread_rw ock_t rw ock = PTHREAD RW.OCK | NI Tl ALI ZER;

First released in Issue 5.

The Single UNIX® Specification: Authorized Guide to Version 4 233

System Interfaces System Interfaces Migration

Issue 7: Austin - Group Interpretation 1003.1-2001 #048 is applied, adding the
PTHREAD_RWLOCK_INITIALIZER macro.

The pthread_rwlock_destroy() and pthread_rwlock_init() functions are moved from
the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock object or read-write lock
attributes object is removed; this condition results in undefined behavior.

The [EBUSY] error for a locked read-write lock object or an already initialized read-
write lock object is removed; this condition results in undefined behavior.
pthread_rwlock_rdlock, pthread _rwloc k_tryr dlock
Purpose: Lock a read-write lock object for reading.
Synopsis: #i ncl ude <pt hr ead. h>

int pthread rw ock rdl ock(pthread rwl ock t *rw ock);
int pthread rw ock _tryrdl ock(pthread rwl ock t *rw ock);

Derivation: First released in Issue 5.

Issue 7: The pthread_rwlock_rdlock() and pthread_rwlock_tryrdlock() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

pthread_rwlock_timedrdlock

Purpose: Lock a read-write lock for reading.

Synopsis: #i ncl ude <pt hr ead. h>
#i ncl ude <tine. h>

int pthread rw ock_ti medrdl ock(
pthread rwl ock t *restrict rw ock,
const struct timespec *restrict abstine);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_rwlock_timedrdlock() function is moved from the Timeouts option to
the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

pthread_rwlock_timedwrlock

Purpose: Lock a read-write lock for writing.

Synopsis: #i ncl ude <pt hr ead. h>
#i ncl ude <tine. h>

int pthread rw ock_ti medw | ock(
pthread rwl ock t *restrict rw ock,
const struct timespec *restrict abstine);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

234 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7:

The pthread_rwlock_timedwrlock() function is moved from the Timeouts option to
the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

pthread_rwloc k_trywrloc k, pthread_rwlock_wrlock

Purpose:

Synopsis:

Derivation:

Issue 7:

Lock a read-write lock object for writing.
#i ncl ude <pt hread. h>

int pthread rw ock_tryw !l ock(pthread rwl ock t *rw ock);
int pthread rw ock_wl ock(pthread rw ock t *rw ock);

First released in Issue 5.

The pthread_rwlock_trywrlock() and pthread_rwlock wrlock() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

pthread_rwlock _unlock

Purpose:

Synopsis:

Derivation:

Issue 7:

Unlock a read-write lock object.

#i ncl ude <pt hread. h>

int pthread rw ock_unl ock(pthread rwl ock t *rw ock);
First released in Issue 5.

The pthread_rwlock_unlock() function is moved from the Threads option to the
Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

The [EPERM] error for a read-write lock object for which the current thread does
not hold a lock is removed; this condition results in undefined behavior.

pthread_rwlockattr_destr oy, pthread_rwlockattr_init

Purpose:

Synopsis:

Derivation:

Issue 7:

Destroy and initialize the read-write lock attributes object.
#i ncl ude <pt hread. h>

int pthread rw ockattr_destroy(pthread rw ockattr _t *attr);
int pthread rw ockattr_init(pthread rw ockattr_t *attr);

First released in Issue 5.

The pthread_rwlockattr_destroy() and pthread rwlockattr_init() functions are
moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock attributes object is removed;
this condition results in undefined behavior.

The Single UNIX® Specification: Authorized Guide to Version 4 235

System Interfaces System Interfaces Migration

pthread_rwloc kattr_getpshared, pthread_rwlockattr _setpshared
Purpose: Get and set the process-shared attribute of the read-write lock attributes object.
TSH Synopsis: #i ncl ude <pt hread. h>

int pthread_rw ockattr_get pshared(const pthread_rw ockattr _t
*restrict attr, int *restrict pshared);

int pthread_rw ockattr_set pshared(pthread_rw ockattr_t *attr,
i nt pshared);

Derivation: First released in Issue 5.

Issue 7: The pthread_rwlockattr_getpshared() and pthread_rwlockattr_setpshared()
functions are moved from the Threads option.

The [EINVAL] error for an uninitialized read-write lock attributes object is removed;
this condition results in undefined behavior.

pthread_self

Purpose: Get the calling thread ID.

Synopsis: #i ncl ude <pt hr ead. h>
pthread_t pthread_sel f(void);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #063 is applied, updating the RETURN
VALUE section to indicate that the pthread_self() function is always successful
and no return value is reserved to indicate an error.

The pthread_self() function is moved from the Threads option to the Base.

pthread_setcancelstate, pthread_setcanceltype, pthread_testcancel
Purpose: Set cancelability state.
Synopsis: #i ncl ude <pt hr ead. h>

int pthread setcancel state(int state, int *oldstate);
i nt pthread_setcanceltype(int type, int *oldtype);
voi d pt hread_testcancel (voi d);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_setcancelstate (), pthread_setcanceltype(), and pthread_testcancel()
functions are moved from the Threads option to the Base.

236 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

TPS

CX

pthread_setschedprio

Purpose:

Synopsis:

Derivation:

Issue 7:

Dynamic thread scheduling parameters access (REALTIME THREADS).
#i ncl ude <pt hr ead. h>
i nt pthread_setschedprio(pthread_t thread, int prio);

First released in Issue 6. Included as a response to IEEE PASC Interpretation
1003.1 #96.

The pthread_setschedprio() function is moved from the Threads option.

Austin Group Interpretation 1003.1-2001 #069 is applied, updating the [EPERM]
error.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH)]
error condition.

pthread_sigmask, sigprocmask

Purpose:

Synopsis:

Derivation:

Issue 7:

Examine and change blocked signals.
#i ncl ude <si gnal . h>

i nt pthread_sigmask(int how, const sigset t *restrict set,
sigset t *restrict oset);

i nt sigprocmask(int how, const sigset t *restrict set,
sigset t *restrict oset);

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

The pthread_sigmask() function is moved from the Threads option to the Base.

pthread_spin_destr oy, pthread_spin_init

Purpose:

Synopsis:

Derivation:

Issue 7:

Destroy or initialize a spin lock object.
#i ncl ude <pt hread. h>

int pthread spin_destroy(pthread spinlock t *lock);
int pthread spin_init(pthread spinlock t *lock, int pshared);

First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

The pthread_spin_destroy() and pthread_spin_init() functions are moved from the
Spin Locks option to the Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition
results in undefined behavior.

The [EBUSY] error for a locked spin lock object or an already initialized spin lock
object is removed; this condition results in undefined behavior.

The Single UNIX® Specification: Authorized Guide to Version 4 237

System Interfaces System Interfaces Migration

pthread_spin_lock, pthread_spin_trylock
Purpose: Lock a spin lock object.
Synopsis: #i ncl ude <pt hr ead. h>

int pthread _spin_|ock(pthread spinlock t *lock);
int pthread spin_trylock(pthread spinlock t *lock);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_spin_lock() and pthread_spin_trylock() functions are moved from the
Spin Locks option to the Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition
results in undefined behavior.

The [EDEADLK] error for a spin lock object for which the calling thread already
holds the lock is removed; this condition results in undefined behavior.
pthread_spin_unlock
Purpose: Unlock a spin lock object.
Synopsis: #i ncl ude <pt hr ead. h>
i nt pthread_spin_unl ock(pthread_spinlock t *lock);
Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_spin_unlock() function is moved from the Spin Locks option to the
Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition
results in undefined behavior.

The [EPERM] error for a spin lock object for which the current thread does not hold
the lock is removed; this condition results in undefined behavior.

ptsname
Purpose: Get name of the slave pseudo-terminal device.
XSl Synopsis: #i ncl ude <stdlib. h>

char *ptsnane(int fil des);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
putc
Purpose: Put a byte on a stream.

Synopsis: #i ncl ude <stdio. h>
int putc(int c, FILE *stream;
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

238 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

putchar
Purpose: Put a byte on a stdout stream.
Synopsis: #i ncl ude <stdio. h>

int putchar(int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
putenv
Purpose: Change or add a value to an environment.

XSl Synopsis: #i ncl ude <stdlib. h>

int putenv(char *string);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

putmsg, putpmsg
Purpose: Send a message on a STREAM (STREAMS).
oB xsrR Synopsis: #i ncl ude <stropts. h>

int putnsg(int fildes, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int flags);

int putpnsg(int fildes, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flags);

Derivation: First released in Issue 4, Version 2.

Issue 7: The putmsg() and putpmsg() functions are marked obsolescent.
puts
Purpose: Put a string on standard output.

Synopsis: #i ncl ude <stdi o. h>
int puts(const char *s);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.
putwc
Purpose: Put a wide character on a stream.

Synopsis: #i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

wint t putwc(wchar _t we, FILE *stream;

Derivation: First released as a World-wide Portability Interface in Issue 4.

The Single UNIX® Specification: Authorized Guide to Version 4 239

System Interfaces

Issue 7:

putwchar
Purpose:

Synopsis:

Derivation:

Issue 7:

gsort
Purpose:

Synopsis:

Derivation:

Issue 7:

raise
Purpose:

Synopsis:

Derivation:

Issue 7:

rand, rand_r,
Purpose:

Synopsis:
OB CX

Derivation:

Issue 7:

240

System Interfaces Migration

No functional changes are made in this issue.

Put a wide character on a stdout stream.
#i ncl ude <wchar. h>

Wi nt _t putwchar (wchar _t wc);
First released in Issue 4.

No functional changes are made in this issue.

Sort a table of data.
#i ncl ude <stdlib. h>

void gsort(void *base, size t nel, size t width,
int (*conpar)(const void *, const void *));

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Send a signal to the executing process.

#i ncl ude <signal . h>

int raise(int sig);

First released in Issue 4. Derived from the ANSI C standard.

Functionality relating to the Threads option is moved to the Base.

srand
Pseudo-random number generator.
#i ncl ude <stdlib. h>

i nt rand(void);
int rand _r(unsigned *seed);
voi d srand(unsi gned seed);

First released in Issue 1. Derived from Issue 1 of the SVID.

The rand_r() function is marked obsolescent. Applications should use random()
instead, or erand48(), nrand48(), or jrand48() when an independent random
number sequence in multiple threads is required.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

pread, read
Purpose: Read from a file.
Synopsis: #i ncl ude <uni std. h>

ssize t pread(int fildes, void *buf, size t nbyte,
off t offset);
ssize t read(int fildes, void *buf, size t nbyte);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: The pread() function is moved from the XSI option to the Base.
Functionality relating to the XSI STREAMS option is marked obsolescent.

Changes are made related to support for finegrained timestamps.

readdir , readdir_r
Purpose: Read a directory.
Synopsis: #i ncl ude <dirent. h>

struct dirent *readdir(DIR *dirp);

int readdir _r(DIR *restrict dirp,
struct dirent *restrict entry,
struct dirent **restrict result);

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #059 is applied, updating the ERRORS
section.

The readdir_r() function is moved from the Thread-Safe Functions option to the
Base.

Changes are made related to support for finegrained timestamps.

The value of the d_ino member is no longer unspecified for symbolic links.

readlink, readlinkat
Purpose: Read the contents of a symbolic link relative to a directory file descriptor.
Synopsis: #i ncl ude <uni std. h>

ssize_t readlink(const char *restrict path,
char *restrict buf, size t bufsize);

ssize_t readlinkat(int fd, const char *restrict path,
char *restrict buf, size t bufsize);

The readlinkat() function is equivalent to the readlink() function except in the case
where path specifies a relative path. In this case the symbolic link whose content is
read is relative to the directory associated with the file descriptor fd instead of the
current working directory. If the file descriptor was opened without O_SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the readlinkat() function is to read the content of symbolic links in
directories other than the current working directory without exposure to race
conditions. Any part of the path of a file could be changed in parallel to a call to

The Single UNIX® Specification: Authorized Guide to Version 4 241

System Interfaces System Interfaces Migration

readlink (), resulting in unspecified behavior. By opening a file descriptor for the
target directory and using the readlinkat() function it can be guaranteed that the
symbolic link read is located relative to the desired directory.

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The readlinkat() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

The [EACCES] error is removed from the “may fail” error conditions.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a

directory.
readv
Purpose: Read a vector.
XSl Synopsis: #i ncl ude <sys/ ui o. h>

ssize t readv(int fildes, const struct iovec *iov,
int iovent);

Derivation: First released in Issue 4, Version 2.

Issue 7: Changes are made related to support for finegrained timestamps.
realloc
Purpose: Memory reallocator.

Synopsis: #i ncl ude <stdlib. h>
void *realloc(void *ptr, size t size);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
realpath
Purpose: Resolve a pathname.

XSl Synopsis: #i ncl ude <stdlib. h>

char *real path(const char *restrict file_nane,
char *restrict resol ved _nane);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

This function is updated for passing a null pointer for the resolved_name argument,
to request that it allocate memory for the generated pathname, as if by malloc(). If
resolved_name is not a null pointer and {PATH_MAX} is not defined as a constant
in the <limits.h> header, the behavior is undefined.

242 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

recv
Purpose: Receive a message from a connected socket.
Synopsis: #i ncl ude <sys/socket. h>

ssize_t recv(int socket, void *buffer, size t |ength,

int flags);
Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.
Issue 7: No functional changes are made in this issue.
recvfrom
Purpose: Receive a message from a socket.

Synopsis: #i ncl ude <sys/socket. h>

ssize_t recvfron(int socket, void *restrict buffer,
size_ t length, int flags,
struct sockaddr *restrict address,
socklen_t *restrict address_|en);

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: No functional changes are made in this issue.
recvmsg
Purpose: Receive a message from a socket.

Synopsis: #i ncl ude <sys/socket. h>
ssize_t recvnsg(int socket, struct msghdr *nessage, int flags);
Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: No functional changes are made in this issue.

regcomp, regerror , regexec, regfree
Purpose: Regular expression matching.
Synopsis: #i ncl ude <regex. h>

int regconp(regex_t *restrict preg,
const char *restrict pattern, int cflags);
size_ t regerror(int errcode, const regex_ t *restrict preg,
char *restrict errbuf, size t errbuf_size);
i nt regexec(const regex_t *restrict preg,
const char *restrict string, size_t nmatch,
regmatch_t pmatch[restrict], int eflags);
void regfree(regex_t *preg);

Derivation: First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 7: Austin Group Interpretation 1003.1-2001 #134 is applied, clarifying that if more
than one error occurs in processing a function call, any one of the possible
constants may be returned.

SD5-XBD-ERN-60 is applied, removing the requirement that the type regoff t can
hold the largest value that can be stored in type off t, and adding the requirement

The Single UNIX® Specification: Authorized Guide to Version 4 243

System Interfaces System Interfaces Migration

that the type regoff t can hold the largest value that can be stored in type
ptrdiff t .

remainder , remainderf , remainderl

Purpose: Remainder function.

Synopsis: #i ncl ude <nat h. h>

doubl e renai nder (doubl e x, double y);
float remainderf(float x, float y);
| ong doubl e remai nderl (1 ong double x, |ong double y);

Derivation: First released in Issue 4, Version 2.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #55 (SD5-XSH-ERN-82) is
applied.

remove

Purpose: Remove a file.

Synopsis: #i ncl ude <stdi o. h>
i nt renove(const char *path);

Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard
and the I1SO C standard.

Issue 7: No functional changes are made in this issue.

remquo, remquof , remquol
Purpose: Remainder functions.
Synopsis: #i ncl ude <nat h. h>

doubl e renguo(doubl e x, double y, int *quo);
float renguof(float x, float y, int *quo);
| ong doubl e remquol (1 ong doubl e x, |long double y, int *quo);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #56 (SD5-XSH-ERN-83) is
applied.

rename, renameat

Purpose: Rename file relative to directory file descriptor.

Synopsis: #i ncl ude <stdi o. h>

i nt renanme(const char *old, const char *new);
cX int renaneat (i nt ol dfd, const char *old, int newfd,
const char *new;

The renameat() function is equivalent to the rename() function except in the case
where either old or new specifies a relative path. If old is a relative path, the file to
be renamed is located relative to the directory associated with the file descriptor
oldfd instead of the current working directory. If new is a relative path, the same
happens only relative to the directory associated with newfd. If the file descriptor

244 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation:

Issue 7:

rewind
Purpose:

Synopsis:

Derivation:

Issue 7:

rewinddir
Purpose:

Synopsis:

Derivation:

Issue 7:

was opened without O_SEARCH, the function checks whether directory searches
are permitted using the current permissions of the directory underlying the file
descriptor. If the file descriptor was opened with O_SEARCH, the function does not
perform the check.

The purpose of the renameat() function is to rename files in directories other than
the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to rename(), resulting in
unspecified behavior. By opening file descriptors for the source and target
directories and using the renameat() function it can be guaranteed that that
renamed file is located correctly and the resulting file is in the desired directory.

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Austin Group Interpretation 1003.1-2001 #016 is applied, changing the definition of
the [ENOTDIR] error.

Austin Group Interpretation 1003.1-2001 #076 is applied, clarifying the behavior if
the final component of a path is either dot or dot-dot, and adding the associated
[EINVAL] error case.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #145 is applied, clarifying that the
[ENOENT] error condition also applies to the case in which a component of new
does not exist.

Austin Group Interpretation 1003.1-2001 #181 is applied, updating the
requirements for operations when the S_ISVTX bit is set on a directory.

The renameat() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

Reset the file position indicator in a stream.

#i ncl ude <stdio. h>

void rewi nd(FILE *stream;

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Reset the position of a directory stream to the beginning of a directory.
#i ncl ude <dirent. h>

void rewinddir(DIR *dirp);

First released in Issue 2.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 245

System Interfaces System Interfaces Migration

rint, rintf , rintl
Purpose: Round-to-nearest integral value.
Synopsis: #i ncl ude <nat h. h>

doubl e rint(double x);
float rintf(float x);
| ong double rintl(long double x);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
rmdir
Purpose: Remove a directory.

Synopsis: #i ncl ude <uni std. h>
int rndir(const char *path);
Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #181 is applied, updating the
requirements for operations when the S_ISVTX bit is set.

Changes are made related to support for finegrained timestamps.

round, roundf , roundl
Purpose: Round to the nearest integer value in a floating-point format.
Synopsis: #i ncl ude <nat h. h>

doubl e round(doubl e x);
float roundf(float Xx);
| ong doubl e roundl (1 ong doubl e x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

scalbln, scalbinf , scalbinl, scalbn, scalbnf , scalbnl
Purpose: Compute exponent using FLT_RADIX.
Synopsis: #i ncl ude <nat h. h>

doubl e scal bl n(double x, long n);

float scal blnf(float x, long n);

| ong doubl e scal bl nl (I ong double x, long n);
doubl e scal bn(double x, int n);

float scalbnf(float x, int n);

| ong doubl e scal bnl (1 ong double x, int n);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

246 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

sched_get priority_ max, sched_get priority_min
Purpose: Get priority limits (REALTIME).
PsiTrs Synopsis: #i ncl ude <sched. h>

int sched_get _priority_max(int policy);
int sched _get priority _mn(int policy);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

sched_getparam
Purpose: Get scheduling parameters (REALTIME).
PS Synopsis: #i ncl ude <sched. h>

int sched_getparanm(pid_t pid, struct sched_param *paran ;

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

sched_getsc heduler
Purpose: Get scheduling policy (REALTIME).
PS Synopsis: #i ncl ude <sched. h>

i nt sched_get schedul er(pid_t pid);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

sched_rr_get interv al
Purpose: Get execution time limits (REALTIME).
psiTrs Synopsis: #i ncl ude <sched. h>

int sched_rr_get_interval (pid_t pid,
struct tinmespec *interval);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime

Extension.

Issue 7: No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 247

System Interfaces System Interfaces Migration

sched_setparam
Purpose: Set scheduling parameters (REALTIME).
PS Synopsis: #i ncl ude <sched. h>

i nt sched_set paran(pid_t pid,
const struct sched_param *paran);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #061 is applied, clarifying the effect of
process scheduling on the scheduling of threads within the process.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy
requirements for the sched_ss_repl_period and sched_ss_init_budget values.
sched_setscheduler
Purpose: Set scheduling policy and parameters (REALTIME).
PS Synopsis: #i ncl ude <sched. h>

i nt sched_setschedul er(pid_t pid, int policy,
const struct sched_param *paran)j;

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #061 is applied, clarifying the effect of
process scheduling on the scheduling of threads within the process.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy
requirements for the sched_ss_repl_period and sched_ss_init_budget values.
sched_yield
Purpose: Yield the processor.
Synopsis: #i ncl ude <sched. h>
int sched_yield(void);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension and the POSIX Threads Extension.

Issue 7: SD5-XSH-ERN-120 is applied, adding APPLICATION USAGE.

The sched_yield() function is moved to the Base.

seekdir
Purpose: Set the position of a directory stream.
XSl Synopsis: #i ncl ude <dirent. h>

voi d seekdir(DIR *dirp, long | oc);

248 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation:

Issue 7:

sem_close
Purpose:

Synopsis:

Derivation:

Issue 7:

First released in Issue 2.

SD5-XSH-ERN-200 is applied, updating the DESCRIPTION to note that the value
of loc should have been returned from an earlier call to telldir() using the same
directory stream.

Close a named semaphore.
#i ncl ude <semaphore. h>
int semclose(semt *sen);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The sem_close() function is moved from the Semaphores option to the Base.

sem_destr oy

Purpose:

Synopsis:

Derivation:

Issue 7:

Destroy an unnamed semaphore.
#i ncl ude <semaphore. h>
int semdestroy(semt *sem;

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The sem_destroy() function is moved from the Semaphores option to the Base.

sem_getv alue

Purpose:

Synopsis:

Derivation:

Issue 7:

sem_init
Purpose:

Synopsis:

Derivation:

Issue 7:

Get the value of a semaphore.
#i ncl ude <semaphore. h>
int semgetvalue(semt *restrict sem int *restrict sval);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The sem_getvalue() function is moved from the Semaphores option to the Base.

Initialize an unnamed semaphore.
#i ncl ude <semaphore. h>
int seminit(semt *sem int pshared, unsigned val ue);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

SD5-XSH-ERN-176 is applied.

The sem_init() function is moved from the Semaphores option to the Base.

The Single UNIX® Specification: Authorized Guide to Version 4 249

System Interfaces

sem_open
Purpose:

Synopsis:

Derivation:

Issue 7:

sem_post
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Initialize and open a named semaphore.
#i ncl ude <semaphore. h>
semt *sem open(const char *nane, int oflag, ...);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Austin Group Interpretation 1003.1-2001 #066 is applied, updating the [ENOSPC]
error case and adding the [ENOMEM] error case.

Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name
argument and adding [ENAMETOOLONG] as a “may fail” error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording
for setting the user ID and group ID of the semaphore.

The sem_open() function is moved from the Semaphores option to the Base.

Unlock a semaphore.
#i ncl ude <semaphore. h>
int sempost(semt *sem;

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The sem_post() function is moved from the Semaphores option to the Base.

sem_timedwait

Purpose:

Synopsis:

Derivation:

Issue 7:

250

Lock a semaphore.

#i ncl ude <semaphore. h>
#i ncl ude <tine. h>

int semtinedwait(semt *restrict sem
const struct timespec *restrict abstine);

First released in Issue 6. Derived from IEEE Std 1003.1d-1999.
The sem_timedwait() function is moved from the Semaphores option to the Base.
Functionality relating to the Timers option is moved to the Base.

An example is added.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

XSl

XSl

sem_trywait, sem_wait

Purpose:

Synopsis:

Derivation:

Issue 7:

sem_unlink
Purpose:

Synopsis:

Derivation:

Issue 7:

semctl
Purpose:

Synopsis:

Derivation:

Issue 7:

semget
Purpose:

Synopsis:

Derivation:

Issue 7:

Lock a semaphore.
#i ncl ude <semaphore. h>

int semtrywait(semt *sem;
int semwait(semt *sem;

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

SD5-XSH-ERN-54 is applied, removing the sem_wait() function from the “shall
fail” error cases.

The sem_trywait() and sem_wait() functions are moved from the Semaphores
option to the Base.

Remove a named semaphore.
#i ncl ude <semaphore. h>
int semunlink(const char *nane);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Austin Group Interpretation 1003.1-2001 #077 is applied, changing
[ENAMETOOLONG] from a “shall fail” to a “may fail” error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

The sem_unlink() function is moved from the Semaphores option to the Base.

XSI semaphore control operations.
#i ncl ude <sys/sem h>

int senctl(int semd, int setmum int cnd, ...);

First released in Issue 2. Derived from Issue 2 of the SVID.

No functional changes are made in this issue.

Get set of XSI semaphores.
#i ncl ude <sys/sem h>

i nt senget(key t key, int nsens, int senflqg);

First released in Issue 2. Derived from Issue 2 of the SVID.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 251

System Interfaces

semop
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

send
Purpose:

Synopsis:

Derivation:

Issue 7:

sendmsg
Purpose:

Synopsis:

Derivation:

Issue 7:

252

System Interfaces Migration

XSI semaphore operations.
#i ncl ude <sys/sem h>

int semop(int semid, struct senmbuf *sops, size_t nsops);

First released in Issue 2. Derived from Issue 2 of the SVID.

SD5-XSH-ERN-171 is applied, updating the DESCRIPTION to clarify the order in
which the operations in sops will be performed when there are multiple operations.

Send a message on a socket.
#i ncl ude <sys/socket. h>

ssize_t send(int socket, const void *huffer,
size_t length, int flags);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Austin Group Interpretation 1003.1-2001 #035 is applied, updating the
DESCRIPTION to clarify the behavior when the socket is a connectionless-mode
socket.

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

The [EPIPE] error is modified.

Send a message on a socket using a message structure.
#i ncl ude <sys/socket. h>

ssize_t sendnsg(int socket, const struct nsghdr *nessage,
int flags);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Austin Group Interpretation 1003.1-2001 #073 is applied, describing the allowed
behaviors when a peer address has been pre-specified.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

The [EPIPE] error is modified.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

sendto
Purpose:

Synopsis:

Derivation:

Issue 7:

setbuf
Purpose:

Synopsis:

Derivation:

Issue 7:

setegid
Purpose:

Synopsis:

Derivation:

Issue 7:

setenv
Purpose:

cX Synopsis:

Derivation:

Issue 7:

Send a message on a socket.
#i ncl ude <sys/socket. h>

ssize_t sendto(int socket, const void *nmessage, size_t |ength,
int flags, const struct sockaddr *dest addr,
socklen_t dest _|en);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Austin Group Interpretations 1003.1-2001 #035 and #073 are applied, describing
the allowed behaviors when a peer address has been pre-specified.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

The [EPIPE] error is modified.

Assign buffering to a stream.

#i ncl ude <stdio. h>

voi d setbuf (FILE *restrict stream char *restrict buf);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Set the effective group ID.

#i ncl ude <uni std. h>

int setegid(gid_t gid);

First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

No functional changes are made in this issue.

Add or change environment variable.
#i ncl ude <stdlib. h>

i nt setenv(const char *envnane, const char *envval,
int overwite);

First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 253

System Interfaces System Interfaces Migration

seteuid
Purpose: Set effective user ID.
Synopsis: #i ncl ude <uni std. h>
int seteuid(uid_t uid);
Derivation: First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

Issue 7: No functional changes are made in this issue.

setgid

Purpose: Set group ID.

Synopsis: #i ncl ude <uni std. h>
int setgid(gid t gid);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
setimp
Purpose: Set jump point for a non-local goto.

Synopsis: #i ncl ude <setj np. h>
int setjnp(jnp_buf env);
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

setkey
Purpose: Set encoding key (CRYPT).
XSl Synopsis: #i ncl ude <stdlib. h>

voi d set key(const char *key);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.
setlocale
Purpose: Set program locale.

Synopsis: #i ncl ude <l ocal e. h>
char *setlocal e(int category, const char *|ocale);
Derivation: First released in Issue 3.

Issue 7: Functionality relating to the Threads option is moved to the Base.

254 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

setpgid
Purpose:

Synopsis:

Derivation:

Issue 7:

setpgrp
Purpose:

oB xsl Synopsis:

Derivation:

Issue 7:

setregid
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

setreuid
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

setsid
Purpose:

Synopsis:

Derivation:

Set process group ID for job control.

#i ncl ude <uni std. h>

int setpgid(pid_t pid, pid_t pgid);

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

No functional changes are made in this issue.

Set the process group ID.
#i ncl ude <uni std. h>

pid_t setpgrp(void);

First released in Issue 4, Version 2.

The setpgrp() function is marked obsolescent. Applications should use setpgid()
or setsid() as appropriate.

Set real and effective group IDs.
#i ncl ude <uni std. h>

int setregid(gid t rgid, gidt egid);

First released in Issue 4, Version 2.

SD5-XSH-ERN-177 is applied, adding the ability to set both the effective group ID
and saved set-group-ID to be the same as the real group ID.

Set real and effective user IDs.
#i ncl ude <uni std. h>

int setreuid(uid t ruid, uid t euid);

First released in Issue 4, Version 2.

SD5-XSH-ERN-177 is applied, adding the ability to set both the effective user ID
and the saved set-user-ID to be the same as the real user ID.

Create session and set process group ID.

#i ncl ude <uni std. h>

pidt setsid(void);

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

The Single UNIX® Specification: Authorized Guide to Version 4 255

System Interfaces

Issue 7:

setsoc kopt
Purpose:

Synopsis:

Derivation:

Issue 7:

setuid
Purpose:

Synopsis:

Derivation:

Issue 7:

setvbuf
Purpose:

Synopsis:

Derivation:

Issue 7:

shm_open
Purpose:

SHM Synopsis:

Derivation:

Issue 7:

256

System Interfaces Migration

No functional changes are made in this issue.

Set the socket options.
#i ncl ude <sys/socket. h>

i nt setsockopt(int socket, int level, int option_nane,
const void *option_value, socklen_t option_len);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Austin Group Interpretation 1003.1-2001 #158 is applied, removing text relating to
socket options that is now in XSH Section 2.10.16 .

Set user ID.

#i ncl ude <uni std. h>

int setuid(uid_ t uid);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Assign buffering to a stream.
#i ncl ude <stdio. h>

i nt setvbuf (FILE *restrict stream char *restrict buf,
int type, size_ t size);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Open a shared memory object (REALTIME).
#i ncl ude <sys/ nmman. h>

i nt shm open(const char *nane, int oflag, node_t node);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name
argument and changing [ENAMETOOLONG] from a “shall fail” to a “may fail” error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording
for setting the user ID and group ID of the shared memory object.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

shm_unlink
Purpose:

SHM Synopsis:

Derivation:

Issue 7:

shmat
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

shmctl
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

shmdt
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

Remove a shared memory object (REALTIME).
#i ncl ude <sys/ nmman. h>

i nt shmunlink(const char *nane);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Austin Group Interpretation 1003.1-2001 #077 is applied, changing
[ENAMETOOLONG] from a “shall fail” to a “may fail” error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

XSl shared memory attach operation.
#i ncl ude <sys/shm h>

void *shmat (i nt shmid, const void *shmaddr, int shnflg);

First released in Issue 2. Derived from Issue 2 of the SVID.

No functional changes are made in this issue.

XSI shared memory control operations.
#i ncl ude <sys/shm h>

int shnectl (int shmd, int cnd, struct shmd ds *buf);

First released in Issue 2. Derived from Issue 2 of the SVID.

No functional changes are made in this issue.

XSl shared memory detach operation.
#i ncl ude <sys/shm h>

i nt shndt (const void *shmaddr);

First released in Issue 2. Derived from Issue 2 of the SVID.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 257

System Interfaces System Interfaces Migration

shmget
Purpose: Get an XSI shared memory segment.
XSl Synopsis: #i ncl ude <sys/shm h>

i nt shnget (key_t key, size t size, int shnflg);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.
shutdown
Purpose: Shut down socket send and receive operations.

Synopsis: #i ncl ude <sys/socket. h>
i nt shutdown(int socket, int how;

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: No functional changes are made in this issue.
sigaction
Purpose: Examine and change a signal action.

cX Synopsis: #i ncl ude <si gnal . h>

int sigaction(int sig, const struct sigaction *restrict act,
struct sigaction *restrict oact);

Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 7: Austin Group Interpretation 1003.1-2001 #004 is applied, clarifying that the
sigaction() function may fail if the SA_SIGINFO flag is set in the sa_flags field of
the sigaction structure for a signal not in the range SIGRTMIN to SIGRTMAX.

Austin Group Interpretations 1003.1-2001 #065 and #084 are applied, clarifying
the role of the SA_NODEFER flag with respect to the signal mask, and clarifying
the SA_RESTART flag for interrupted functions which use timeouts.

SD5-XSH-ERN-167 is applied, updating the APPLICATION USAGE section to
explain that unless all signal handlers have errno set on return as it was on entry,
the value of errno is unspecified.

SD5-XSH-ERN-172 is applied, updating the DESCRIPTION to make optional the
requirement that when the SA_RESETHAND flag is set, sigaction() shall behave
as if the SA_NODEFER flag were also set.

Functionality relating to the Realtime Signals Extension option is moved to the
Base.

The description of the si_code member is replaced with a reference to XSH
Section 2.4.3 .

258 A Source Book from The Open Group (2010)

System Interfaces Migration

CX

XSl

CX

CX

CX

The Single UNIX® Specification: Authorized Guide to Version 4

sigaddset
Purpose:

Synopsis:

Derivation:

Issue 7:

sigaltstack
Purpose:

Synopsis:

Derivation:

Issue 7:

sigdelset
Purpose:

Synopsis:

Derivation:

Issue 7:

sigemptyset
Purpose:

Synopsis:

Derivation:

Issue 7:

sigfillset
Purpose:

Synopsis:

Derivation:

System Interfaces

Add a signal to a signal set.
#i ncl ude <si gnal . h>

i nt sigaddset(sigset t *set, int signo);

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

No functional changes are made in this issue.

Set and get signal alternate stack context.
#i ncl ude <si gnal . h>

int sigaltstack(const stack t *restrict ss,
stack t *restrict 0ss);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Delete a signal from a signal set.
#i ncl ude <si gnal . h>

i nt sigdel set(sigset t *set, int signo);

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

No functional changes are made in this issue.

Initialize and empty a signal set.
#i ncl ude <si gnal . h>

int sigenptyset(sigset_t *set);
First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

No functional changes are made in this issue.

Initialize and fill a signal set.
#i ncl ude <si gnal . h>

int sigfillset(sigset t *set);

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

259

System Interfaces System Interfaces Migration

OB XSl

OB XSl

CX

CX

260

Issue 7: No functional changes are made in this issue.

sighold, sigignore , sigpause, sigrelse, sigset
Purpose: Signal management.
Synopsis: #i ncl ude <si gnal . h>

int sighold(int sig);

int sigignore(int sig);

i nt sigpause(int sig);

int sigrelse(int sig);

void (*sigset(int sig, void (*disp)(int)))(int);

Derivation: First released in Issue 4, Version 2.

Issue 7: These functions are marked obsolescent. Applications should use the sigaction()
function instead of the sigset() function, the pthread_sigmask() or sigprocmask()
functions instead of the sighold() and sigrelse() functions, and the sigsuspend()
function instead of the sigpause () function.

siginterrupt

Purpose: Allow signals to interrupt functions.

Synopsis: #i ncl ude <signal . h>

int siginterrupt(int sig, int flag);

Derivation: First released in Issue 4, Version 2.

Issue 7: The siginterrupt() function is marked obsolescent. Applications should use
sigaction() with the SA_RESTART flag instead.

sigismember

Purpose: Test for a signal in a signal set.

Synopsis: #i ncl ude <si gnal . h>

i nt sigismenber(const sigset t *set, int signo);

Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 7: No functional changes are made in this issue.
siglongjmp
Purpose: Non-local goto with signal handling.

Synopsis: #i ncl ude <setj np. h>
voi d si gl ongj np(si gj np_buf env, int val);

Derivation: First released in Issue 3. Included for alignment with the ISO POSIX-1 standard.

Issue 7: No functional changes are made in this issue.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

signal
Purpose:

Synopsis:

Derivation;
Issue 7:
signbit
Purpose:

Synopsis:

Derivation:

Issue 7:

sigpending
Purpose:

cX Synopsis:

Derivation:

Issue 7:

sigqueue
Purpose:

cX Synopsis:

Derivation:

Issue 7:
sigsetjmp

Purpose:

cX Synopsis:

Derivation:

Signal management.

#i ncl ude <signal . h>

void (*signal (int sig, void (*func)(int)))(int);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Test sign.

#i ncl ude <mat h. h>

int signbit(real-floating x);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

Examine pending signals.
#i ncl ude <si gnal . h>

i nt sigpending(sigset t *set);

First released in Issue 3.

No functional changes are made in this issue.

Queue a signal to a process.
#i ncl ude <si gnal . h>

int sigqueue(pid_t pid, int signo, const union sigval value);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension and the POSIX Threads Extension.

The sigqueue() function is moved from the Realtime Signals Extension option to
the Base.

Set jump point for a non-local goto.
#i ncl ude <setj np. h>

int sigsetjnp(sigjnmp_buf env, int savemask);

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

The Single UNIX® Specification: Authorized Guide to Version 4 261

System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.

sigsuspend
Purpose: Wait for a signal.
cX Synopsis: #i ncl ude <si gnal . h>

i nt sigsuspend(const sigset_t *sigmask);

Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.
Issue 7: SD5-XSH-ERN-122 is applied, adding the example code in the RATIONALE.

sigtimedwait, sigwaitinfo
Purpose: Wait for queued signals.
cX Synopsis: #i ncl ude <si gnal . h>

int sigtinmedwait(const sigset t *restrict set,
siginfo t *restrict info,
const struct timespec *restrict tineout);
int sigwaitinfo(const sigset t *restrict set,
siginfo t *restrict info);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension and the POSIX Threads Extension.

Issue 7: The sigtimedwait() and sigwaitinfo() functions are moved from the Realtime
Signals Extension option to the Base.
sigwait
Purpose: Wait for queued signals.
cX Synopsis: #i ncl ude <si gnal . h>

int sigwait(const sigset t *restrict set, int *restrict sig);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension and the POSIX Threads Extension.

Issue 7: Functionality relating to the Realtime Signals Extension option is moved to the
Base.

sin, sinf , sinl

Purpose: Sine function.

Synopsis: #i ncl ude <nat h. h>

doubl e sin(double x);
float sinf(float x);
| ong doubl e sinl (long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

262 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7:

No functional changes are made in this issue.

sinh, sinhf , sinhl

Purpose:

Synopsis:

Derivation:

Issue 7:

sleep
Purpose:

Synopsis:

Derivation:

Issue 7:

sockatmark
Purpose:

Synopsis:

Derivation:

Issue 7:

socket
Purpose:

Synopsis:

Derivation:

Issue 7:

socketpair
Purpose:

Synopsis:

Derivation:

Hyperbolic sine functions.
#i ncl ude <mat h. h>

doubl e si nh(doubl e x);
float sinhf(float x);
| ong doubl e sinhl (I ong double x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Suspend execution for an interval of time.

#i ncl ude <uni std. h>

unsi gned sl eep(unsi gned seconds);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Determine whether a socket is at the out-of-band mark.

#i ncl ude <sys/socket. h>

i nt sockatnmark(int s);

First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error
condition.

Create an endpoint for communication.

#i ncl ude <sys/socket. h>

int socket(int domain, int type, int protocol);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

No functional changes are made in this issue.

Create a pair of connected sockets.
#i ncl ude <sys/socket. h>

i nt socketpair(int domain, int type, int protocol,
i nt socket vector[2]);

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The Single UNIX® Specification: Authorized Guide to Version 4 263

System Interfaces

Issue 7:

System Interfaces Migration

The description of the [EMFILE] error condition is aligned with the pipe() function.

sqrt, sqrtf , sqrtl

Purpose:

Synopsis:

Derivation:

Issue 7:

stderr , stdin,

Purpose:

Synopsis:

Derivation:

Issue 7:

Square root function.
#i ncl ude <mat h. h>

doubl e sqgrt(double x);
float sqrtf(float x);
| ong doubl e sqgrtl(long double x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

stdout

Standard I/O streams.

#i ncl ude <stdio. h>

extern FILE *stderr, *stdin, *stdout;
First released in Issue 1.

No functional changes are made in this issue.

strcasecmp, strcasecmp_|, strncasecmp, strncasecmp_|

Purpose:

Synopsis:

Derivation:

Issue 7:

264

Case-insensitive string comparisons.
#i ncl ude <strings. h>

i nt strcasecnp(const char *sl, const char *s2);
int strcasecnp_| (const char *sl1, const char *s2,
|l ocale t locale);
i nt strncasecnp(const char *sl1, const char *s2, size t n);
int strncasecnp_| (const char *sl, const char *s2,
size t n, locale t |ocale);

The strcasecmp_I() function compares, while ignoring differences in case, the
string pointed to by s1 to the string pointed to by s2. The strncasecmp_I() function
compares, while ignoring differences in case, not more than n bytes from the string
pointed to by s1 to the string pointed to by s2.

These functions use the locale represented by locale to determine the case of the
characters. A handle for use as locale can be obtained using newlocale() or
duplocale().

First released in Issue 4, Version 2.

The strcasecmp() and strncasecmp() functions are moved from the XSI option to
the Base.

The strcasecmp_I() and strncasecmp_I() functions are added from The Open
Group Technical Standard, 2006, Extended API Set Part 4.

A Source Book from The Open Group (2010)

System Interfaces Migration

strcat
Purpose:

Synopsis:

Derivation:

Issue 7:

strchr
Purpose:

Synopsis:

Derivation:

Issue 7:

strcmp
Purpose:

Synopsis:

Derivation:

Issue 7:

Concatenate two strings.

#i ncl ude <string. h>

System Interfaces

char *strcat(char *restrict sl1, const char *restrict s2);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

String scanning operation.

#i ncl ude <string. h>

char *strchr(const char *s, int c);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Compare two strings.

#i ncl ude <string. h>

int strcnp(const char *sl1, const char *s2);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

strcoll, strecoll_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

String comparison using collating information.
#i ncl ude <string. h>

int strcoll(const char *sl, const char *s2);

int strcoll | (const char *sl1, const char *s2,

|l ocale t locale);

The strcoll_I() function compares the string pointed to by s1 to the string pointed to
by s2, both interpreted as appropriate to the LC_COLLATE category of the locale

represented by locale.

A handle for use as locale can be obtained using newlocale() or duplocale ().

First released in Issue 3.

The strcoll_I() function is added from The Open Group Technical Standard, 2006,

Extended API Set Part 4.

The Single UNIX® Specification: Authorized Guide to Version 4

265

System Interfaces System Interfaces Migration

stpcp y, strepy
Purpose: Copy a string and return a pointer to the end of the result.
Synopsis: #i ncl ude <string. h>

cX char *stpcpy(char *restrict sl1, const char *restrict s2);
char *strcpy(char *restrict sl1, const char *restrict s2);

The stpcpy() function is equivalent to the strcpy() function, except that it returns a
pointer to the terminating NUL character copied into the s1 buffer.

The following example constructs a multi-part message in a single buffer:

#i ncl ude <string. h>
#i ncl ude <stdio. h>

i nt
mai n (voi d)

{
char buffer [10];

char *nane = buffer;

nane = stpcpy (stpcpy (stpcpy (nane, "ice"),"-"), "creant);
puts (buffer);
return O;

}

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The stpcpy () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

strcspn

Purpose: Get the length of a complementary substring.

Synopsis: #i ncl ude <string. h>
size_ t strcspn(const char *sl1l, const char *s2);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strdup, strndup
Purpose: Duplicate a specific number of bytes from a string.
cX Synopsis: #i ncl ude <string. h>

char *strdup(const char *s);
char *strndup(const char *s, size_t size);

The strndup() function is equivalent to the strdup() function, duplicating the
provided s in a new block of memory allocated as if by using malloc(), with the
exception being that strndup() copies at most size plus one bytes into the newly
allocated memory, terminating the new string with a NUL character. If the length of
s is larger than size, only size bytes are duplicated. If size is larger than the length
of s, all bytes in s are copied into the new memory buffer, including the terminating
NUL character. The newly created string is always properly terminated.

266 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation:

Issue 7:

First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #044 is applied, changing the “may fail”
[ENOMEM] error to become a “shall fail” error.

The strdup () function is moved from the XSI option to the Base.

The strndup() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

The APPLICATION USAGE section is updated to clarify that memory is allocated
as if by malloc().

strerror , strerror_|, strerror_r

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Get error message string.
#i ncl ude <string. h>

char *strerror(int errnum;
char *strerror_I(int errnum locale t |ocale);
int strerror_r(int errnum char *strerrbuf, size t buflen);

First released in Issue 3.

Austin Group Interpretation 1003.1-2001 #187 is applied, clarifying the behavior
when the generated error message is an empty string.

SD5-XSH-ERN-191 is applied, disallowing perror() from overwriting the string
returned by strerror(), for alignment with the C Standard.

The strerror_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

The strerror_r() function is moved from the Thread-Safe Functions option to the
Base.

strfmon, strfmon_|

Purpose:

Synopsis:

Derivation:

Issue 7:

Convert monetary value to a string.
#i ncl ude <nonetary. h>

ssize_t strfnon(char *restrict s, size_ t naxsize,

const char *restrict format, ...);
ssize_ t strfnon_| (char *restrict s, size t nmaxsize,
|l ocale t locale, const char *restrict format, ...);

The strfmon_I() function is equivalent to the strfmon() function, except that the
locale data used is from the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

First released in Issue 4.
SD5-XSH-ERN-29 is applied, updating the examples for % #5n and 9% (#5n.

SD5-XSH-ERN-233 is applied, changing the definition of the ' +' or ' (' flags to
refer to multiple locales.

The strfmon () function is moved from the XSI option to the Base.

The Single UNIX® Specification: Authorized Guide to Version 4 267

System Interfaces System Interfaces Migration

CX

CX

268

The strfmon_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

strftime, strftime_|

Purpose: Convert date and time to a string.

Synopsis: #i ncl ude <tine. h>

size t strftinme(char *restrict s, size_ t naxsize
const char *restrict format,
const struct tm*restrict tinmeptr);
size t strftinme_|(char *restrict s, size t naxsize,
const char *restrict fornmat,
const struct tm*restrict tinmeptr, locale_t |ocale);

Derivation: First released in Issue 3.

Issue 7: Austin Group Interpretation 1003.1-2001 #163 is applied, making extensive
changes to the required behavior of the strftime () function, including the addition of
flags and field widths in conversion specifications.

The strftime_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

strlen, strnlen

Purpose: Get length of fixed size string.

Synopsis: #i ncl ude <string. h>

size_ t strlen(const char *s);
size t strnlen(const char *s, size t maxlen);

The strnlen() function computes the smaller of the number of bytes in the array to
which s points, not including the terminating NUL character, or the value of the
maxlen argument. The strnlen() function never examines more than maxlen bytes
of the array pointed to by s.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The strnlen() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

strncat

Purpose: Concatenate a string with part of another.

Synopsis: #i ncl ude <string. h>

char *strncat (char *restrict sl, const char *restrict s2,
size t n);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

strncmp
Purpose:

Synopsis:

Derivation:

Issue 7:

Compare part of two strings.

#i ncl ude <string. h>

int strncnp(const char *sl1, const char *s2, size_ t n);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

stpncp y, strncpy

Purpose:
Synopsis:

CX

Derivation:

Issue 7:

strpbrk
Purpose:

Synopsis:

Derivation:

Issue 7:

strptime
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

Copy fixed length string, returning a pointer to the array end.
#i ncl ude <string. h>

char *stpncpy(char *restrict sl1, const char *restrict s2,
size t n);

char *strncpy(char *restrict sl, const char *restrict s2,
size t n);

The stpncpy() function is equivalent to the strncpy () function, except for the return
value. If a NUL character is written to the destination, the stpncpy() function
returns the address of the first such NUL character. Otherwise, it returns &s1[n].

First released in Issue 1. Derived from Issue 1 of the SVID.

The stpncpy() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Scan a string for a byte.

#i ncl ude <string. h>

char *strpbrk(const char *sl, const char *s2);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Date and time conversion.
#i ncl ude <tine. h>

char *strptinme(const char *restrict buf,
const char *restrict fornmat,
struct tm*restrict tm;

First released in Issue 4.

Austin Group Interpretations 1003.1-2001 #041 and #163 are applied, making
extensive changes to the required behavior of the strptime () function, including the
addition of flags and field widths in conversion specifications.

SD5-XSH-ERN-67 is applied, correcting the APPLICATION USAGE to remove the
impression that % is 4-digit years.

The Single UNIX® Specification: Authorized Guide to Version 4 269

System Interfaces

strrchr
Purpose:

Synopsis:

Derivation:

Issue 7:

strsignal
Purpose:

cX Synopsis:

Derivation:

Issue 7:

strspn
Purpose:

Synopsis:

Derivation:

Issue 7:

strstr
Purpose:

Synopsis:

Derivation:

Issue 7:

270

System Interfaces Migration

String scanning operation.

#i ncl ude <string. h>

char *strrchr(const char *s, int c);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Get name of signal.
#i ncl ude <string. h>

char *strsignal (int signun);

The strsignal() function maps the signal number in signum to an implementation-
defined string and returns a pointer to it. It uses the same set of messages as the
psignal() function.

Application writers should note that if signum is not a valid signal number, some
implementations return NULL, while for others the strsignal() function returns a
pointer to a string containing an unspecified message denoting an unknown signal.
POSIX.1-2008 leaves this return value unspecified.

First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

First released in Issue 7.

Get length of a substring.

#i ncl ude <string. h>

size_ t strspn(const char *sl, const char *s2);
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Find a substring.

#i ncl ude <string. h>

char *strstr(const char *sl1, const char *s2);

First released in Issue 3. Included for alignment with the ANSI C standard.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

strtod, strtof , strtold
Purpose: Convert a string to a double-precision number.
Synopsis: #i ncl ude <stdlib. h>

doubl e strtod(const char *restrict nptr,
char **restrict endptr);

float strtof(const char *restrict nptr,
char **restrict endptr);

| ong doubl e strtold(const char *restrict nptr,
char **restrict endptr);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strtoimax, strtoumax
Purpose: Convert string to integer type.
Synopsis: #i ncl ude <inttypes. h>

intmax_t strtoi nax(const char *restrict nptr,
char **restrict endptr, int base);

uintmax_t strtounmax(const char *restrict nptr,
char **restrict endptr, int base);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

strtok, strtok_r
Purpose: Split string into tokens.
Synopsis: #i ncl ude <string. h>

char *strtok(char *restrict sl1, const char *restrict s2);
cX char *strtok _r(char *restrict s, const char *restrict sep,
char **restrict lasts);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-235 is applied, correcting an example.
The strtok_r() function is moved from the Thread-Safe Functions option to the
Base.

strtol, strtoll

Purpose: Convert a string to a long integer.

Synopsis: #i ncl ude <stdlib. h>

long strtol (const char *restrict str,
char **restrict endptr, int base);
long long strtoll (const char *restrict str,
char **restrict endptr, int base)

The Single UNIX® Specification: Authorized Guide to Version 4 271

System Interfaces System Interfaces Migration

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strtoul, strtoull
Purpose: Convert a string to an unsigned long.
Synopsis: #i ncl ude <stdlib. h>

unsi gned |l ong strtoul (const char *restrict str,
char **restrict endptr, int base);

unsi gned long long strtoull (const char *restrict str,
char **restrict endptr, int base);

Derivation: First released in Issue 4. Derived from the ANSI C standard.

Issue 7: No functional changes are made in this issue.

strxfrm, strxfrm_|
Purpose: String transformation.
Synopsis: #i ncl ude <string. h>

size_ t strxfrm(char *restrict sl1l, const char *restrict s2,
size t n);
cX size t strxfrml (char *restrict sl1l, const char *restrict s2,
size t n, locale t |ocale);

The strxfrm_I() function is equivalent to the strxfrm() function, except that the
locale data used is from the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

Derivation: First released in Issue 3. Included for alignment with the ISO C standard.
Issue 7: The strxfrm_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.
swab
Purpose: Swap bytes.
XSl Synopsis: #i ncl ude <uni std. h>

voi d swab(const void *restrict src, void *restrict dest,
ssi ze_t nbytes);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

272 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

symlink, symlinkat

Purpose:

Synopsis:

Derivation:

Issue 7:

sync
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

sysconf
Purpose:

Synopsis:

Derivation:

Issue 7:

Make a symbolic link relative to directory file descriptor.
#i ncl ude <unistd. h>

int symink(const char *pathl, const char *path2);
int syminkat(const char *pathl, int fd, const char *path2);

The symlinkat() function is equivalent to the symlink() function except in the case
where path2 specifies a relative path. In this case the symbolic link is created
relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O _SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the symlinkat() function is to create symbolic links in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to symlink(), resulting
in unspecified behavior. By opening a file descriptor for the target directory and
using the symlinkat() function it can be guaranteed that the created symbolic link
is located relative to the desired directory.

First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The symlinkat() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

Additions have been made describing how symlink() sets the user and group IDs
and file mode of the symbolic link, and its effect on timestamps.

Schedule file system updates.
#i ncl ude <uni std. h>

voi d sync(voi d);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Get configurable system variables.

#i ncl ude <uni std. h>

| ong sysconf (int nane);

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Austin Group Interpretation 1003.1-2001 #160 is applied, clarifying the
requirements related to variables that have no limit.

SD5-XSH-ERN-166 is applied, changing “Maximum size” to “Initial size” for the
“Maximum size of ...” entries in the table in the DESCRIPTION.

The Single UNIX® Specification: Authorized Guide to Version 4 273

System Interfaces System Interfaces Migration

The variables for the supported programming environments are updated to be V7
and the LEGACY variables are removed.

The following constants are added:
_POSIX_THREAD_ROBUST_PRIO_INHERIT
_POSIX_THREAD_ROBUST_PRIO_PROTECT

The _XOPEN_UUCP variable and its associated _SC_XOPEN_UUCP value is
added to the table of system variables.

system

Purpose: Issue a command.

Synopsis: #i ncl ude <stdlib. h>
i nt system{const char *conmmand);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #055 is applied, clarifying the thread-
safety of this function and treatment of pthread_atfork() handlers.

tan, tanf, tanl

Purpose: Tangent function.

Synopsis: #i ncl ude <nat h. h>

doubl e tan(doubl e x);
float tanf(float Xx);
| ong doubl e tanl (1 ong doubl e x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

tanh, tanhf , tanhl
Purpose: Hyperbolic tangent functions.
Synopsis: #i ncl ude <nat h. h>

doubl e tanh(doubl e x);
float tanhf(float x);
| ong doubl e tanhl (I ong doubl e x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

tcdrain
Purpose: Wait for transmission of output.
Synopsis: #i ncl ude <term os. h>

int tcdrain(int fildes);

Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

274 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.
tcflow
Purpose: Suspend or restart the transmission or reception of data.

Synopsis: #i ncl ude <term os. h>
int tcflow(int fildes, int action);
Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.
Issue 7: SD5-XSH-ERN-190 is applied, clarifying in the DESCRIPTION the transmission of
START and STOP characters.
tcflush
Purpose: Flush non-transmitted output data, non-read input data, or both.
Synopsis: #i ncl ude <term os. h>
int tcflush(int fildes, int queue_selector);

Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 7: No functional changes are made in this issue.
tcgetattr
Purpose: Get the parameters associated with the terminal.

Synopsis: #i ncl ude <term os. h>
int tcgetattr(int fildes, struct termos *term os_p);

Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 7: No functional changes are made in this issue.
tcgetpgrp
Purpose: Get the foreground process group ID.

Synopsis: #i ncl ude <uni std. h>
pidt tcgetpgrp(int fildes);

Derivation: First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Issue 7: No functional changes are made in this issue.
tcgetsid
Purpose: Get the process group ID for the session leader for the controlling terminal.

Synopsis: #i ncl ude <term os. h>
pidt tcgetsid(int fildes);
Derivation: First released in Issue 4, Version 2.

Issue 7: The tcgetsid() function is moved from the XSl option to the Base.

The Single UNIX® Specification: Authorized Guide to Version 4 275

System Interfaces

tcsendbreak
Purpose:

Synopsis:

Derivation:

Issue 7:

tcsetattr
Purpose:

Synopsis:

Derivation:

Issue 7:

tcsetpgrp
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Send a break for a specific duration.

#i ncl ude <term os. h>

int tcsendbreak(int fildes, int duration);

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

No functional changes are made in this issue.

Set the parameters associated with the terminal.
#i ncl ude <term os. h>

int tcsetattr(int fildes, int optional_actions,
const struct termos *ternios_p);

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

Austin Group Interpretation 1003.1-2001 #144 is applied, adding requirements
related to the new O_TTY_INIT flag.

Set the foreground process group ID.

#i ncl ude <uni std. h>

int tcsetpgrp(int fildes, pid t pgid.id);

First released in Issue 3. Included for alignment with the POSIX.1-1988 standard.

No functional changes are made in this issue.

tdelete, tfind, tsear ch, twalk

Purpose:

XSl Synopsis:

Derivation:

Issue 7:

276

Manage a binary search tree.
#i ncl ude <search. h>

void *tdel ete(const void *restrict key, void **restrict rootnp,
i nt (*conpar) (const void *, const void *));
void *tfind(const void *key, void *const *rootp,
i nt (*conpar) (const void *, const void *));
voi d *tsearch(const void *key, void **rootp,
int (*conpar)(const void *, const void *));
voi d twal k(const void *root,
void (*action)(const void *, VISIT, int));

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #149 is applied, clarifying concurrent use
of the tree in another thread.

Austin Group Interpretation 1003.1-2001 #151 is applied, clarifying behavior for
tdelete () when the deleted node is the root node.

Austin Group Interpretation 1003.1-2001 #153 is applied, clarifying that if the
functions pointed to by action or compar change the tree, the results are

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

telldir
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

tempnam
Purpose:

oB xsl Synopsis:

Derivation:

Issue 7:

undefined.

Current location of a named directory stream.
#i ncl ude <dirent. h>
long telldir(DIR *dirp);

First released in Issue 2.

No functional changes are made in this issue.

Create a name for a temporary file.
#i ncl ude <stdi o. h>

char *tenpnan(const char *dir, const char *pfx);

First released in Issue 1. Derived from Issue 1 of the SVID.

The tempnam() function is marked obsolescent. Applications should use the
tmpfile (), mkdtemp(), or mkstemp() functions instead.

tgamma, tgammaf , tgammal

Purpose:

Synopsis:

Derivation:

Issue 7:

time
Purpose:

Synopsis:

Derivation:

Issue 7:

Compute gammay() function.
#i ncl ude <mat h. h>

doubl e t gamma(doubl e x);
float tgammaf(float x);
| ong doubl e tganmual (|1 ong doubl e x);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #52 (SD5-XSH-ERN-85) is
applied.

Get time.

#i ncl ude <time. h>

time_t time(tine_t *tloc);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 277

System Interfaces

timer_create
Purpose:

cX Synopsis:

Derivation:

Issue 7:

timer_delete
Purpose:

cX Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Create a per-process timer.

#i ncl ude <si gnal . h>
#i ncl ude <tine. h>

int tinmer_create(clockid t clockid,
struct sigevent *restrict evp,
tinmer _t *restrict timerid);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The timer_create() function is moved from the Timers option to the Base.

Delete a per-process timer.
#i ncl ude <tine. h>

int tinmer_delete(tiner_t tinmerid);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The timer_delete() function is moved from the Timers option to the Base.

timer_geto verrun, timer_g ettime, timer_settime

Purpose:

cX Synopsis:

Derivation:

Issue 7:

278

Per-process timers.
#i ncl ude <tine. h>

int tinmer_getoverrun(tiner_t tinerid);
int timer_gettine(tinmer_t tinmerid, struct itimerspec *val ue);
int tinmer_settine(tiner_t tinerid, int flags,

const struct itinmerspec *restrict val ue,

struct itinerspec *restrict oval ue);

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The timer_getoverrun(), timer_gettime (), and timer_settime () functions are moved
from the Timers option to the Base.

Functionality relating to the Realtime Signals Extension option is moved to the
Base.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

times
Purpose:

Synopsis:

Derivation:

Issue 7:

tmpfile
Purpose:

Synopsis:

Derivation:

Issue 7:

tmpnam
Purpose:

oB Synopsis:

Derivation:

Issue 7:

toascii
Purpose:

oB xsl Synopsis:

Derivation:

Issue 7:

Get process and waited-for child process times.

#i ncl ude <sys/tines. h>

clock t tinmes(struct tns *buffer);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Create a temporary file.

#i ncl ude <stdi o. h>

FILE *tnpfile(void);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #025 is applied, clarifying that
implementations may restrict the permissions of the file created.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-149 is applied, adding the mandatory [EMFILE] error condition for
{STREAM_MAX} streams open.

Create a name for a temporary file.
#i ncl ude <stdi o. h>

char *tnpnam(char *s);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the
tmpnam () function need not be thread-safe if called with a NULL parameter.

The tmpnam() function is marked obsolescent. Applications should use the
tmpfile (), mkdtemp (), or mkstemp() functions instead.

Translate an integer to a 7-bit ASCII character.
#i ncl ude <ctype. h>

int toascii(int c);

First released in Issue 1. Derived from Issue 1 of the SVID.

The toascii() function is marked obsolescent.

The Single UNIX® Specification: Authorized Guide to Version 4 279

System Interfaces System Interfaces Migration

tolower , tolower _|
Purpose: Transliterate uppercase characters to lowercase.
Synopsis: #i ncl ude <ctype. h>

int tolower(int c);
cX int tolower |(int c, locale t locale);

The tolower_I() function is equivalent to the tolower() function, except that the
locale data used is from the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The tolower_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

toupper , toupper_|

Purpose: Transliterate lowercase characters to uppercase.

Synopsis: #i ncl ude <ctype. h>

i nt toupper(int c);
cX int toupper_I(int ¢, locale_t |ocale);

The toupper_I() function is equivalent to the toupper() function, except that the
locale data used is from the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The toupper_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

towctrans, towctrans_|

Purpose: Wide-character transliteration.

Synopsis: #i ncl ude <wctype. h>

wint t towtrans(wint_t we, wectrans_t desc);
cX wint t towtrans | (wint t w, wetrans_t desc,
|l ocale t locale);

The towctrans_I() function is equivalent to the towctrans() function, except that the
locale data used is from the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

Derivation: First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1:1995
(B).

Issue 7: The towctrans_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

280 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

towlower , towlower_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Transliterate uppercase wide-character code to lowercase.
#i ncl ude <wctype. h>

wint t towower(wint t wc);
wint t towmower | (wint t w, locale t |ocale);

The towlower_I() function is equivalent to the towlower() function, except that the
locale data used is from the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

First released in Issue 4.

The towlower_|() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

towupper , towupper_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Transliterate lowercase wide-character code to uppercase.
#i ncl ude <wctype. h>

Wi nt_t towupper(wint_t wc);
wint_t towupper_|(wint_t we, locale t |ocale);

The towupper_I() function is equivalent to the towupper() function, except that the
locale data used is from the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

First released in Issue 4.

The towupper_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

trunc, truncf , truncl

Purpose:

Synopsis:

Derivation:

Issue 7:

truncate
Purpose:

Synopsis:

Derivation:

Round to truncated integer value.
#i ncl ude <mat h. h>

doubl e trunc(double x);
float truncf(float Xx);
| ong doubl e truncl (1 ong double Xx);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

Truncate a file to a specified length.
#i ncl ude <uni std. h>
int truncate(const char *path, off _t |ength);

First released in Issue 4, Version 2.

The Single UNIX® Specification: Authorized Guide to Version 4 281

System Interfaces

Issue 7:

System Interfaces Migration

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The truncate () function is moved from the XSl option to the Base.
Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

ttyname, ttyname_r

Purpose:

Synopsis:

Derivation:

Issue 7:

Find the pathname of a terminal.
#i ncl ude <uni std. h>

char *ttynanme(int fildes);
int ttyname_r(int fildes, char *nane, size_ t nanesize);

First released in Issue 1. Derived from Issue 1 of the SVID.

SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error
condition.

The ttyname_r() function is moved from the Thread-Safe Functions option to the
Base.

daylight, timezone , tzname, tzset

Purpose:
Synopsis:

XSl

CX

Derivation:
Issue 7:
ulimit
Purpose:

oB xsl Synopsis:

Derivation:

Issue 7:

282

Set timezone conversion information.
#i ncl ude <tine. h>

extern int daylight;
extern |l ong tinezone;
extern char *tznang[2] ;
void tzset (void);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Get and set process limits.
#include <ulimt.h>

long ulimt(int cnd, ...);
First released in Issue 1. Derived from Issue 1 of the SVID.

The ulimit() function is marked obsolescent. Applications should use the
getrlimit() or setrlimit() functions instead.

A Source Book from The Open Group (2010)

System Interfaces Migration

umask
Purpose:

Synopsis:

Derivation:

Issue 7:

uname
Purpose:

Synopsis:

Derivation:

Issue 7:

ungetc
Purpose:

Synopsis:

Derivation:

Issue 7:

ungetwc
Purpose:

Synopsis:

Derivation:

Issue 7:

Set and get the file mode creation mask.

#i ncl ude <sys/stat. h>

node_t umask(node t cnask);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Get the name of the current system.

#i ncl ude <sys/ut snane. h>

i nt unane(struct utsnane *nane);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Push byte back into input stream.

#i ncl ude <stdio. h>

int ungetc(int c, FILE *strean;

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Push wide-character code back into the input stream.

#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

wint_t ungetwc(wint_t we, FILE *strean);
First released in Issue 4. Derived from the MSE working draft.

No functional changes are made in this issue.

unlink, unlinkat

Purpose:

Synopsis:

Remove a directory entry relative to directory file descriptor.
#i ncl ude <unistd. h>

i nt unlink(const char *path);
int unlinkat(int fd, const char *path, int flag);

System Interfaces

The unlinkat() function is equivalent to the unlink() or rmdir() function except in
the case where path specifies a relative path. In this case the directory entry to be
removed is determined relative to the directory associated with the file descriptor fd
instead of the current working directory. If the file descriptor was opened without
O_SEARCH, the function checks whether directory searches are permitted using
the current permissions of the directory underlying the file descriptor. If the file
descriptor was opened with O_SEARCH, the function does not perform the check.

The Single UNIX® Specification: Authorized Guide to Version 4

283

System Interfaces System Interfaces Migration

The AT_REMOVEDIR flag controls whether unlinkat() behaves like unlink() or
rmdir(): if AT_REMOVEDIR is set, the directory entry specified by fd and path is
removed as a directory.

The purpose of the unlinkat() function is to remove directory entries in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to unlink(), resulting
in unspecified behavior. By opening a file descriptor for the target directory and
using the unlinkat() function it can be guaranteed that the removed directory entry
is located relative to the desired directory.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #181 is applied, updating the
requirements for operations when the S_ISVTX bit is set on a directory.

Text arising from the LSB Conflicts TR is added to the RATIONALE about the use
of [EPERM] and [EISDIR].

The unlinkat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a

directory.
unlockpt
Purpose: Unlock a pseudo-terminal master/slave pair.
XSl Synopsis: #i ncl ude <stdlib. h>

int unl ockpt(int fildes);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
unsetenv
Purpose: Remove an environment variable.

cX Synopsis: #i ncl ude <stdlib. h>

i nt unsetenv(const char *nane);

Derivation: First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

Issue 7: No functional changes are made in this issue.

284 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

uselocale
Purpose:

cX Synopsis:

Derivation:

Issue 7:

utime
Purpose:

oB Synopsis:

Derivation:

Issue 7:

Use locale in current thread.
#i ncl ude <l ocal e. h>

| ocal e t usel ocal e(l ocal e t new oc);

The uselocale () function sets the current locale for the current thread to the locale
represented by newloc.

Application writers should note that unlike the setlocale () function, the uselocale()
function does not allow replacing some locale categories only. Applications that
need to install a locale which differs only in a few categories must use newlocale()
to change a locale object equivalent to the currently used locale and install it.

First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

First released in Issue 7.

Set file access and modification times.
#i ncl ude <uti ne. h>

int utine(const char *path, const struct utinbuf *tines);

First released in Issue 1. Derived from Issue 1 of the SVID.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

The utime() function is marked obsolescent. Applications should use the
utimensat() function instead.

Changes are made related to support for finegrained timestamps.

vdprintf , vfprintf , vprintf , vsnprintf , vsprintf

Purpose:

Synopsis:

CX

Format output of a stdarg argument list.

#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>

int vdprintf(int fildes, const char *restrict format,
va_list ap);

int viprintf(FILE *restrict stream
const char *restrict format, va_list ap);

int vprintf(const char *restrict format, va list ap);

int vsnprintf(char *restrict s, size_ t n,
const char *restrict format, va_list ap);

int vsprintf(char *restrict s, const char *restrict fornat,
va_list ap);

The vdprintf() function is equivalent to the vfprintf() function, except that vdprintf()
writes output to the file associated with the file descriptor specified by the fildes
argument rather than placing output on a stream.

The Single UNIX® Specification: Authorized Guide to Version 4 285

System Interfaces System Interfaces Migration

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The vdprintf() function is added to complement the dprintf() function from The
Open Group Technical Standard, 2006, Extended API Set Part 1.

vfscanf , vscanf, vsscanf

Purpose: Format input of a stdarg argument list.

Synopsis: #i ncl ude <stdarg. h>
#i ncl ude <stdio. h>

int vifscanf(FILE *restrict stream const char *restrict fornmat,
va_list arg);

int vscanf(const char *restrict format, va_ list arg);

i nt vsscanf(const char *restrict s, const char *restrict fornat,
va_list arg);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

viwprintf , vswprintf , vwprintf
Purpose: Wide-character formatted output of a stdarg argument list.

Synopsis: #i ncl ude <stdarg. h>
#i ncl ude <stdio. h>
#i ncl ude <wchar. h>

int viwprintf(FILE *restrict stream
const wchar_t *restrict format, va list arg);
int vswprintf(wchar t *restrict ws, size t n,
const wchar_t *restrict format, va list arg);
int vwprintf(const wchar t *restrict format, va_ list arg);

Derivation: First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Issue 7: No functional changes are made in this issue.

viwscanf , vswscanf, vwscanf
Purpose: Wide-character formatted input of a stdarg argument list.

Synopsis: #i ncl ude <stdarg. h>
#i ncl ude <stdio. h>
#i ncl ude <wchar. h>

int viwscanf(FILE *restrict stream
const wchar_t *restrict format, va list arg);
i nt vswscanf(const wchar t *restrict ws,
const wchar_t *restrict format, va list arg);
i nt vwscanf(const wchar t *restrict format, va list arg);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

286 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

wait, waitpid
Purpose:

Synopsis:

Derivation:

Issue 7:

waitid
Purpose:

Synopsis:

Derivation:

Issue 7:

wcrtomb
Purpose:

Synopsis:

Derivation:

Issue 7:

Wait for a child process to stop or terminate.
#i ncl ude <sys/wait. h>

pidt wait(int *stat | oc);
pidt waitpid(pid t pid, int *stat _loc, int options);

First released in Issue 1. Derived from Issue 1 of the SVID.

APPLICATION USAGE is added, recommending that the wait() function not be
used and that the waitpid () function not be used with a pid argument of -1.

An additional example for waitpid() is added.

Wait for a child process to change state.
#i ncl ude <sys/wait. h>

int waitid(idtype t idtype, idt id, siginfo_t *infop,
i nt options);

First released in Issue 4, Version 2.

Austin Group Interpretation 1003.1-2001 #060 is applied, updating the
DESCRIPTION to require that applications set at least one of the flags WEXITED,
WSTOPPED or WCONTINUED in the options argument.

The waitid () function is moved from the XSI option to the Base.

APPLICATION USAGE is added, recommending that the waitid() function not be
used with idtype equal to P_ALL.

The description of the WNOHANG flag is updated to match the one on the
<sys/wait.h> page.

Convert a wide-character code to a character (restartable).
#i ncl ude <stdio. h>

size t wertonb(char *restrict s, wchar_t wc,
nbstate t *restrict ps);

First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the
wcrtomb () function need not be thread-safe if called with a NULL ps argument.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ)]
error condition from a “may fail” to a “shall fail”.

The Single UNIX® Specification: Authorized Guide to Version 4 287

System Interfaces System Interfaces Migration

wcscasecmp, wescasecmp_|l, wesncasecmp, wesncasecmp_|
Purpose: Case-insensitive wide-character string comparison.
cX Synopsis: #i ncl ude <wchar. h>

i nt wcscasecnp(const wchar_t *wsl, const wchar_t *ws2);

i nt wcscasecnp_| (const wchar _t *wsl, const wchar _t *ws2,
|l ocale t locale);

i nt wecsncasecnp(const wchar_t *wsl1l, const wchar_t *ws2,
size t n);

i nt wecsncasecnp_| (const wchar _t *wsl, const wchar_t *ws2,
size t n, locale t |ocale);

The wcscasecmp() and wcsncasecmp() functions are the wide-character
equivalent of the strcasecmp() and strncasecmp () functions, respectively.

The wcscasecmp() and wcscasecmp_I() functions compare, while ignoring
differences in case, the wide-character string pointed to by wsl to the wide-
character string pointed to by ws2.

The wcsncasecmp() and wcsncasecmp_I() functions compare, while ignoring
differences in case, not more than n wide-characters from the wide-character string
pointed to by ws1 to the wide-character string pointed to by ws2.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.
wcscat
Purpose: Concatenate two wide-character strings.

Synopsis: #i ncl ude <wchar. h>

wchar t *wcscat (wchar _t *restrict wsl,
const wchar _t *restrict ws2);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

weschr
Purpose: Wide-character string scanning operation.
Synopsis: #i ncl ude <wchar. h>
wchar _t *wcschr(const wchar _t *ws, wchar _t wc);
Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

288 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

wesecmp
Purpose: Compare two wide-character strings.
Synopsis: #i ncl ude <wchar. h>
i nt wescnp(const wchar _t *wsl, const wchar _t *ws2);
Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wecscoll, wescoll_|
Purpose: Wide-character string comparison using collating information.
Synopsis: #i ncl ude <wchar. h>

i nt wescol | (const wchar _t *ws1, const wchar _t *ws2);
cX int wescoll | (const wchar _t *wsl, const wchar t *ws2,
|l ocale t locale);

The wescoll_I() function compares the wide-character string pointed to by wsl to
the wide-character string pointed to by ws2, both interpreted as appropriate to the
LC_COLLATE category of the locale represented by locale.

A handle for use as locale can be obtained using newlocale() or duplocale().
Derivation: First released in Issue 4. Derived from the MSE working draft.
Issue 7: The wescoll_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.
wepcp y, wescpy
Purpose: Copy a wide-character string, returning a pointer to its end.
Synopsis: #i ncl ude <wchar. h>

cX wchar _t *wcpcpy(wechar _t *restrict wsl,
const wchar _t *restrict ws2);

wchar _t *wcscpy(wchar _t *restrict wsl,
const wchar_t *restrict ws2);

The wcpcepy () function is equivalent to the wescpy() function, except that it returns
a pointer to the terminating null wide-character code copied into the ws1 buffer.

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: The wepcepy () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

wescspn

Purpose: Get the length of a complementary wide substring.

Synopsis: #i ncl ude <wchar. h>
size_t wescspn(const wchar _t *wsl, const wchar _t *ws2);

Derivation: First released in Issue 4. Derived from the MSE working draft.

The Single UNIX® Specification: Authorized Guide to Version 4 289

System Interfaces

Issue 7:

wesdup
Purpose:

cX Synopsis:

Derivation:

Issue 7:

wecsftime
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

No functional changes are made in this issue.

Duplicate a wide-character string.
#i ncl ude <wchar. h>

wchar _t *wcsdup(const wchar _t *string);

The wesdup() function is the wide-character equivalent of the strdup () function.

Application writers should note that for functions that allocate memory as if by
malloc(), (such as wecsdup()) the application should release such memory when it
is no longer required by a call to free(). For wcsdup(), this is the return value.

First released in Issue 7. Derived from The Open Group Technical Standard,
2006, Extended API Set Part 1.

First released in Issue 7.

Convert date and time to a wide-character string.
#i ncl ude <wchar. h>

size t wesftinme(wchar t *restrict wes, size_ t naxsize,
const wchar_t *restrict format,
const struct tm*restrict tinmeptr);

First released in Issue 4.

No functional changes are made in this issue.

wcslen, wesnlen

Purpose:

Synopsis:
CX

Derivation:

Issue 7:
290

Get length of a fixed-sized wide-character string.
#i ncl ude <wchar. h>

size_t weslen(const wchar _t *ws);
size_ t wesnl en(const wechar _t *ws, size t maxlen);

The wesnlen() function computes the smaller of the number of wide characters in
the string to which ws points, not including the terminating null wide-character
code, and the value of maxlen. The wcsnlen() function never examines more than
the first maxlen characters of the wide-character string pointed to by ws.

First released in Issue 4. Derived from the MSE working draft.

The wcsnlen() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

wcsncat
Purpose:

Synopsis:

Derivation:

Issue 7:

wesnemp
Purpose:

Synopsis:

Derivation:

Issue 7:

Concatenate a wide-character string with part of another.
#i ncl ude <wchar. h>

wchar _t *wcsncat (wchar _t *restrict wsl,
const wchar _t *restrict ws2, size t n);

First released in Issue 4. Derived from the MSE working draft.

No functional changes are made in this issue.

Compare part of two wide-character strings.

#i ncl ude <wchar. h>

i nt wesncnp(const wchar _t *wsl1l, const wchar _t *ws2, size t n);
First released in Issue 4. Derived from the MSE working draft.

No functional changes are made in this issue.

wcpncp y, wesncpy

Purpose:
Synopsis:

CX

Derivation:

Issue 7:

wcespbrk
Purpose:

Synopsis:

Derivation:

Issue 7:

Copy a fixed-size wide-character string, returning a pointer to its end.
#i ncl ude <wchar. h>

wchar _t *wcpncpy(wchar _t restrict *wsl,
const wchar _t *restrict ws2, size t n);

wchar _t *wcsncpy(wchar _t *restrict wsl,
const wchar _t *restrict ws2, size t n);

The wcpncpy() function is equivalent to the wcsncpy() function, except for the
return value. If any null wide-character codes were written into the destination, the
wcepnepy () function returns the address of the first such null wide-character code.
Otherwise, it returns &ws1[n].

First released in Issue 4. Derived from the MSE working draft.

The wepncpy () function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Scan a wide-character string for a wide-character code.

#i ncl ude <wchar. h>

wchar _t *wcspbrk(const wchar _t *wsl, const wchar _t *ws2);
First released in Issue 4. Derived from the MSE working draft.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 291

System Interfaces System Interfaces Migration

wcsrchr
Purpose: Wide-character string scanning operation.
Synopsis: #i ncl ude <wchar. h>
wchar _t *wcsrchr(const wchar _t *ws, wchar _t wc);
Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wceshrtombs, wesrtombs
Purpose: Convert a wide-character string to a character string (restartable).
Synopsis: #i ncl ude <wchar. h>

cX size t wesnrtonbs(char *restrict dst,
const wchar_t **restrict src, size t nwc,
size t len, nmbstate_t *restrict ps);
size_t wesrtonbs(char *restrict dst,
const wchar_t **restrict src, size t len,
nbstate t *restrict ps);

The wesnrtombs() function is equivalent to the wesrtombs() function, except that
the conversion is limited to the first nwc wide characters.

Derivation: First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).
Issue 7: Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the

wcesrtombs () function need not be thread-safe if called with a NULL ps argument.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ)]
error condition from a “may fail” to a “shall fail”.

The wensrtombs() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 1.

wesspn

Purpose: Get the length of a wide substring.

Synopsis: #i ncl ude <wchar. h>
size_t wesspn(const wchar _t *wsl1l, const wchar _t *ws2);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.
wcsstr
Purpose: Find a wide-character substring.

Synopsis: #i ncl ude <wchar. h>

wchar _t *wcsstr(const wchar _t *restrict wsl,
const wchar _t *restrict ws2);

Derivation: First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

292 A Source Book from The Open Group (2010)

System Interfaces Migration

Issue 7:

No functional changes are made in this issue.

wcstod, westof , westold

Purpose:

Synopsis:

Derivation:

Issue 7:

Convert a wide-character string to a double-precision number.
#i ncl ude <wchar. h>

doubl e westod(const wchar _t *restrict nptr,
wchar _t **restrict endptr);

float westof (const wchar _t *restrict nptr,
wchar _t **restrict endptr);

| ong doubl e westol d(const wchar _t *restrict nptr,
wchar _t **restrict endptr);

First released in Issue 4. Derived from the MSE working draft.

No functional changes are made in this issue.

wcstoimax, westoumax

Purpose:

Synopsis:

Derivation:

Issue 7:

wcstok
Purpose:

Synopsis:

Derivation:

Issue 7:

Convert a wide-character string to an integer type.

#i ncl ude <stddef. h>
#i ncl ude <inttypes. h>

i nt max_t wcstoi nax(const wchar _t *restrict nptr,
wchar _t **restrict endptr, int base);

ui nt max_t west ounmax(const wchar t *restrict nptr,
wchar _t **restrict endptr, int base);

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

No functional changes are made in this issue.

Split a wide-character string into tokens.
#i ncl ude <wchar. h>

wchar _t *wcstok(wchar t *restrict wsl,
const wchar _t *restrict ws2,
wchar _t **restrict ptr);

First released in Issue 4.

No functional changes are made in this issue.

wcstol, westoll

Purpose:

Synopsis:

Convert a wide-character string to a long integer.
#i ncl ude <wchar. h>

| ong westol (const wchar _t *restrict nptr,
wchar _t **restrict endptr, int base);

long Iong westoll (const wchar _t *restrict nptr,
wchar _t **restrict endptr, int base);

The Single UNIX® Specification: Authorized Guide to Version 4

System Interfaces

293

System Interfaces

XSl

CX

294

Derivation:

Issue 7:

wcstombs
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

First released in Issue 4. Derived from the MSE working draft.

No functional changes are made in this issue.

Convert a wide-character string to a character string.
#i ncl ude <stdlib. h>

size_t wcstonbs(char *restrict s,
const wchar_t *restrict pwes, size t n);

First released in Issue 4. Derived from the 1ISO C standard.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ)]
error condition from a “may fail” to a “shall fail”.

wcstoul, westoull

Purpose:

Synopsis:

Derivation:

Issue 7:

wceswidth
Purpose:

Synopsis:

Derivation:

Issue 7:

Convert a wide-character string to an unsigned long.
#i ncl ude <wchar. h>

unsi gned | ong westoul (const wchar _t *restrict nptr,
wchar _t **restrict endptr, int base);

unsi gned long |l ong westoul | (const wchar _t *restrict nptr,
wchar _t **restrict endptr, int base);

First released in Issue 4. Derived from the MSE working draft.

No functional changes are made in this issue.

Number of column positions of a wide-character string.
#i ncl ude <wchar. h>

i nt weswi dt h(const wchar _t *pwes, size t n);

First released in Issue 4. Derived from the MSE working draft.

No functional changes are made in this issue.

wesxfrm, wesxfrm_|

Purpose:

Synopsis:

Wide-character string transformation.
#i ncl ude <wchar. h>

size t wesxfrmwechar _t *restrict wsl,
const wchar _t *restrict ws2, size t n);
size t wesxfrml (wchar _t *restrict wsi,
const wchar _t *restrict ws2, size t n,
|l ocale t locale);

The wesxfrm_I() function is equivalent to the wesxfrm() function, except that the
locale data used is from the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation:

Issue 7:

wctob
Purpose:

Synopsis:

Derivation:

Issue 7:

wctomb
Purpose:

Synopsis:

Derivation:

Issue 7:

First released in Issue 4. Derived from the MSE working draft.

The wesxfrm_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

Wide-character to single-byte conversion.

#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

int wetob(wint_t c);

First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

No functional changes are made in this issue.

Convert a wide-character code to a character.

#i ncl ude <stdlib. h>

int wetonb(char *s, wchar_t wchar);

First released in Issue 4. Derived from the ANSI C standard.

Austin Group Interpretation 1003.1-2001 #170 is applied, adding the [EILSEQ)]
error condition.

wectrans, wctrans_|

Purpose:

Synopsis:

CX

Derivation:

Issue 7:

Define character mapping.
#i ncl ude <wctype. h>

wetrans_t wetrans(const char *charcl ass);
wctrans_t wetrans | (const char *charclass, locale t |ocale);

The wctrans_I() function is equivalent to the wctrans() function, except that the
locale data used is from the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1:1995
(B).

The wectrans_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

wctype, wctype_|

Purpose:

Synopsis:

CX

Define character class.
#i ncl ude <wctype. h>

wctype_t wetype(const char *property);
wetype_ t wetype | (const char *property, locale_t |ocale);

The wctype I() function is equivalent to the wctype() function, except that the

The Single UNIX® Specification: Authorized Guide to Version 4 295

System Interfaces

XSl

296

Derivation:

Issue 7:

wcewidth
Purpose:

Synopsis:

Derivation:

Issue 7:

wmemchr
Purpose:

Synopsis:

Derivation:

Issue 7:

wmemcmp
Purpose:

Synopsis:

Derivation:

Issue 7:

wmemcpy
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

locale data used is from the locale represented by locale. A handle for use as
locale can be obtained using newlocale () or duplocale().

First released in Issue 4.

The wctype_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

Number of column positions of a wide-character code.
#i ncl ude <wchar. h>

i nt wewi dt h(wchar _t wc);

First released as a World-wide Portability Interface in Issue 4. Derived from the
MSE working draft.

No functional changes are made in this issue.

Find a wide character in memory.
#i ncl ude <wchar. h>
wchar _t *wnencthr(const wchar _t *ws, wchar_t we, size t n);

First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

No functional changes are made in this issue.

Compare wide characters in memory.
#i ncl ude <wchar. h>
i nt wnencnp(const wchar _t *wsl1l, const wchar _t *ws2, size t n);

First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

No functional changes are made in this issue.

Copy wide characters in memory.
#i ncl ude <wchar. h>

wchar _t *wnencpy(wchar _t *restrict wsl,
const wchar _t *restrict ws2, size t n);

First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

System Interfaces

wmemmove
Purpose:

Synopsis:

Derivation:

Issue 7:

wmemset
Purpose:

Synopsis:

Derivation:

Issue 7:

Migration System Interfaces

Copy wide characters in memory with overlapping areas.
#i ncl ude <wchar. h>
wchar _t *wnemove(wchar _t *wsl, const wchar _t *ws2, size t n);

First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

No functional changes are made in this issue.

Set wide characters in memory.
#i ncl ude <wchar. h>
wchar _t *wnenset (wchar _t *ws, wchar _t wc, size t n);

First released in Issue 5. Included for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

No functional changes are made in this issue.

word exp, wordfree

Purpose:

Synopsis:

Derivation:

Issue 7:

pwrite, write
Purpose:

Synopsis:

Derivation:

Issue 7:

Perform word expansions.
#i ncl ude <wor dexp. h>

i nt wordexp(const char *restrict words,
wordexp_t *restrict pwordexp, int flags);
voi d wordfree(wordexp_t *pwordexp);

First released in Issue 4. Derived from the ISO POSIX-2 standard.

Austin Group Interpretation 1003.1-2001 #148 is applied, adding APPLICATION
USAGE explaining that the wordexp() function need not be thread safe if passed
an expression referencing an environment variable while any other thread is
concurrently modifying any environment variable.

Write on a file.
#i ncl ude <uni std. h>

ssize t pwite(int fildes, const void *buf, size t nbyte,
off t offset);
ssize t wite(int fildes, const void *buf, size_ t nbyte);

First released in Issue 1. Derived from Issue 1 of the SVID.
The pwrite () function is moved from the XSI option to the Base.
Functionality relating to the XSI STREAMS option is marked obsolescent.

SD5-XSH-ERN-160 is applied, updating the DESCRIPTION to clarify the
requirements for the pwrite() function, and to change the use of the phrase “file
pointer” to “file offset”.

The Single UNIX® Specification: Authorized Guide to Version 4 297

System Interfaces

XSl

XSl

298

writev
Purpose:

Synopsis:

Derivation:

Issue 7:

y0,y1,yn
Purpose:

Synopsis:

Derivation:

Issue 7:

System Interfaces Migration

Write a vector.
#i ncl ude <sys/ ui o. h>

ssize t witev(int fildes, const struct iovec *iov,
int iovent);

First released in Issue 4, Version 2.

No functional changes are made in this issue.

Bessel functions of the second kind.
#i ncl ude <mat h. h>

doubl e yO(doubl e Xx);
doubl e y1(doubl e x);
doubl e yn(int n, double x);

First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

Chapter 12

Utilities Migration

12.1 Introduction

This chapter contains a section for each utility interface defined in XCU, Issue 7. Each section
contains the SYNOPSIS and gives the derivation of the interface. Where new option letters have
been added in Issue 7, a brief description is included, complete with examples where
appropriate. For interfaces carried forward from Issue 6, syntax and semantic changes made to
the interface in Issue 7 are identified (if any). Only changes that might affect an application
programmer are included.

12.2 Utilities
admin
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

Create and administer SCCS files (DEVELOPMENT).

admin —-i[nane] [-n] [-a login] [-d flag] [-e login] [-f flag]
[F-mnrlist] [-r rel] [-t[name] [-y[comrent]] newfile

admin -n [-a login] [-d flag] [-e login] [-f flag] [-m mrlist]
[-t[nanme]] [-y[coment]] newfile...

admin [-a login] [-d flag] [-mnrlist] [-r rel]
[-t[nane]] file...

admn -h file...

admn -z file...

First released in Issue 2.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 299

Utilities Utilities Migration

alias

Purpose: Define or display aliases.

Synopsis: alias [alias-nane[=string]...]
Derivation: First released in Issue 4.

Issue 7: The alias utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

The first example is changed to remove the creation of an alias for a standard
utility that alters its behavior to be non-conforming.

ar
Purpose: Create and maintain library archives.

SD Synopsis: ar -d [-v] archive file...

XSl ar -m[-v] archive file...
ar -m-a [-v] posnane archive file...
ar -m-b [-v] posnane archive file...
ar -m-i [-v] posnane archive file...

XSl ar —=p [-v] [-s] archive [file...]

XSl ar —q [-cv] archive file...
ar —r [-cuv] archive file...

XSl ar -r —-a [-cuv] posnane archive file...
ar -r -b [-cuv] posnane archive file...
ar -r -i [-cuv] posnane archive file...

XSl ar -t [-v] [-s] archive [file...]

XSl ar —-x [-v] [-sCT] archive [file...]

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

asa
Purpose: Interpret carriage-control characters.
FR Synopsis: asa [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ' = and the
implementation treats the ' —' as meaning standard input.

300 A Source Book from The Open Group (2010)

Utilities Migration Utilities

at

Purpose: Execute commands at a later time.

Synopsis: at [-m [-f file] [-q queuenane] -t tine_arg
at [-m [f file] [-q queuenane] tinespec...
at —-r at_job id...
at -1 -g queuenane
at -l [at_job_id...]

Derivation: First released in Issue 2.

Issue 7: The at utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the
files referenced by the at utility.

awk
Purpose: Pattern scanning and processing language.
Synopsis: awk [-F ERE] [-v assignnent]... program [argunent...]

awk [-F ERE] —f progfile [-f progfile]... [-v assignnent]...
[argunent...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #189 is applied, changing the
EXTENDED DESCRIPTION to make the support of hexadecimal integer and
floating constants optional.

Austin Group Interpretation 1003.1-2001 #201 is applied, permitting
implementations to support infinities and NaNs.

SD5-XCU-ERN-79 is applied, restoring the horizontal lines to XCU Table 4-1,
Expressions in Decreasing Precedence in awk, and SD5-XCU-ERN-80 is applied,
changing the order of some table entries.

basename

Purpose: Return non-directory portion of a pathname.

Synopsis: basenane string [suffix]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
batch
Purpose: Schedule commands to be executed in a batch queue.

Synopsis: batch
Derivation: First released in Issue 2.

Issue 7: The batch utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

The Single UNIX® Specification: Authorized Guide to Version 4 301

Utilities

UpP

CD

302

bc
Purpose:

Synopsis:

Derivation:

Issue 7:

bg
Purpose:

Synopsis:

Derivation:

Issue 7:

c99
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities Migration

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the
files referenced by the batch utility.

Arbitrary-precision arithmetic language.
bc [-1] [file...]
First released in Issue 4.

No functional changes are made in this issue.

Run jobs in the background.
bg [job_id...]

First released in Issue 4.

No functional changes are made in this issue.

Compile standard C programs.

c99 [options...] pathnanme [[pathnane] [-I directory]
[-L directory] [-] library]]...

First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999
standard.

Austin Group Interpretation 1003.1-2001 #020 (SD5-XCU-ERN-10) is applied,
adding a statement to the OUTPUT FILES section about unspecified behavior
when the pathname of an object file or executable file to be created by c99
resolves to an existing directory entry for a file that is not a regular file.

Austin Group Interpretation 1003.1-2001 #166 is applied, adding information about
the use of getconf to obtain c99 arguments used for the threaded programming
environment.

Austin Group Interpretation 1003.1-2001 #190 is applied, clarifying the handling of
trailing white-space characters.

Austin Group Interpretation 1003.1-2001 #191 is applied, adding APPLICATION
USAGE and RATIONALE regarding C-language trigraphs.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

SD5-XCU-ERN-11 is applied, adding the <net/if.h> header to the descriptions of
-l ¢ and -l xnet.

SD5-XCU-ERN-65 is applied, updating the EXAMPLES section.

The getconf variables for the supported programming environments are updated to
be V7.

The -l trace library is marked obsolescent.

A Source Book from The Open Group (2010)

Utilities Migration Utilities

The c99 reference page is rewritten to describe —I as an option rather than an

operand.
cal
Purpose: Print a calendar.
XSl Synopsis: cal [[nonth] year]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
cat
Purpose: Concatenate and print files.

Synopsis: cat [-u] [file...]

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-174 is applied, changing the RATIONALE concerning an
alternative to the historical cat —etv.

cd

Purpose: Change the working directory.

Synopsis: cd [-L|-P] [directory]
cd -

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #037 is applied, updating steps 6 through
10 of the processing performed by cd to correct a number of defects.

Austin Group Interpretation 1003.1-2001 #199 is applied, clarifying how the cd
utility handles concatenation of two pathnames when the first pathname ends in a
slash character.

Step 7 of the processing performed by cd is revised to refer to curpath instead of
“the operand”.

The description of how the cd utility sets the PWD environment variable has been
changed to refer to the output of the pwd utility.

cflow

Purpose: Generate a C-language flowgraph (DEVELOPMENT).

XSl Synopsis: cflow [-r] [-d nun] [-D nane[=def]]... [= incl] [-] dir]...
[-Udir]... file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 303

Utilities Utilities Migration

chgrp
Purpose: Change the file group ownership.
Synopsis: chgrp [-h] group file...

chgrp -R [-H -L| -P] group file...

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-8 is applied, removing the —R from the first line of the SYNOPSIS.
chmod
Purpose: Change the file modes.

Synopsis: chnod [-R] node file...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #130 is applied, adding text to the
DESCRIPTION about marking for update the last file status change timestamp of
the file.

chown

Purpose: Change the file ownership.

Synopsis: chown [-h] owner[:group] file...
chown -R [-H -L| -P] owner[:group] file...
Derivation: First released in Issue 2.
Issue 7: SD5-XCU-ERN-9 is applied, removing the —R from the first line of the SYNOPSIS.

The description of the —h and —P options is revised.

cksum
Purpose: Write file checksums and sizes.
Synopsis: cksum [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ' = and the
implementation treats the ' —' as meaning standard input.

cmp

Purpose: Compare two files.

Synopsis: cnp [l |-s] filel file2
Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-96 is applied, updating the STDERR section to specify the output
when the —| option is used.

304 A Source Book from The Open Group (2010)

Utilities Migration

XSl

comm
Purpose:
Synopsis:
Derivation:

Issue 7:

command
Purpose:

Synopsis:

Derivation:

Issue 7:

compress
Purpose:

Synopsis:

Derivation:

Issue 7:

cp
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities

Select or reject lines common to two files.
comm [-123] filel file2
First released in Issue 2.

No functional changes are made in this issue.

Execute a simple command.

command [-p] conmmand_name [argunent...]
comand [-p][-v| -V] conmmand_nane

First released in Issue 4.

Austin Group Interpretation 1003.1-2001 #196 is applied, changing the SYNOPSIS
to allow —p to be used with -v (or -V).

The command utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

The APPLICATION USAGE and EXAMPLES are revised to replace the non-
standard getconf _CS_PATH with getconf PATH.

Compress data.
conpress [fv] [-b bits] [file...]
conpress [—cfv] [-b bits] [file]

First released in Issue 4.

Austin Group Interpretation 1003.1-2001 #125 is applied,
ENVIRONMENT VARIABLES section in relation to locale usage.

revising the

Copy files.
cp [-Pfip] source file target file
cp [-Pfip] source file...
cp R [-H -L|-P]

t ar get

[-fip] source file... target

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #092 is applied, specifying that a
source_file or target file operand of ' - shall refer to a file named ' - ;
implementations shall not treat them as meaning standard input or standard

output.

Austin Group Interpretation 1003.1-2001 #164 is applied, making the behavior
unspecified when cp encounters an existing dest_file that was written by a previous
step.

Austin Group Interpretation 1003.1-2001 #165 is applied, correcting the description

The Single UNIX® Specification: Authorized Guide to Version 4 305

Utilities Utilities Migration

of the —i option to reflect that prompts are not written for existing directory files
(only non-directory files), as per the detailed steps in the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #168 is applied, updating the description
of how two pathnames are concatenated so that a slash character is only inserted
if the first pathname does not end in a slash.

The obsolescent -r option is removed.
The —P option is added to the SYNOPSIS and to the DESCRIPTION with respect
to its use without the —R option.
crontab
Purpose: Schedule periodic background work.
Synopsis: crontab [file]
uP crontab [—e]| -l | -r]

Derivation: First released in Issue 2.

Issue 7: The crontab utility (except for the —e option) is moved from the User Portability
Utilities option to the Base. User Portability Utilities is now an option for interactive
utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the
files referenced by the crontab utility.

The first example is changed to remove the unreliable use of find | xargs.

csplit

Purpose: Split files based on context.

Synopsis: csplit [-ks] [-f prefix] [-n nunber] file arg...
Derivation: First released in Issue 2.

Issue 7: The csplit utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

The SYNOPSIS and OPERANDS sections are revised to clarify that use of a
single arg operand is permitted.
ctags
Purpose: Create a tags file (DEVELOPMENT, FORTRAN).
SD Synopsis: ctags [-a] [f tagsfile] pathnane...

ctags —x pat hnane. ..
Derivation: First released in Issue 4.

Issue 7: The ctags utility is no longer dependent on support for the User Portability Utilities
option.

306 A Source Book from The Open Group (2010)

Utilities Migration

XSl

XSl

XSl

cut
Purpose:

Synopsis:

Derivation:

Issue 7:

cxref
Purpose:

Synopsis:

Derivation:

Issue 7:

date
Purpose:

Synopsis:

Derivation:

Issue 7:

dd
Purpose:
Synopsis:
Derivation:

Issue 7:

delta
Purpose:

Synopsis:

Derivation:

Utilities

Cut out selected fields of each line of a file.
[file...]

[file...]

[-d delin] [-s] [file...]
First released in Issue 2.

SD5-XCU-ERN-171 is applied, adding APPLICATION USAGE regarding the use of
the cut and fold utilities to create text files out of files with arbitrary line lengths.

cut -b list [-n]
cut —c list

cut —f list

Generate a C-language program cross-reference table (DEVELOPMENT).

cxref [-cs] [-o file] [-w nun] [-D nane[=def]]... [l dir]...

[-U nane]... file...

First released in Issue 2.

No functional changes are made in this issue.

Write the date and time.
date [-u] [+format]
date [-u] mddhhmmi [cc] yy]

First released in Issue 2.

No functional changes are made in this issue.

Convert and copy a file.
dd [operand...]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #102 is applied, adding requirements for
the output file to be extended when the input file is empty, seek=expr is specified
but conv=notrunc is not, and either the size of the seek is greater than the
previous size of the output file or the output file did not previously exist.

Make a delta (change) to an SCCS file (DEVELOPMENT).

delta [-nps] [-g list] [-mnvlist] [-r SID]
[-y[comment]] file...

First released in Issue 2.

The Single UNIX® Specification: Authorized Guide to Version 4 307

Utilities

Issue 7:

df
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

diff
Purpose:

Synopsis:

Derivation:

Issue 7:

dirname
Purpose:

Synopsis:

Derivation:

Issue 7:

308

Utilities Migration

No functional changes are made in this issue.

Report free disk space.
df [-k] [-P|-t] [file...]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #099 is applied, clarifying the XSI
requirements for operands which name a special file containing a file system.

The df utility is removed from the User Portability Utilities option. User Portability
Utilities is now an option for interactive utilities.

Compare two files.
diff [-c|]-e|-f|]-ul-Cn|-Un] [-br] filel file2

When the —-u option is specified, diff produces output in a form that provides three
lines of unified context.

When the -U n option is specified, diff produces output in a form that provides n
lines of unified context.

The -u or -U options behave like the —c or —C options, except that the context
lines are not repeated; instead, the context, deleted, and added lines are shown
together, interleaved.

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #114 is applied, requiring diff to detect
infinite loops in the file system when the —r option is specified.

Austin Group Interpretation 1003.1-2001 #115 is applied, updating requirements
when block or character special files are encountered in directories being
compared.

Austin Group Interpretation 1003.1-2001 #192 is applied, clarifying the behavior if
one or both files are non-text files.

SD5-XCU-ERN-103 and SD5-XCU-ERN-120 are applied, adding the —u and -U
options.

Return the directory portion of a pathname.
di rnane string
First released in Issue 2.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

Utilities Migration

du
Purpose:
Synopsis:
Derivation:

Issue 7:

echo
Purpose:
Synopsis:
Derivation:

Issue 7:

ed
Purpose:
Synopsis:
Derivation:

Issue 7:

env
Purpose:
Synopsis:
Derivation:

Issue 7:

The Single UNIX® Specification: Authorized Guide to Version 4

Utilities

Estimate file space usage.
du [-a] -s] [-kx] [-H -L] [file...]
First released in Issue 2.

The du utility is moved from the User Portability Utilities option to the Base. User

Portability Utilities is now an option for interactive utilities.

Write arguments to standard output.
echo [string...]
First released in Issue 2.

No functional changes are made in this issue.

Edit text.
ed [-p string] [-s]

First released in Issue 2.

[file]

Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
anoperandis’ - .

Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior for
BRE back-references when a subexpression does not participate in the match.

SD5-XCU-ERN-94 is applied, updating text in the EXTENDED DESCRIPTION
where a terminal disconnect is detected (in Commands in ed).

Set the environment for command invocation.
env [-i] [nane=value]... [utility [argunent...]]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
the first argumentis’* -’ .

Austin Group Interpretation 1003.1-2001 #047 is applied, providing RATIONALE on
how to use the env utility to preserve a conforming environment.

The EXAMPLES section is revised to change the use of env —i so that it preserves
a conforming environment.

309

Utilities Utilities Migration

ex
Purpose: Text editor.

uP Synopsis: ex [-rR] [-s|-v] [-¢c command] [-t tagstring]
[-w size] [file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
anoperandis’ - .

Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior for
BRE back-references when a subexpression does not participate in the match.

expand

Purpose: Convert tabs to spaces.

Synopsis: expand [-t tablist] [file...]

Derivation: First released in Issue 4.

Issue 7: The expand utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

expr

Purpose: Evaluate arguments as an expression.

Synopsis: expr operand. ..

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior for
BRE back-references when a subexpression does not participate in the match.

false

Purpose: Return false value.

Synopsis: fal se

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
fc
Purpose: Process the command history list.

uP Synopsis: fc [-r] [-e editor] [first [last]]

fc - [-nr] [first [last]]
fc —s [old=new] [first]

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

310 A Source Book from The Open Group (2010)

Utilities Migration

UpP

fg
Purpose:

Synopsis:

Derivation:

Issue 7:

file
Purpose:

Synopsis:

Derivation:

Issue 7:

find
Purpose:
Synopsis:
Derivation:

Issue 7:

Utilities

Run jobs in the foreground.
fg [job_id]

First released in Issue 4.

No functional changes are made in this issue.

Determine file type.

file [-dh] [-Mfile] [-mfile] file...
file =i [-h] file...

First released in Issue 4.

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is used if a file operand is ' = and the
implementation treats the ' —' as meaning standard input.

SD5-XCU-ERN-4 is applied, adding further entries in the Notes column in XCU
Table 4-9, File Utility Output Strings .

The file utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

The EXAMPLES section is revised to make use of the " ——" delimiter.

Find files.
find [-H -L] path... [operand_expression...]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #127 is applied, rephrasing the
description of the —exec primary to be “immediately follows”.

Austin Group Interpretation 1003.1-2001 #185 is applied, clarifying the
requirements for the —H and -L options.

Austin Group Interpretation 1003.1-2001 #186 is applied, clarifying the
requirements for the evaluation of path operands with trailing slashes.

Austin Group Interpretation 1003.1-2001 #195 is applied, clarifying the
interpretation of the first operand.

SD5-XCU-ERN-48 is applied, clarifying the —-L option in the case that the file
referenced by a symbolic link does not exist.

SD5-XCU-ERN-117 is applied, clarifying the —perm primary.

SD5-XCU-ERN-122 is applied, adding a new EXAMPLE showing the useful
technique:

-exec sh -¢c '... "$@ ...’ sh {} +

The description of the —name primary is revised and the —path primary is added
(with a new example).

The Single UNIX® Specification: Authorized Guide to Version 4 311

Utilities Utilities Migration

fold

Purpose: Filter for folding lines.

Synopsis: fold [-bs] [-ww dth] [file...]
Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ' = and the
implementation treats the ' —' as meaning standard input.

Austin Group Interpretation 1003.1-2001 #204 is applied, updating the
DESCRIPTION to clarify when a <newline> can be inserted before or after a

<backspace>.
fort77
Purpose: FORTRAN compiler (FORTRAN).
FD Synopsis: fort77 [—c] [-g] [-L directory]... [-O optlevel] [-0 outfil €]

[-s] [-W] operand...

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

fuser

Purpose: List process IDs of all processes that have one or more files open.
XSl Synopsis: fuser [-cfu] file...

Derivation: First released in Issue 5.

Issue 7: SD5-XCU-ERN-90 is applied, updating the EXAMPLES section.
gencat
Purpose: Generate a formatted message catalog.

Synopsis: gencat catfile nsgfile...
Derivation: First released in Issue 3.

Issue 7: The gencat utility is moved from the XSI option to the Base.

get
Purpose: Get a version of an SCCS file (DEVELOPMENT).

XSl Synopsis: get [-begkml Lpst] [-c cutoff] [—-i list] [-r SID]
[x list] file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

312 A Source Book from The Open Group (2010)

Utilities Migration Utilities

getconf

Purpose: Get configuration values.

Synopsis: getconf [-v specification] systemvar
getconf [-v specification] path_var pathnane

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.
getopts
Purpose: Parse utility options.

Synopsis: getopts optstring nane [arg...]

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.
grep
Purpose: Search a file for a pattern.
Synopsis: grep [-E|-F] [-c|-l|-q] [-insvx] —e pattern_li st
[-e pattern_list]... [-f pattern_ file]... [file...]
grep [-E|-F] [-c|-I|—-q] [-insvx] [-e pattern_list]...
—f pattern_file [-f pattern_file]... [file...]
grep [-E|-F] [-c|-1|—-q] [-insvx] pattern_list [file...]
Derivation: First released in Issue 2.
Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ' = and the

implementation treats the ' -

SD5-XCU-ERN-98 is applied, updating the STDOUT section to reflect the fact that
the —I and —q options are shown in the SYNOPSIS as mutually exclusive.

as meaning standard input.

hash
Purpose: Remember or report utility locations.
Synopsis: hash [utility...]
hash -r
Derivation: First released in Issue 2.

Issue 7: The hash utility is moved from the XSI option to the Base.

The Single UNIX® Specification: Authorized Guide to Version 4 313

Utilities Utilities Migration

head
Purpose: Copy the first part of files.
Synopsis: head [-n nunber] [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ' = and the
implementation treats the ' —' as meaning standard input.

The EXAMPLES section is revised to make use of the " ——" delimiter.

iconv

Purpose: Codeset conversion.

Synopsis: iconv [-cs] —f frommap -t tomap [file...]

iconv -f fronctode [-cs] [-t tocode] [file...]
iconv -t tocode [-cs] [—f frontode] [file...]
i conv -l

Derivation: First released in Issue 3.

Issue 7: No functional changes are made in this issue.
id
Purpose: Return user identity.

Synopsis: id [user]
id -G [-n] [user]
id —-g [-nr] [user]
id -u [-nr] [user]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
ipcrm
Purpose: Remove an XSI message queue, semaphore set, or shared memory segment
identifier.
XSl Synopsis: ipcrm[—q nmsgi d] -Q nsgkey| -s sem d| -S senkey|

-m shmi d| -M shnkey] . ..

Derivation: First released in Issue 5.

Issue 7: No functional changes are made in this issue.

314 A Source Book from The Open Group (2010)

Utilities Migration

XSl

UpP

XSl

CD

ipcs
Purpose:

Synopsis:

Derivation:

Issue 7:

jobs
Purpose:

Synopsis:

Derivation:
Issue 7:
join
Purpose:

Synopsis:

Derivation:

Issue 7:
kill
Purpose:

Synopsis:

Derivation:

Issue 7:

lex
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities
Report XSl interprocess communication facilities status.
i pcs [—-gnms] [-a| —bcopt]
First released in Issue 5.
No functional changes are made in this issue.
Display status of jobs in the current session.
jobs [-1]|—-p] [job_id...]
First released in Issue 4.
No functional changes are made in this issue.
Relational database operator.
join [-a file_nunber|-v file_nunber] [-e string] [-0 |ist]
[-t char] [-1 field] [-2 field] filel file2
First released in Issue 2.
No functional changes are made in this issue.
Terminate or signal processes.
kill -s signal _nane pid...
kill -l [exit_status]
kill [-signal_nane] pid...
kill [-signal_nunber] pid...
First released in Issue 2.
No functional changes are made in this issue.
Generate programs for lexical tasks (DEVELOPMENT).
lex [-t] [-n]—v] [file...]
First released in Issue 2.
Austin Group Interpretation 1003.1-2001 #190 is applied, clarifying the

requirements for generated code to conform to the ISO C standard.

Austin Group Interpretation 1003.1-2001 #191 is applied, clarifying the handling of
C-language trigraphs and curly brace preprocessing tokens.

The Single UNIX® Specification: Authorized Guide to Version 4 315

Utilities

XSl

316

link
Purpose:

Synopsis:

Derivation:

Issue 7:

In
Purpose:

Synopsis:

Derivation:

Issue 7:

locale
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities Migration

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

Call link() function.
link filel file2

First released in Issue 5.

No functional changes are made in this issue.

Link files.
In [-fs] [-L]|-P] source_file target _file
In [-fs] [-L]|-P] source_file... target_dir

When the -L option is specified (and the —s option is not specified), for each
source_file operand that names a file of type symbolic link, In creates a (hard) link
to the file referenced by the symbolic link.

When the —P option is specified (and the —s option is not specified), for each
source_file operand that names a file of type symbolic link, In creates a (hard) link
to the symbolic link itself.

If the —s option is not specified and neither a —L nor a —P option is specified, it is
implementation-defined which of the —L and —P options will be used as the default.

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #164 is applied, allowing In to report an
error when it encounters an existing destination path that was written by a previous
step.

Austin Group Interpretation 1003.1-2001 #168 is applied, updating the description
of how two pathnames are concatenated so that a slash character is only inserted
if the first pathname does not end in a slash.

Austin Group Interpretation 1003.1-2001 #169 is applied, updating the
requirements when destination names the same directory entry as the current
source_file.

The -L and —-P options are added to provide control over how the In utility creates
hard links to symbolic links.

Get locale-specific information.
| ocal e [—a] -ni

| ocal e [-ck] nane...
First released in Issue 4.

Austin Group Interpretation 1003.1-2001 #017 is applied, clarifying the standard
output for the —k option for non-numeric compound keyword values.

A Source Book from The Open Group (2010)

Utilities Migration

XSl

The Single UNIX® Specification: Authorized Guide to Version 4

localedef
Purpose:

Synopsis:

Derivation:

Issue 7:

logger
Purpose:
Synopsis:
Derivation:

Issue 7:

logname
Purpose:
Synopsis:
Derivation:

Issue 7:

Ip
Purpose:

Synopsis:

Derivation:

Issue 7:

Is
Purpose:

Synopsis:

Utilities

Austin Group Interpretations 1003.1-2001 #021 and #088 are applied, clarifying
the standard output for the —k option when LANG is not set or is an empty string.

Define locale environment.

| ocal edef [-c] [—f charnap]
[-u code_set nane] nane

First released in Issue 4.

No functional changes are made in this issue.

Log messages.
| ogger string...
First released in Issue 4.

No functional changes are made in this issue.

Return the user’s login name.

| ognane

First released in Issue 2.

No functional changes are made in this issue.

Send files to a printer.

Ip [-c] [-d dest] [-n copies] [-msw] [-0 option]...
[t title]

No functional changes are made in this issue.

List directory contents.
I s [-ACFRSacdfi kl mpgr st ux1] [-H| -L]

sourcefile]

[file...]

First released in Issue 2.

[file...]

When the —A option is specified, Is writes out all directory entries, including those
whose names begin with a <period> (' .) but excluding the entries dot and dot-

dot (if they exist).

When the -S option is specified, Is sorts with the primary key being file size (in
decreasing order) and the secondary key being filename in the collating sequence

(in increasing order).

When the —k option is specified, Is sets the block size for the —s option and the per-
directory block count written for the —I, —n, —s, —g, and —o options to 1 024 bytes.

317

Utilities Utilities Migration

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #101 is applied, clarifying the optional
alternate access method flag in the STDOUT section.

Austin Group Interpretation 1003.1-2001 #128 is applied, clarifying the
DESCRIPTION and the definition of the —R option with regard to symbolic links.

Austin Group Interpretation 1003.1-2001 #198 is applied, clarifying the
requirements for the —H option for symbolic links specified on the command line.

SD5-XCU-ERN-50 is applied, adding the —A option.

The -S option is added from The Open Group Technical Standard, 2006, Extended
API Set Part 1.

The —f, -m, —n, —p, —s, and —x options are moved from the XSI option to the Base.

The description of the —-f, —s, and -t options are revised and the -k option is

added.
m4
Purpose: Macro processor.
Synopsis: M [-s] [-D nane[=val]]... [-Unane]... file...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #117 is applied, marking the maketemp
macro obsolescent and adding a new mkstemp macro.

Austin Group Interpretation 1003.1-2001 #207 is applied, clarifying the handling of
white-space characters that precede or trail any macro arguments.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

SD5-XCU-ERN-99 is applied, clarifying the definition of the divert macro in the
EXTENDED DESCRIPTION.

SD5-XCU-ERN-100 is applied, clarifying the definition of the syscmd macro in the
EXTENDED DESCRIPTION.

SD5-XCU-ERN-101 is applied, clarifying the definition of the undivert macro in the
EXTENDED DESCRIPTION.

SD5-XCU-ERN-111 is applied to the EXTENDED DESCRIPTION, clarifying that
the string " ${" produces unspecified behavior.

SD5-XCU-ERN-112 is applied, updating the changequote macro.

SD5-XCU-ERN-118 is applied, clarifying the definition of the define macro in the
EXTENDED DESCRIPTION and APPLICATION USAGE sections.

SD5-XCU-ERN-119 is applied, clarifying the definition of the translit macro in the
EXTENDED DESCRIPTION and RATIONALE sections.

SD5-XCU-ERN-130 is applied, making the behavior unspecified when macro
names are used without arguments.

SD5-XCU-ERN-131 is applied, making the behavior unspecified when either
argument to the changecom macro is provided but null.

318 A Source Book from The Open Group (2010)

Utilities Migration

UpP

SD

mailx
Purpose:

Synopsis:

Derivation:

Issue 7:

make
Purpose:

Synopsis:

Derivation:

Issue 7:

man
Purpose:
Synopsis:
Derivation:

Issue 7:

Utilities

SD5-XCU-ERN-137 is applied, updating the description of the eval macro in the
EXTENDED DESCRIPTION and APPLICATION USAGE sections.

The m4 utility is moved from the XSI option to the Base.

Process messages.
Send Mode

mai | Xx [-s subject] address...

Receive Mode

mai | x —e

mai |l x [-Hi Nn] [-F] [-u user]
mai | x —f [-Hi Nn] [-F] [file]

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #089 is applied, clarifying the effect of the
LC_TIME environment variable.

Austin Group Interpretation 1003.1-2001 #090 is applied, updating the description
of the next command.

Maintain, update, and regenerate groups of programs (DEVELOPMENT).

make [—einpgrst] [-f makefile]...
[target _nane...]

[-k| =S] [rmcro=val ue. . .]

First released in Issue 2.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

Include lines in makefiles are introduced.

Austin Group Interpretation 1003.1-2001 #131 is applied, changing the Makefile
Execution section.

Display system documentation.
man [-k] nane...
First released in Issue 4.

Austin Group Interpretation 1003.1-2001 #108 is applied,
informational messages may appear on standard error.

clarifying that

The Single UNIX® Specification: Authorized Guide to Version 4 319

Utilities

mesg
Purpose:

Synopsis:

Derivation:

Issue 7:

mkdir
Purpose:

Synopsis:

Derivation:

Issue 7:

mkfifo
Purpose:

Synopsis:

Derivation:

Issue 7:

more
Purpose:

uP Synopsis:

Derivation:

Issue 7:

mv
Purpose:

Synopsis:

Derivation:

Issue 7:

320

Utilities Migration

Permit or deny messages.
nmesg [y| n]
First released in Issue 2.

The mesg utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

Make directories.
nkdir [-p] [-m node] dir...
First released in Issue 2.

SD5-XCU-ERN-56 is applied, aligning the —m option with the IEEE P1003.2b draft
standard to clarify an ambiguity.

Make FIFO special files.
nkfifo [-m node] file...
First released in Issue 3.

No functional changes are made in this issue.

Display files on a page-by-page basis.

nore [—ceisu] [-n nunber] [-p command] [-t tagstring]
[file...]

First released in Issue 4.

Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that * + may
be recognized as an option delimiter in the OPTIONS section.

Move files.

mv [-if] source file target file
mv [-if] source file... target dir
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #016 is applied, updating requirements
relating to a target_file operand with a trailing slash .

Austin Group Interpretation 1003.1-2001 #164 is applied, allowing mv to report an
error when it encounters an existing destination path that was written by a previous
step.

Austin Group Interpretation 1003.1-2001 #168 is applied, updating the description
of how two pathnames are concatenated so that a slash character is only inserted

A Source Book from The Open Group (2010)

Utilities Migration Utilities

if the first pathname does not end in a slash.

Austin Group Interpretation 1003.1-2001 #169 is applied, updating the
requirements when the source_file operand and destination path name the same
existing file.

SD5-XCU-ERN-51 is applied to the DESCRIPTION, clarifying that it is unspecified
whether hard links to other files are preserved when files are being duplicated to
another file system.

Changes are made related to support for finegrained timestamps.

newgrp

Purpose: Change to a new group.
Synopsis: newgrp [-I] [group]
Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
the first argument is’* -’ .

The newgrp utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

nice

Purpose: Invoke a utility with an altered nice value.

Synopsis: nice [-n increnent] utility [argunent...]

Derivation: First released in Issue 4.

Issue 7: The nice utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

nl
Purpose: Line numbering filter.
XSl Synopsis: nl [-p] [-b type] [-d delim [-f type] [-h type] [incr]

[-I num{ [-n format] [-s sep] [-v startnuni
[-wwidth] [file]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ' = and the
implementation treats the ' =’ as meaning standard input.

nm

Purpose: Write the name list of an object file (DEVELOPMENT).

SD Synopsis: nm [-APv] [—g|-u] [t format] file...
XSl nm[-APv] [-efox] [-g|-u] [t format] file...

The Single UNIX® Specification: Authorized Guide to Version 4 321

Utilities Utilities Migration

Derivation: First released in Issue 2.

Issue 7: The nm utility is removed from the User Portability Utilities option. User Portability
Utilities is now an option for interactive utilities.

nohup

Purpose: Invoke a utility immune to hangups.

Synopsis: nohup utility [argunent...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #104 is applied, allowing nohup to
redirect standard input from an unspecified file if it is associated with a terminal.

Austin Group Interpretations 1003.1-2001 #105 and #106 are applied, updating
requirements related to redirection of standard output and standard error.

od

Purpose: Dump files in various formats.

Synopsis: od [-v] [-A address_base] [-j skip] [-N count]
[t type_string]... [file...]

XSl od [-bcdosx] [file] [[+]offset[.][b]]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ' = and the
implementation treats the ' —' as meaning standard input.

paste

Purpose: Merge corresponding or subsequent lines of files.

Synopsis: paste [-s] [-d list] file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

patch
Purpose: Apply changes to files.

Synopsis: patch [-bINR] [-c|—e|-n|-u] [-d dir] [-D define] [-i patchfile]
[-0 outfile] [-p num [-r rejectfile] [file]

When the —u option is specified, patch interprets the patch file as a unified context
difference (the output of the diff utility when the —u or —U options are specified).

Derivation: First released in Issue 4.

Issue 7: The patch utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-103 and SD5-XCU-ERN-120 are applied, adding the —u option.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description
of the LC_CTYPE environment variable and adding the LC_COLLATE environment

322 A Source Book from The Open Group (2010)

Utilities Migration

pathchk
Purpose:

Synopsis:

Derivation:

Issue 7:

pax
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities

variable.

Check pathnames.
pat hchk [-p] [-P] pathnane. ..

When the —P option is specified, pathchk writes a diagnostic for each pathname
operand that:

Contains a component whose first character is the <hyphen> character
Is empty
First released in Issue 4.

Austin Group Interpretations 1003.1-2001 #039 and #040 are applied, adding the
—P option.

SD5-XCU-ERN-121 is applied, updating the way xargs is used in the EXAMPLES
section.

Portable archive interchange.

pax [-dv] [-c|-n] [-H -L] [-o options] [—f archive]

[-s replstr]... [pattern...]

pax -r[-c|-n] [-dikuv] [-H -L] [-f archive] [-0 options]...
[-p string]... [-s replstr]... [pattern...]

pax -w [-dituvX] [-H -L] [-b bl ocksize] [[-a] [-f archive]]
[-0 options]... [-s replstr]... [—x format] [file...]

pax -r -w [—di kIl ntuvX] [-H -L] [-0 options]... [-p string]...
[-s replstr]... [file...] directory

First released in Issue 4.

Austin Group Interpretation 1003.1-2001 #011 is applied, clarifying how symbolic
links are archived in cpio format.

Austin Group Interpretation 1003.1-2001 #086 is applied, clarifying that when a list
of files to copy is read from the standard input, each entry in the list is processed
as if it had been a file operand on the command line.

Austin Group Interpretation 1003.1-2001 #109 is applied, adding the hdrcharset
keyword to the pax extended headers, and related requirements.

SD5-XCU-ERN-2 is applied, making the —¢c and —n options mutually-exclusive in
the SYNOPSIS.

SD5-XCU-ERN-60 is applied, revising text which incorrectly implied that the —x
option could be used in copy mode.

The pax utility is no longer allowed to create separate identical symbolic links when
extracting linked symbolic links from an archive, because the standard now
requires implementations to support (hard) linking of symbolic links.

The Single UNIX® Specification: Authorized Guide to Version 4 323

Utilities

XSl

XSl

XSl

324

pr
Purpose:

Synopsis:

Derivation:

Issue 7:

printf
Purpose:

Synopsis:

Derivation:

Issue 7:

prs
Purpose:

Synopsis:

Derivation:

Issue 7:

ps
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities Migration

Print files.

pr [+page] [-colum] [-adFmrt] [-e[char][gap]] [-h header]
[-i[char][gap]] [-] lines] [-n[char][w dth]]
[-0 offset] [-s[char]] [-wwidth] [fp] [file...]

First released in Issue 2.

PASC Interpretation 1003.2-92 #151 (SD5-XCU-ERN-44) is applied, replacing “two
or more” in the description of the —i option with “one or more”.

Austin Group Interpretation 1003.1-2001 #093 is applied, adding APPLICATION
USAGE warning that a first operand that starts with a <plus-sign> needs to be
preceded with the " ——" argument that denotes the end of the options.

Write formatted output.
printf format [argunent...]
First released in Issue 4.

Austin Group Interpretation 1003.1-2001 #175 is applied, updating requirements
related to floating-point conversions to align with the printf() function.

Austin Group Interpretation 1003.1-2001 #177 is applied, clarifying the behavior of
the % conversion.

Print an SCCS file (DEVELOPMENT).
prs [-a] [-d dataspec] [-r[SID] file...
prs [-e|-I] —c cutoff [-d dataspec] file...

prs [-e|-I] —r[SID [-d dataspec] file...

First released in Issue 2.

No functional changes are made in this issue.

Report process status.

ps [-aA] [-defl] [-g grouplist] [-G grouplist]
[-n nanelist] [-o format]... [—-p proclist] [-t termist]
[-u userlist] [-U userlist]

First released in Issue 2.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

Utilities Migration

pwd
Purpose:
Synopsis:
Derivation:

Issue 7:

galter
Purpose:

oB BE Synopsis:

Derivation:

Issue 7:

qdel
Purpose:

oB BE Synopsis:

Derivation:

Issue 7:

ghold
Purpose:

oB BE Synopsis:

Derivation:

Issue 7:

gmove
Purpose:

oB BE Synopsis:

Derivation:

Issue 7:

Utilities

Return working directory name.
pwd [-L| -P]
First released in Issue 2.

Changes have been made to match the changes to the getcwd() function, adding
text to address the case where the current directory is deeper in the file hierarchy
than {PATH_MAX} bytes, and adding the requirements relating to pathnames
beginning with two slash characters.

Alter batch job.

galter [-a date_tine] [—-A account_string] [-c interval]

[-e path_nane] [-h hold_list] [join_list]
[-k keep_list] [l resource_list] [-m il _options]
[-Mnmail _list] [-N nane] [-0 path_name] [-p priority]

[-r y|n] [-S path_name_list] [-u user_list]
job _identifier...

Derived from IEEE Std 1003.2d-1994.

The qalter utility is marked obsolescent.

Delete batch jobs.
gdel job_identifier...

Derived from IEEE Std 1003.2d-1994.

The qdel utility is marked obsolescent.

Hold batch jobs.
ghold [-h hold_list] job_identifier...

Derived from IEEE Std 1003.2d-1994.

The ghold utility is marked obsolescent.

Move batch jobs.

gnove destination job_identifier...

Derived from IEEE Std 1003.2d-1994.

The gmove utility is marked obsolescent.

The Single UNIX® Specification: Authorized Guide to Version 4 325

Utilities

amsg
Purpose:

oB BE Synopsis:

Derivation:

Issue 7:

grerun
Purpose:

oB BE Synopsis:

Derivation:

Issue 7:

grls
Purpose:

oB BE Synopsis:

Derivation:

Issue 7:

gselect
Purpose:

oB BE Synopsis:

Derivation:

Issue 7:

asig
Purpose:

oB BE Synopsis:

Derivation:

Issue 7:

326

Send message to batch jobs.

Utilities Migration

gnmsg [-EQ] nessage_string job_identifier...

Derived from IEEE Std 1003.2d-1994.

The gmsg utility is marked obsolescent.

Rerun batch jobs.

grerun job_identifier...

Derived from IEEE Std 1003.2d-1994.

The grerun utility is marked obsolescent.

Release batch jobs.

grls [-h hold_list] job_identifier...

Derived from IEEE Std 1003.2d-1994.

The qrls utility is marked obsolescent.

Select batch jobs.

gselect [-a [op]date_tine] [-A account_string]
[-c [op]interval] [-h hold_list] [-] resource_list]

[-N nane] [-p [op]priority]

[-g desti nati on]

[-r y|n] [-s states] [-u user _list]

Derived from IEEE Std 1003.2d-1994.

The gselect utility is marked obsolescent.

Signal batch jobs.

gsig [-s signal] job_identifier...

Derived from IEEE Std 1003.2d-1994.

The gsig utility is marked obsolescent.

A Source Book from The Open Group (2010)

Utilities Migration Utilities

gstat
Purpose: Show status of batch jobs.
oB BE Synopsis: qstat [-f] job_identifier...
gstat -Q [-f] destination...

gstat -B [-f] server_nane...

Derivation: Derived from IEEE Std 1003.2d-1994.

Issue 7: The gstat utility is marked obsolescent.
gsub
Purpose: Submit a script.

oB BE Synopsis: qsub [-a date_tine] [-A account_string] [-c interval]
[-C directive prefix] [-e path_name] [-h] [join_list]
[-k keep_list] [-mmail _options] [-Mmail _|ist] [-N nane]
[-0 path_name] [-p priority] [—-q destination] [-r y|n]
[-S path_name_list] [-u user_list] [-v variable_ list] [-V]
[-z] [script]

Derivation: Derived from IEEE Std 1003.2d-1994.

Issue 7: The gsub utility is marked obsolescent.
read
Purpose: Read a line from standard input.

Synopsis: read [-r] var...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #194 is applied, clarifying the handling of
the <backslash> escape character.

renice

Purpose: Set nice values of running processes.

Synopsis: renice [—g| -p|-u] -n increnment ID. ..

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that Guideline 9
of the Utility Syntax Guidelines does not apply (options can be interspersed with
operands).

The renice utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

The Single UNIX® Specification: Authorized Guide to Version 4 327

Utilities

rm
Purpose:

Synopsis:

Derivation:

Issue 7:

rmdel
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

rmdir
Purpose:

Synopsis:

Derivation:

Issue 7:

sact
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

sccs
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

328

Utilities Migration

Remove directory entries.
rm[-fiRr] file...
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #019 is applied, requiring rm to report an
error if an operand resolves to the root directory.

Austin Group Interpretation 1003.1-2001 #091 is applied, updating the description
of exit status 0 in the EXIT STATUS section.

Remove a delta from an SCCS file (DEVELOPMENT).
rmdel -r SID file...

First released in Issue 2.

No functional changes are made in this issue.

Remove directories.
rodir [-p] dir...
First released in Issue 2.

No functional changes are made in this issue.

Print current SCCS file-editing activity (DEVELOPMENT).
sact file...

First released in Issue 2.

No functional changes are made in this issue.

Front end for the SCCS subsystem (DEVELOPMENT).

sccs [—r] [-d path] [-p path] command [options...]
[operands. ..]

First released in Issue 4.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

Utilities Migration Utilities

sed
Purpose: Stream editor.

Synopsis: sed [-n] script [file...]

sed [-n] -e script [-e script]... [-f script_file]...
[file...]

sed [-n] [-e script]... —f script file [f script_file]...
[file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior for
BRE back-references when a subexpression does not participate in the match.

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ' = and the
implementation treats the ' —' as meaning standard input.

SD5-XCU-ERN-123 is applied, updating the SYNOPSIS so that it correctly reflects
the relationship between the script operand and the —e and —f options.

A second example is added, giving a simpler method of squeezing empty lines.

sh
Purpose: Shell, the standard command language interpreter.
Synopsis: sh [-abCef hi muvx] [-0 option]... [+abCefhi muvx]
[+0 option]... [command file [argunent...]]
sh —c [-abCef hi muvx] [-o0 option]... [+abCefhi muvx]
[+0 option]... command_string [comand_nane [argunent...]]
sh —s [-abCef hi muvx] [-0 option]... [+abCefhi muvx]
[+0 option]... [argunent...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #098 is applied, changing the description
of IFS to match the one in section 2.5.3.

The description of the PWD environment variable is updated to reflect that
assignments to the variable may always be ignored.

Minor changes are made to the install script example in the APPLICATION USAGE
section.

sleep

Purpose: Suspend execution for an interval.

Synopsis: sleep tine

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 329

Utilities Utilities Migration

sort

Purpose: Sort, merge, or sequence check text files.

Synopsis: sort [-n] [-o0 output] [-bdfinru] [-t char] [-k keydef]...

[file...]

sort [—c|-C] [-bdfinru] [-t char] [-k keydef] [file]
The —C option is the same as —c, except that a warning message is not sent to
standard error if disorder or, with —u, a duplicate key is detected.

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that Guideline 9
of the Utility Syntax Guidelines does not apply (options can be interspersed with
operands), and noting that* + may be recognized as an option delimiter.

Austin Group Interpretation 1003.1-2001 #120 is applied, updating the —c option to
require that the warning message sent to standard error indicates where the
disorder or duplicate key was found, and introducing the —C option.

XCU-ERN-81 is applied, modifying the description of the —i option to state that the
behavior is undefined for a sort key for which —n also applies.

split
Purpose: Split files into pieces.
Synopsis: split [-l line_count] [-a suffix length] [file[nane]]

split -b n[klnm [-a suffix_length] [file[name]]

Derivation: First released in Issue 2.

Issue 7: The split utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

strings

Purpose: Find printable strings in files.

Synopsis: strings [-a] [-t format] [-n nunber] [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
the first argumentis’* -’ .

The strings utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

strip
Purpose: Remove unnecessary information from strippable files (DEVELOPMENT).
SD Synopsis: strip file...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #103 is applied, clarifying that XSI-
conformant systems support use of strip on archive files containing object files or
relocatable files.

330 A Source Book from The Open Group (2010)

Utilities Migration

XSl

UpP

stty
Purpose:

Synopsis:

Derivation:

Issue 7:

tabs
Purpose:

Synopsis:

Derivation:

Issue 7:

tail
Purpose:
Synopsis:
Derivation:

Issue 7:

talk
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities

Set the options for a terminal.
stty [-al —g]

stty operand. ..

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #144 is applied, moving functionality
relating to the IXANY symbol from the XSI option to the Base.

Set terminal tabs.

tabs [-n| —a] —a2| —c| —c¢2| —¢3| —f | —p| —s| L] [-T type]
tabs [-T type] n[[sep[+]n]...]

First released in Issue 2.

The tabs utility is removed from the User Portability Utilities option. User Portability
Utilities is now an option for interactive utilities.

Copy the last part of a file.
tail [-f] [-c nunber|-n nunber] [file]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that * + may
be recognized as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if the file operand is ' =’ and the
implementation treats the ' —' as meaning standard input.

Austin Group Interpretation 1003.1-2001 #100 is applied, adding the requirement
on applications that if the sign of the option-argument number is ' +' , the number
option-argument is non-zero.

SD5-XCU-ERN-114 is applied, updating the —f option so that a FIFO on standard
input is treated the same as a pipe.

Talk to another user.

tal k address [term nal]

First released in Issue 4.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 331

Utilities

tee
Purpose:

Synopsis:

Derivation:

Issue 7:

test
Purpose:

Synopsis:

Derivation:

Issue 7:

time
Purpose:

Synopsis:

Derivation:

Issue 7:
touch

Purpose:

Synopsis:

332

Utilities Migration

Duplicate standard input.
tee [-ai] [file...]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #092 is applied, specifying that a file
operand of ' =’ shall refer to a file named ' - ; implementations shall not treat it as
meaning standard output.

Evaluate expression.
test [expression]

[[expression]]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #107 is applied, marking the XSI
extensions specifying the —a and —o primaries and the ’ (* and ')’ operators as
obsolescent. Applications should combine separate test commands instead. For
example, using:

test exprl && test expr2
instead of:

test exprl —a expr2

Time a simple command.
time [-p] utility [argunent...]
First released in Issue 2.

The time utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

Change file access and modification times.
touch [-acn] [-r ref _filel-t tine|-d date_tinme] file...

When the —d date_time option is specified, touch uses the specified date_time
instead of the current time. The option-argument is a string of the form:

YYYY-MM-DDThh: nm SS[. frac] [t z]
or:

YYYY-MM-DDThh: nm SS[, frac] [t z]
where:

YYYY are at least four decimal digits giving the year.

A Source Book from The Open Group (2010)

Utilities Migration

Derivation:

Issue 7:

tput
Purpose:
Synopsis:
Derivation:

Issue 7:

Utilities

MM, DD, hh, mm, and SS are as with -t time.
T is the time designator, and can be replaced by a single <space>.

[.frac] and [, frac] are either empty, or a <period> (' .’) or a <comma>
(", ") respectively, followed by one or more decimal digits, specifying a
fractional second.

[t z] is either empty, signifying local time, or the letter* Z' , signifying UTC.
The following examples demonstrate the use of the —d option.

Create or update a file called dwc; the resulting file has both the last data
modification and last data access timestamps set to November 12, 2007 at
10:15:30 local time:

touch -d 2007-11-12T10: 15: 30 dwc

Create or update a file called nick; the resulting file has both the last data
modification and last data access timestamps set to November 12, 2007 at
10:15:30 UTC:

touch -d 2007-11-12T10: 15: 30Z ni ck

Create or update a file called gwc; the resulting file has both the last data
modification and last data access timestamps set to November 12, 2007 at
10:15:30 local time with a fractional second timestamp of .002 seconds:

touch -d 2007-11-12T10: 15: 30, 002 gwc

Create or update a file called ajosey; the resulting file has both the last data
modification and last data access timestamps set to November 12, 2007 at
10:15:30 UTC with a fractional second timestamp of .002 seconds:

touch -d "2007-11-12 10: 15: 30. 002Z" aj osey
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #118 is applied, allowing touch to support
times that precede the Epoch.

Austin Group Interpretation 1003.1-2001 #193 is applied, adding the —d option with
support for subsecond timestamps.

SD5-XCU-ERN-45 is applied, adding a new paragraph to the RATIONALE noting
that if at least two operands are specified and the first operand is an eight or ten-
digit decimal integer, the first operand will be taken to be a file operand, whereas in
previous versions of the standard it would have been taken to be an (obsolescent)
date_time operand.

Changes are made related to support for finegrained timestamps.

Change terminal characteristics.
tput [-T type] operand...
First released in Issue 4.

The tput utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

The Single UNIX® Specification: Authorized Guide to Version 4 333

Utilities Utilities Migration

tr

Purpose: Translate characters.

Synopsis: tr [-c|-C] [-s] stringl string2
tr =s [—c|-C] stringl
tr =d [—c|-C] stringl
tr —=ds [-c|-C] stringl string2

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #132 is applied, clarifying that the
behavior is unspecified if an unescaped trailing <backslash> is present in stringl or
string?2.

true

Purpose: Return true value.

Synopsis: true
Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

tsort

Purpose: Topological sort.
Synopsis: tsort [file]
Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is * = and the
implementation treats the ' —' as meaning standard input.

The tsort utility is moved from the XSI option to the Base.

tty
Purpose: Return user’s terminal name.
Synopsis: tty

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

type
Purpose: Write a description of command type.

XSl Synopsis: type nane. ..

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

334 A Source Book from The Open Group (2010)

Utilities Migration

XSl

XSl

ulimit
Purpose:

Synopsis:

Derivation:

Issue 7:

umask
Purpose:
Synopsis:
Derivation:

Issue 7:

unalias
Purpose:

Synopsis:

Derivation:

Issue 7:

uname
Purpose:
Synopsis:
Derivation:

Issue 7:

uncompress
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities

Set or report file size limit.
ulimt [-f] [bl ocks]

First released in Issue 2.

No functional changes are made in this issue.

Get or set the file mode creation mask.
umask [-S] [nask]
First released in Issue 2.

No functional changes are made in this issue.

Remove alias definitions.
unal i as al i as-nane. ..
unalias -a

First released in Issue 4.

The unalias utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

Return system name.
unanme [-ammrsv]
First released in Issue 2.

No functional changes are made in this issue.

Expand compressed data.

unconpress [-cfv] [file...]

First released in Issue 4.

SD5-XCU-ERN-26 is applied, clarifying that this utility is allowed to break the Utility
Syntax Guidelines by having ten letters in its name.

The Single UNIX® Specification: Authorized Guide to Version 4 335

Utilities Utilities Migration

unexpand
Purpose: Convert spaces to tabs.
Synopsis: unexpand [-a| -t tablist] [file...]
Derivation: First released in Issue 4.
Issue 7: The unexpand utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.
unget
Purpose: Undo a previous get of an SCCS file (DEVELOPMENT).
XSl Synopsis: unget [-ns] [-r SID] file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.
unig
Purpose: Report or filter out repeated lines in a file.

Synopsis: uniq [-c|-d|-u] [f fields] [-s char] [input_file [output_file]]
Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that * + may
be recognized as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDOUT
section to reflect that standard output is also used if an output_file operand is * -’
and the implementation treats the ' = as meaning standard output.

Austin Group Interpretation 1003.1-2001 #133 is applied, clarifying that the trailing
<newline> of each line in the input is ignored when doing comparisons.

unlink
Purpose: Call the unlink() function.
XSl Synopsis: unlink file

Derivation: First released in Issue 5.

Issue 7: No functional changes are made in this issue.
uucp
Purpose: System-to-system copy.
uu Synopsis: uucp [-cCdfjnr] [-n user] source-file... destination-file

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option
Group.

336 A Source Book from The Open Group (2010)

Utilities Migration

uu

uu

XSl

uudecode
Purpose:
Synopsis:
Derivation:

Issue 7:

uuencode
Purpose:
Synopsis:
Derivation:

Issue 7:

uustat
Purpose:

Synopsis:

Derivation:

Issue 7:

uux
Purpose:

Synopsis:

Derivation:

Issue 7:

val
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities

Decode a hinary file.
uudecode [-0 outfile] [file]
First released in Issue 4.

The uudecode utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

Encode a binary file.
uuencode [-mM [file] decode_pat hnane
First released in Issue 4.

The uuencode utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

uucp status enquiry and job control.
uustat [—-q| -k j obid| -r jobid]

uustat [-s systen] [-u user]

First released in Issue 2.

SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option
Group.

Remote command execution.

uux [—j np] command-stri ng

First released in Issue 2.

SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option
Group.

Validate SCCS files (DEVELOPMENT).
val -

val [-s] [-mnane] [-r SID [-y type] file...

First released in Issue 2.

No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 337

Utilities

Vi
Purpose:

uP Synopsis:

Derivation:

Issue 7:

wait
Purpose:

Synopsis:

Derivation:

Issue 7:

wc
Purpose:

Synopsis:

Derivation:

Issue 7:

what
Purpose:

XSl Synopsis:

Derivation:

Issue 7:

who
Purpose:
XSl Synopsis:

XSl

338

Utilities Migration

Screen-oriented (visual) display editor.

Vi [-TR] [-c command] [-t tagstring] [-w size] [file...]

First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that * + may
be recognized as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #087 is applied, updating the Put from
Buffer Before (P) command description to address multi-line requirements.

Await process completion.
wait [pid...]
First released in Issue 2.

No functional changes are made in this issue.

Word, line, and byte or character count.
we [—c|-m [-Iw] [file...]
First released in Issue 2.

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is * = and the
implementation treats the ' —' as meaning standard input.

Identify SCCS files (DEVELOPMENT).
what [-s] file...

First released in Issue 2.

No functional changes are made in this issue.

Display who is on the system.

who [-mTu] [-abdH prt] [fil €]
who [-mu] -s [-bH prt] [file]
who —q [file]

who am i

who am |

A Source Book from The Open Group (2010)

Utilities Migration Utilities

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-58 is applied, clarifying the —b option.
The who utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

write

Purpose: Write to another user.

Synopsis: wite user_nanme [term nal]

Derivation: First released in Issue 2.

Issue 7: The write utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

xargs
Purpose: Construct argument lists and invoke utility.
XSl Synopsis: xargs [-ptx] [-E eofstr] [-l replstr|-L nunber|-n nunber]

[-s size] [utility [argunment...]]
Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #123 is applied, changing the description
of the xargs —I option.

SD5-XCU-ERN-68 is applied, changing requirements related to the —x option and

changing the SYNOPSIS to show that the —I, -L and —n options are mutually
exclusive.
SD5-XCU-ERN-128 is applied, clarifying the DESCRIPTION of the logical end-of-
file string.

SD5-XCU-ERN-132 is applied, updating the EXAMPLES section to demonstrate
how to quote xargs input appropriately, and the use of —E " to prevent accidental
logical end-of-file processing.

yacc

Purpose: Yet another compiler compiler (DEVELOPMENT).

cD Synopsis: yacc [-ditv] [-b file_prefix] [-p sym prefix] grammar

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #190 is applied, clarifying the
requirements for generated code to conform to the ISO C standard.

Austin Group Interpretation 1003.1-2001 #191 is applied, clarifying the handling of
C-language trigraphs and curly brace preprocessing tokens.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

The Single UNIX® Specification: Authorized Guide to Version 4 339

Utilities

XSl

340

zcat
Purpose:

Synopsis:

Derivation:

Issue 7:

Utilities Migration

Expand and concatenate data.

zcat [file...]

First released in Issue 4.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

Chapter 13

Headers Migration

13.1 Introduction

This chapter contains a section for each header defined in XBD, Issue 7. Each section contains
the SYNOPSIS, gives the derivation of the header, and identifies syntax and semantic changes
made to the header in Issue 7 (if any). Only changes that might affect an application programmer
are identified.

13.2 Headers
<aio.h>
Purpose: Asynchronous input and output.
Synopsis: #i ncl ude <ai 0. h>

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The <aio.h> header is moved from the Asynchronous Input and Output option to
the Base.

This reference page is clarified with respect to macros and symbolic constants,
and type and structure definitions from other headers are added.

<arpa/inet.h>

Purpose: Definitions for Internet operations.

Synopsis: #i ncl ude <arpalinet. h>

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 341

Headers

342

<assert.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<complex.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

<cpio.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

<ctype.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<dirent.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Headers Migration

Verify program assertion.
#i ncl ude <assert. h>
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

Complex arithmetic.
#i ncl ude <conpl ex. h>

First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999
standard.

No functional changes are made in this issue.

Cpio archive values.
#i ncl ude <cpi o. h>

First released in the Headers Interface, Issue 3 specification. Derived from the
POSIX.1-1988 standard.

The <cpio.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

Character types.
#i ncl ude <ctype. h>
First released in Issue 1. Derived from Issue 1 of the SVID.

The *_|I() functions are added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

Format of directory entries.
#i ncl ude <dirent. h>
First released in Issue 2.

The alphasort(), dirfd(), and scandir() functions are added from The Open Group
Technical Standard, 2006, Extended API Set Part 1.

The fdopendir() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

Austin Group Interpretation 1003.1-2001 #110 is applied, clarifying that the DIR
type may be defined as an incomplete type.

A Source Book from The Open Group (2010)

Headers Migration Headers

<dlfcn.h>

Purpose: Dynamic linking.

Synopsis: #i ncl ude <dl fcn. h>

Derivation: First released in Issue 5.

Issue 7: The <dlfcn.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

<errno.h>

Purpose: System error numbers.

Synopsis: #i ncl ude <errno. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #050 is applied, allowing [ENOTSUP] and
[EOPNOTSUPP] to be the same values.

The [ENOTRECOVERABLE] and [EOWNERDEAD] errors are added from The
Open Group Technical Standard, 2006, Extended API Set Part 2.

Functionality relating to the XSI STREAMS option is marked obsolescent.
Functionality relating to the Threads option is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants.

<fentl.h>

Purpose: File control options.

Synopsis: #i nclude <fcntl. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #144 is applied, adding the O_TTY_INIT
flag.

Austin Group Interpretation 1003.1-2001 #171 is applied, adding the
F_DUPFD_CLOEXEC and O_CLOEXEC flags.

The openat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The O_EXEC and O_SEARCH flags are added.

Additional flags are added to support faccessat(), fchmodat(), fchownat(),
fstatat(), linkat(), openat(), and unlinkat().

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps.

The Single UNIX® Specification: Authorized Guide to Version 4 343

Headers

XSl

344

<fenv.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

<float.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<fmtmsg.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<fnmatch.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Headers Migration

Floating-point environment.
#i ncl ude <fenv. h>

First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999
standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #37 (SD5-XBD-ERN-49) is
applied, clarifying that if no floating-point exception macros are defined by the
implementation, FE_ALL EXCEPT shall be defined as zero.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 3 #36 is applied, requiring
that the floating-point exception macros expand to integer constant expressions
with values that are bitwise-distinct.

SD5-XBD-ERN-48 and SD5-XBD-ERN-69 are applied, clarifying that
implementations which support the IEC 60559 Floating-Point option are required to
define all five floating-point exception macros and all four rounding direction
macros.

This reference page is clarified with respect to macros and symbolic constants.

Floating types.
#i ncl ude <fl oat. h>
First released in Issue 4. Derived from the ISO C standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #4 (SD5-XBD-ERN-50) is
applied, clarifying that an implementation may give zero and non-numeric values,
such as infinities and NaNs, a sign, or may leave them unsigned.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #5 (SD5-XBD-ERN-51) is
applied, extending the text concerning floating-point accuracy to cover conversion
between floating-point internal representations and string representations
performed by the functions in <stdio.h> , <stdlib.h> , and <wchar.h> .

Message display structures.
#i ncl ude <fntnsg. h>
First released in Issue 4, Version 2.

This reference page is clarified with respect to macros and symbolic constants.

Filename-matching types.

#i ncl ude <fnmatch. h>

First released in Issue 4. Derived from the ISO POSIX-2 standard.
The obsolescent FNM_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

A Source Book from The Open Group (2010)

Headers Migration Headers

<ftw.h>
Purpose: File tree traversal.
XSl Synopsis: #i ncl ude <ftw. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.
Issue 7: The ftw() function is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

<glob.h>

Purpose: Pathname pattern-matching types.

Synopsis: #i ncl ude <gl ob. h>

Derivation: First released in Issue 4. Derived from the ISO POSIX-2 standard.

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size t
type.

The obsolescent GLOB_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

<grp.h>
Purpose: Group structure.
Synopsis: #i ncl ude <grp. h>

Derivation: First released in Issue 1.

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size t
type.

<iconv.h>

Purpose: Codeset conversion facility.

Synopsis: #i ncl ude <i conv. h>
Derivation: First released in Issue 4.

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size t
type.

The <iconv.h> header is moved from the XSl option to the Base.

<inttypes.h>

Purpose: Fixed size integer types.
Synopsis: #i ncl ude <inttypes. h>
Derivation: First released in Issue 5.

Issue 7: No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 345

Headers

XSl

346

<is0646.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

<langinfo.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<libgen.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<limits.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Headers Migration

Alternative spellings.
#i ncl ude <i s0646. h>

First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1:1995
(B).

No functional changes are made in this issue.

Language information constants.

#i ncl ude <l angi nfo. h>

First released in Issue 2.

The <langinfo.h> header is moved from the XSI option to the Base.

The nl_langinfo_I() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants,
and a reference to <locale.h> for the locale_t type is added.

Definitions for pattern matching functions.
#i ncl ude <l i bgen. h>
First released in Issue 4, Version 2.

No functional changes are made in this issue.

Implementation-defined constants.
#include <limts. h>
First released in Issue 1.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing implementations
to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #173 is applied, updating the descriptions
of {TRACE_EVENT_NAME_MAX} and {TRACE_NAME_MAX} to not include the
terminating null.

SD5-XBD-ERN-36 is applied, changing the description of {RE_DUP_MAX} to
clarify that it applies to both BREs and EREs.

{NL_NMAX} is removed; it should have been removed in Issue 6.
The Trace option values are marked obsolescent.

The {ATEXIT_MAX}, {LONG_BIT}, {NL_MSGMAX}, {NL_SETMAX},
{NL_TEXTMAX}, and {WORD_BIT} values are moved from the XSI option to the
Base.

Functionality relating to the Asynchronous Input and Output, Realtime Signals
Extension, Threads, and Timers options is moved to the Base.

A Source Book from The Open Group (2010)

Headers Migration Headers

This reference page is clarified with respect to macros and symbolic constants.

<locale.h>
Purpose: Category macros.
Synopsis: #i ncl ude <l ocal e. h>
Derivation: First released in Issue 3.
Included for alignment with the ISO C standard.

Issue 7: The duplocale(), freelocale(), newlocale(), and uselocale() functions are added
from The Open Group Technical Standard, 2006, Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants.

<math.h>

Purpose: Mathematical declarations.
Synopsis: #i ncl ude <nmat h. h>
Derivation: First released in Issue 1.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #47 (SD5-XBD-ERN-52) is
applied, updating the wording of the FP_FAST FMA macro to require that it
expands to the integer constant 1 if it is defined.

The MAXFLOAT constant is marked obsolescent. Applications should use
FLT_MAX as described in the <float.h> header instead.

This reference page is clarified with respect to macros and symbolic constants.

<monetary .h>

Purpose: Monetary types.

Synopsis: #i ncl ude <nonetary. h>

Derivation: First released in Issue 4.

Issue 7: The <monetary .h> header is moved from the XSI option to the Base.

The strmon_|() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

A reference to <locale.h> for the locale_t type is added.

<mqueue.h>

Purpose: Message queues (REALTIME).

MSG Synopsis: #i ncl ude <ngueue. h>
Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.
Issue 7: Type and structure definitions from other headers are added.

The Single UNIX® Specification: Authorized Guide to Version 4 347

Headers

<ndbm.h>

Purpose:
XSl Synopsis:

Derivation:

Issue 7:

<netdb.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<net/if.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Headers Migration

Definitions for ndbm database operations.
#i ncl ude <ndbm h>
First released in Issue 4, Version 2.

This reference page is clarified with respect to macros and symbolic constants.

Definitions for network database operations.
#i ncl ude <netdb. h>
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

SD5-XBD-ERN-14 is applied, changing the description of the s_port member of the
servent structure to clarify the way in which port numbers are converted to and
from network byte order.

The obsolescent h_errno external integer, and the obsolescent gethostbyaddr()
and gethostbyname () functions are removed, along with the HOST_NOT_FOUND,
NO_DATA, NO_RECOVERY, and TRY_AGAIN macros.

This reference page is clarified with respect to macros and symbolic constants.

Sockets local interfaces.
#i nclude <net/if.h>
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

This reference page is clarified with respect to macros and symbolic constants.

<netinet/in.h>

Purpose:
Synopsis:
Derivation:

Issue 7:

Internet address family.
#i ncl ude <netinet/in.h>
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

This reference page is clarified with respect to macros and symbolic constants.

<netinet/tcp.h>

Purpose:
Synopsis:
Derivation:

Issue 7:

348

Definitions for the Internet Transmission Control Protocol (TCP).
#i ncl ude <netinet/tcp. h>
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

This reference page is clarified with respect to macros and symbolic constants.

A Source Book from The Open Group (2010)

Headers Migration Headers

<nl_types.h>

Purpose: Data types.

Synopsis: #i ncl ude <nl _types. h>

Derivation: First released in Issue 2.

Issue 7: The <nl_types.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

<poll.h>

Purpose: Definitions for the poll() function.
Synopsis: #i ncl ude <pol |l . h>

Derivation: First released in Issue 4, Version 2.

Issue 7: The <poll.h> header is moved from the XSI option to the Base.

<pthread.h>
Purpose: Threads.
Synopsis: #i ncl ude <pt hr ead. h>

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads

Extension.

Issue 7: SD5-XBD-ERN-55 is applied, adding the restrict keyword to the
pthread_mutex_timedlock() function prototype so that it matches the definition in
XSH.

Austin Group Interpretation 1003.1-2001 #048 is applied, reinstating the
PTHREAD_RWLOCK_INITIALIZER symbol.

The <pthread.h> header is moved from the Threads option to the Base.

The PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_ERRORCHECK,
PTHREAD_MUTEX_RECURSIVE, and PTHREAD_MUTEX_DEFAULT extended
mutex types are moved from the XSI option to the Base.

The PTHREAD_MUTEX_ROBUST and PTHREAD_MUTEX_STALLED symbols
and the pthread_mutex_consistent(), pthread_mutexattr_getrobust(), and
pthread_mutexattr_setrobust() functions are added from The Open Group
Technical Standard, 2006, Extended API Set Part 2.

Functionality relating to the Thread Priority Protection and Thread Priority
Inheritance options is changed to be Non-Robust Mutex or Robust Mutex Priority
Protection and Non-Robust Mutex or Robust Mutex Priority Inheritance,
respectively.

This reference page is clarified with respect to macros and symbolic constants.

The Single UNIX® Specification: Authorized Guide to Version 4 349

Headers

<pwd.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<regex.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

<sched.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

<search.h>

Purpose:
XSl Synopsis:

Derivation:

Issue 7:

350

Headers Migration

Password structure.
#i ncl ude <pwd. h>
First released in Issue 1.

SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size t
type.

Regular expression matching types.

#i ncl ude <regex. h>

First released in Issue 4.

Originally derived from the ISO POSIX-2 standard.

SD5-XBD-ERN-60 is applied, removing the requirement that the type regoff t can
hold the largest value that can be stored in type off t, and adding the requirement
that the type regoff t can hold the largest value that can be stored in type
ptrdiff t .

The obsolescent REG_ENOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

Execution scheduling.
#i ncl ude <sched. h>

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Austin Group Interpretation 1003.1-2001 #064 is applied, correcting the option
markings.

The <sched.h> header is moved from the Threads option to the Base.

Definitions for the pid_t and time_t types and the timespec structure are added.

Search tables.
#i ncl ude <search. h>
First released in Issue 1. Derived from Issue 1 of the SVID.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

Headers Migration

Headers

<semaphore.h>

Purpose:
Synopsis:

Derivation:

Issue 7:

<setjmp.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<signal.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

The Single UNIX® Specification: Authorized Guide to Version 4

Semaphores.
#i ncl ude <semaphore. h>

First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

SD5-XBD-ERN-57 is applied, allowing the header to make visible symbols from the
<time.h> header.

The <semaphore.h> header is moved from the Semaphores option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

Stack environment declarations.
#i ncl ude <setjnp. h>
First released in Issue 1.

No functional changes are made in this issue.

Signals.
#i ncl ude <signal . h>
First released in Issue 1.

SD5-XBD-ERN-39 is applied, removing the sigstack structure which should have
been removed at the same time as the LEGACY sigstack() function.

SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size t
type.

Austin Group Interpretation 1003.1-2001 #034 is applied, moving SIGPOLL from
the XSI option to the XSI STREAMS option.

The psiginfo() and psignal() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 1.

Functionality relating to the XSI STREAMS option is marked obsolescent.

The SA_RESETHAND, SA RESTART, SA_NOCLDWAIT, and SA_NODEFER
constants are moved from the XSI option to the Base.

Functionality relating to the Realtime Signals Extension option is moved to the
Base.

This reference page is clarified with respect to macros and symbolic constants,
and type and structure definitions from other headers are added.

The descriptions of SIGRTMIN and SIGRTMAX are updated to clarify that they
expand to positive integer expressions with type int, but which need not be
constant expressions.

The APPLICATION USAGE section is updated to describe the conditions under
which the si_pid and si_uid members of siginfo_t are required to be valid.

351

Headers

SPN

352

<spawn.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<stdarg.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<stdbool.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

<stddef.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<stdint.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

Headers Migration

Spawn (ADVANCED REALTIME).
#i ncl ude <spawn. h>
First released in Issue 6. Included for alignment with IEEE Std 1003.1d-1999.

This reference page is clarified with respect to macros and symbolic constants,
and type and structure definitions from other headers are added.

Handle variable argument list.
#i ncl ude <stdarg. h>
First released in Issue 4. Derived from the ANSI C standard.

No functional changes are made in this issue.

Boolean type and values.
#i ncl ude <stdbool . h>

First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999
standard.

No functional changes are made in this issue.

Standard type definitions.

#i ncl ude <st ddef. h>

First released in Issue 4. Derived from the ANSI C standard.

This reference page is clarified with respect to macros and symbolic constants.

SD5-XBD-ERN-53 is applied, updating the definition of wchar_t to align with
ISO/IEC 9899: 1999 standard, Technical Corrigendum 3 in relation to the
__STDC_MB_MIGHT_NEQ_WC__indicator macro.

Integer types.
#i ncl ude <stdint. h>

First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999
standard.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 3 #40 is applied, requiring
the argument to the INT*_C() macros to be an unsuffixed integer constant.

SD5-XBD-ERN-67 is applied, updating the RATIONALE to clarify that
{SCHAR_MIN} has the value -128.

A Source Book from The Open Group (2010)

Headers Migration Headers

<stdio.h>

Purpose: Standard buffered input/output.

Synopsis: #i ncl ude <stdi o. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #172 is applied, adding rationale about a
conflict for the definition of {TMP_MAX} with the ISO C standard and the related
ISO C defect report.

SD5-XBD-ERN-99 is applied, adding APPLICATION USAGE about {FOPEN_MAX}
and the use of file descriptors not associated with streams.

The dprintf(), fmemopen(), getdelim(), getline(), open_memstream(), and
vdprintf() functions are added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

The renameat() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

The gets(), tmpnam(), and tempnam() functions and the L_tmpnam macro are
marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants,
and a reference to <sys/types.h> for the off t type is added.

<stdlib.h>

Purpose: Standard library definitions.

Synopsis: #i ncl ude <stdlib. h>

Derivation: First released in Issue 3.

Issue 7: The LEGACY functions are removed.

The mkdtemp() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 1.

The rand_r() function is marked obsolescent.
This reference page is clarified with respect to macros and symbolic constants.

The type of the first argument to setstate() is changed from const ¢ har * to char *.

<string.h>

Purpose: String operations.

Synopsis: #i ncl ude <string. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XBD-ERN-15 is applied, correcting the prototype for the strerror_r() function.

The stpcpy(), stpncpy(), strndup(), strnlen(), and strsignal () functions are added
from The Open Group Technical Standard, 2006, Extended API Set Part 1.

The strcoll_I(), strerror_I(), and strxfrm_I() functions are added from The Open
Group Technical Standard, 2006, Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants,
and a reference to <locale.h> for the locale_t type is added.

The Single UNIX® Specification: Authorized Guide to Version 4 353

Headers

OB XSR

XSl

XSl

354

<strings.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<stropts.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<sysl/ipc.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<syslog.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Headers Migration

String operations.
#i ncl ude <strings. h>
First released in Issue 4, Version 2.

SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size t
type.

The LEGACY functions are removed.
The <strings.h> header is moved from the XSI option to the Base.

The strcasecmp_I() and strncasecmp_I() functions are added from The Open
Group Technical Standard, 2006, Extended API Set Part 4.

A reference to <locale.h> for the locale_t type is added.

STREAMS interface (STREAMS).

#i ncl ude <stropts. h>

First released in Issue 4, Version 2.

SD5-XBD-ERN-87 is applied, correcting an error in the strrecvfd structure.
The <stropts.h> header is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

XSl interprocess communication access structure.
#i ncl ude <sys/ipc. h>
First released in Issue 2. Derived from System V Release 2.0.

This reference page is clarified with respect to macros and symbolic constants.

Definitions for system error logging.
#i ncl ude <sysl og. h>
First released in Issue 4, Version 2.

This reference page is clarified with respect to macros and symbolic constants.

<sys/mman.h>

Purpose:
Synopsis:
Derivation:

Issue 7:

Memory management declarations.
#i ncl ude <sys/ nman. h>
First released in Issue 4, Version 2.

Functionality relating to the Memory Protection and Memory Mapped Files options
is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants.

A Source Book from The Open Group (2010)

Headers Migration Headers

<sys/msg.h>
Purpose: XSI message queue structures.
XSl Synopsis: #i ncl ude <sys/ nsg. h>
Derivation: First released in Issue 2. Derived from System V Release 2.0.

Issue 7: Austin Group Interpretation 1003.1-2001 #179 is applied, clarifying that everything
from <sys/ipc.h> is made visible by <sys/msg.h> .

This reference page is clarified with respect to macros and symbolic constants.

<sys/resour ce.h>

Purpose: Definitions for XSI resource operations.
XSl Synopsis: #i ncl ude <sys/resource. h>

Derivation: First released in Issue 4, Version 2.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<sys/select.h>

Purpose: Select types.

Synopsis: #i ncl ude <sys/sel ect. h>

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<sys/sem.h>
Purpose: XSI semaphore facility.
XSl Synopsis: #i ncl ude <sys/sem h>
Derivation: First released in Issue 2. Derived from System V Release 2.0.

Issue 7: Austin Group Interpretation 1003.1-2001 #179 is applied, clarifying that everything
from <sysl/ipc.h> is made visible by <sys/sem.h> .

This reference page is clarified with respect to macros and symbolic constants.

<sys/shm.h>
Purpose: XSl shared memory facility.
XSl Synopsis: #i ncl ude <sys/shm h>
Derivation: First released in Issue 2. Derived from System V Release 2.0.

Issue 7: Austin Group Interpretation 1003.1-2001 #179 is applied, clarifying that everything
from <sys/ipc.h> is made visible by <sys/shm.h> .

This reference page is clarified with respect to macros and symbolic constants.

The Single UNIX® Specification: Authorized Guide to Version 4 355

Headers Headers Migration

XSl

356

<sys/socket.h>

Purpose: Main sockets header.

Synopsis: #i ncl ude <sys/socket. h>

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the ssize_t
type.

The MSG_NOSIGNAL symbolic constant is added from The Open Group
Technical Standard, 2006, Extended API Set Part 2.

This reference page is clarified with respect to macros and symbolic constants,
and a reference to <sys/types.h> for the size_t type is added.

<sys/stat.h>

Purpose: Data returned by the stat() function.

Synopsis: #i ncl ude <sys/stat. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-161 is applied, updating the DESCRIPTION to clarify that the
descriptions of the interfaces should be consulted in order to determine which
structure members have meaningful values.

The fchmodat(), fstatat(), mkdirat(), mkfifoat(), mknodat(), and utimensat()
functions are added from The Open Group Technical Standard, 2006, Extended
API Set Part 2.

This reference page is clarified with respect to macros and symbolic constants.
Changes are made related to support for finegrained timestamps, and the
futimens() function and the UTIME_NOW and UTIME_OMIT symbolic constants
are added.

<sys/statvfs.h>

Purpose: VFES File System information structure.

Synopsis: #i ncl ude <sys/statvfs. h>

Derivation: First released in Issue 4, Version 2.

Issue 7: The <sys/statvfs.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

<sys/time.h>

Purpose: Time types.

Synopsis: #i ncl ude <sys/tine. h>
Derivation: First released in Issue 4, Version 2.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

A Source Book from The Open Group (2010)

Headers Migration Headers

<sys/times.h>

Purpose: File access and modification times structure.

Synopsis: #i ncl ude <sys/tines. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

<sysl/types.h>

Purpose: Data types.

Synopsis: #i ncl ude <sys/types. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #033 is applied, requiring key t to be an
arithmetic type.

The Trace option types are marked obsolescent.
The clock_t and id_t types are moved from the XSI option to the Base.

Functionality relating to the Barriers, Spin Locks, Timers, and Threads options is
moved to the Base.

<sys/uio.h>
Purpose: Definitions for vector 1/0O operations.
XSl Synopsis: #i ncl ude <sys/ ui o. h>

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.
<sys/un.h>
Purpose: Definitions for UNIX domain sockets.

Synopsis: #i ncl ude <sys/un. h>

Derivation: First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Issue 7: The value for {_ POSIX_PATH_MAX} stated in APPLICATION USAGE is updated to
256.

<sys/utsname.h>

Purpose: System name structure.

Synopsis: #i ncl ude <sys/ utsnane. h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Single UNIX® Specification: Authorized Guide to Version 4 357

Headers

358

<sys/wait.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

<tar.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<termios.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

<tgmath.h>
Purpose:
Synopsis:

Derivation:

Issue 7:

<time.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Headers Migration

Declarations for waiting.

#i ncl ude <sys/wait. h>

First released in Issue 3.

Included for alignment with the POSIX.1-1988 standard.

The waitid () function and symbolic constants for its options argument are moved to
the Base.

The description of the WNOHANG constant is clarified.

Extended tar definitions.
#i ncl ude <tar. h>
First released in Issue 3. Derived from the POSIX.1-1988 standard.

This reference page is clarified with respect to macros and symbolic constants.

Define values for termios.

#i ncl ude <term os. h>

First released in Issue 3.

Included for alignment with the ISO POSIX-1 standard.

Austin Group Interpretation 1003.1-2001 #144 is applied, moving functionality
relating to the IXANY symbol from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants,
and a reference to <sys/types.h> for the pid_t type is added.

Type-generic macros.
#i ncl ude <tgmath. h>

First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999
standard.

Austin Group Interpretation 1003.1-2001 #184 is applied, clarifying the functions
for which a corresponding type-generic macro exists with the same name as the
function.

Time types.
#i ncl ude <tine. h>
First released in Issue 1. Derived from Issue 1 of the SVID.

The strftime_I() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

A Source Book from The Open Group (2010)

Headers Migration Headers

Functionality relating to the Timers option is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants,
and type and structure definitions from other headers are added.

The description of getdate err is expanded to state that it is unspecified whether
getdate_err is a macro or an identifier declared with external linkage, and whether
or not it is a modifiable Ivalue.
<trace.h>
Purpose: Tracing.
oB TRC Synopsis: #i ncl ude <trace. h>
Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size t
type.

The <trace.h> header is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

<ulimit.h>
Purpose: Ulimit commands.
oB xsI Synopsis: #include <ulinmt.h>

Derivation: First released in Issue 3.

Issue 7: The <ulimit.h> header is marked obsolescent.
<unistd.h>
Purpose: Standard symbolic constants and types.

Synopsis: #i ncl ude <uni std. h>
Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #026 is applied, clarifying the meanings
of the values -1, 0, and greater than O for constants for Options and Option
Groups, and making an undefined constant mean the same as the value 1.

Austin Group Interpretation 1003.1-2001 #047 is applied, adding the _CS_V7_ENV
constant.

Austin Group Interpretation 1003.1-2001 #166 is applied to permit an additional
compiler flag to enable threads.

Austin Group Interpretation 1003.1-2001 #178 is applied, clarifying the values
allowed for _POSIX2_CHAR_TERM.

SD5-XBD-ERN-41 is applied, adding the _POSIX2_SYMLINKS constant.

SD5-XBD-ERN-77 is applied, moving _POSIX VDISABLE out of Constants for
Options and Option Groups, since its value does not follow the convention for
those constants.

Symbols to support the UUCP Utilities option are added.

The variables for the supported programming environments are updated to be V7.

The Single UNIX® Specification: Authorized Guide to Version 4 359

Headers

OB

XSl

360

<utime.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<utmpx.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

<wchar.h>
Purpose:
Synopsis:
Derivation:

Issue 7:

Headers Migration

The LEGACY and obsolescent symbols are removed.

The faccessat(), fchownat(), fexecve(), linkat(), readlinkat(), symlinkat(), and
unlinkat() functions are added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The POSIX_TRACE* constants from the Trace option are marked obsolescent.

The _POSIX2_PBS* constants from the Batch Environment Services and Utilities
option are marked obsolescent.

Functionality relating to the Asynchronous Input and Output, Barriers, Clock
Selection, Memory Mapped Files, Memory Protection, Realtime Signals Extension,
Semaphores, Spin Locks, Threads, Timeouts, and Timers options is moved to the
Base.

Functionality relating to the Thread Priority Protection and Thread Priority
Inheritance options is changed to be Non-Robust Mutex or Robust Mutex Priority
Protection and Non-Robust Mutex or Robust Mutex Priority Inheritance,
respectively.

The following symbolic constants are added:
_SC_THREAD_ROBUST_PRIO_INHERIT
_SC_THREAD_ROBUST_PRIO_PROTECT

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps.

Access and modification times structure.
#i ncl ude <uti ne. h>
First released in Issue 3.

The <utime.h> header is marked obsolescent.

User accounting database definitions.
#i ncl ude <ut npx. h>
First released in Issue 4, Version 2.

No functional changes are made in this issue.

Wide-character handling.
#i ncl ude <wchar. h>
First released in Issue 4.

No functional changes are made in this issue.

A Source Book from The Open Group (2010)

Headers Migration Headers

<wctype.h>
Purpose: Wide-character classification and mapping utilities.
Synopsis: #i ncl ude <wctype. h>

Derivation: First released in Issue 5. Derived from the ISO/IEC 9899: 1990/Amendment
1:1995 (E).

Issue 7: The *_|I() functions are added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants.

<wordexp.h>

Purpose: Word-expansion types.

Synopsis: #i ncl ude <wor dexp. h>

Derivation: First released in Issue 4. Derived from the ISO POSIX-2 standard.
Issue 7: The obsolescent WRDE_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

The Single UNIX® Specification: Authorized Guide to Version 4 361

Headers Migration

362 A Source Book from The Open Group (2010)

Chapter 14

ISO C Migration

This chapter is by Finnbarr P. Murphy. At the time of writing, Finnbarr was a software engineer in the
Business Critical Systems Group (BCSG) at Compag Computer Corporation in Nashua, New Hampshire.

14.1

14.2

14.2.1

Intr oduction

The original ISO/IEC C language programming standard (the ISO/IEC 9899: 1990 standard) was
adopted by the International Organization for Standardization (ISO) and the International
Electotechnical Commission (IEC) in 1990. Subsequently, two technical corrigenda (TC1 and
TC2) were approved together with the normative ISO/IEC 9899: 1990/Amendment 1: 1995 (E),
Multibyte Support Extension.?

At the end of 1993, there was general agreement that work should start on the next revision of
the standard. The revised standard (C99) was sent for FCD ballot in August 1998, and adopted
by ISO/IEC in 1999 as the ISO/IEC 9899: 1999 standard.

This chapter is intended to provide the reader with a good, but not exhaustive, overview of the
differences between the two revisions of the standard. Thus the reader is strongly advised to
reference the ISO/IEC 9899: 1999 standard for specific details.

Langua ge Changes

A significant number of changes occurred in the standard, including new keywords and types,
type qualifiers, better floating-point support, and support for complex numbers.

New Keyword s

The following new keywords were defined:
= inline
= restrict

= Bool

_Complex

2. Information about the ISO C Working Group (JTC1/SC22/WG14) can be found at: wwwold.dkuug.dk/JTC1/SC22/WG14/.

The Single UNIX® Specification: Authorized Guide to Version 4 363

http://wwwold.dkuug.dk/JTC1/SC22/WG14/

Language Changes ISO C Migration

14.2.2

14.2.3

364

= _|maginary

= |long long

New Types
Two new types were added:
= Bool
= |ong long
The long long type is an integer type with at least 64 bits of precision.

Note: In some programming models such as LP64 and ILP64, long long and long are equivalent. In
the others—for example, LLP64—Iong long is larger than long .

Type Qualifiers

Type qualifiers are now idempotent. If a type qualifier appears more than once (either directly or
indirectly) in a type specification, it is as if it appeared only once. Thus const const int fpm; and
constint fpm; are equivalent.

restrict is a new type qualifier which enables programs to be written so that compilers can
produce significantly faster executables. It is intended to be used only with pointers. Objects
referenced through a restrict -qualified pointer are special in that all references to the object
must directly or indirectly use the value of the restrict -qualified pointer. It is intended to facilitate
better alias analysis by compilers. In the absence of this qualifier, other pointers can alias the
object and prevent compiler optimizations since a compiler may not be able to determine that
different pointers are being used to reference different objects. Note that a restricted pointer and
a non-restricted pointer can be aliases.

A number of function definitions were modified to take advantage of the restrict qualifier. A
typical example is the fopen() function which was changed from:

FI LE *fopen(const char *fil enanme, const char *node);
to:

FILE *fopen(const char *restrict filenane,
const char *restrict node);

Changed functions include:

fgetpos() freopen() memcpy() strncpy() vwprintf()
fgets() fwprintf() setbuf() strxfrm() wcestod ()
fgetws() fwrite () setvbuf() swprintf() wecstol ()
fopen() fwscanf() strcat() swscanf() wcestombs ()
fputs() mbstowcs() strepy () viwprintf() wcstoul()
fread() mbtowc () strncat() vswprintf() wprintf()

A Source Book from The Open Group (2010)

ISO C Migration Language Changes

14.2.4 Boolean

The standard now supports a boolean type _Bool which is an integer type which can hold either
Oorl.

The header <stdbool.h> also defines the macro bool which expands to _Bool, true which
expands to the integer constant 1, and false which expands to the integer constant 0.

14.2.5 Univer sal Character Names

Prior to this revision of the standard, “native” characters, in the form of multibyte and wide
characters, could be used in string literals and character constants, but not as part of an
identifier.

This standard introduced the concept of a universal character name (UCN) that may be used in
identifiers, character constants, and string literals to designate characters that are not in the
basic character set.

The two forms of a UCN are:

\unnnn where nnnn is hex-quad
\ Unnnnnnnn where nnnnnnnn is hex-quad hex-quad

A hex-quad consists of 4 hexadecimal digits.

The UNC \Unnnnnnnn designates the character whose eight-digit short identifier as specified by
the ISO/IEC 10646-1: 2000 standard is nnnnnnnn.

Similarly, the UCN \unnnn can be used to designate a given character whose four-digit short
identifier as specified by the ISO/IEC 10646-1: 2000 standard is nnnn (and whose eight-digit
short identifier is 0000nnnn).

There are a number of disallowed characters; that is, those in the basic character set, and code
positions reserved in the ISO/IEC 10646-1: 2000 standard for control and DELETE characters
and UTF-16.

Note: A strictly conforming program may use only the extended characters listed in Annex | (Universal
Character Names for Identifiers) and may not begin an identifier with an extended digit. Also,
use of native characters in comments has always been strictly conforming, though what
happens when such a program is printed in a different locale is unspecified.

14.2.6 inline

The inline keyword is intended to provide users with a portable way to suggest to
implementations that inlining a function might result in program optimizations.

It is a function-specifier that can be used only in function declarations. It was adopted from C++
but extended in such a way that it can be implemented with existing linker technology. The
translation unit that contains the definition of an inline function is the unit that provides the
external definition for the function. If a function is declared inline in one translation unit, it need
not be declared inline in every other translation unit.

The Single UNIX® Specification: Authorized Guide to Version 4 365

Language Changes ISO C Migration

14.2.7

14.2.8

14.2.9

366

Predefined Identifiers
Predefined identifiers are variables that have block scope.

The standard defined one predefined identifier __func__ which is declared implicitly by the
compiler as if, immediately following the opening brace of each function definition, the following
declaration was included in the source code:

static const char _ func__[] = "function-nane";

where function-name is the name of the lexically-enclosing function. This enables a function
name to be obtained at runtime.

The assert() macro now includes the identifier __func__ in the output to stderr:
voi d assert (scal ar expression);

Note that the parameter type of the assert() macro was also changed from int to scalar .

Compound Literals

Compound literals (also known as anonymous aggregates) provide a mechanism for specifying
constants of aggregate or union type. This eliminates the requirement for temporary variables
when an aggregate or union value may only be needed once. Compound literals are primary
expressions which can also be combined with designated initializers to form an even more
convenient aggregate or union constant notation.

Compound literals are created using the notation:
(type-name) { initializer-list }
For example:

int *ap = (int a[]) {1. 2, 3 };

Note that a trailing comma before the closing brace is permitted.

Designated Initializer s

Designated initializers provide a mechanism for initializing aggregates such as sparse arrays, a
common requirement in numerical programming. This mechanism also allows initialization of
sparse structures and initialization of unions via any member, regardless of whether or not it is
the first member.

Initializers have a named notation for initializing members. For array elements, the element is
designated by [const-expression], for struct and union members by a dot member-name
notation.

For example:

struct s { int a; int b; };
struct s nystruct = {.b = 2}; /1 initialize menber b
struct {int a[3], b[3]} W] ={ [0].a ={1}, [1].b =2 };

If an initializer is present, any members not explicitly set are zeroed out. Initializers for auto
aggregates can be non-constant expressions.

A Source Book from The Open Group (2010)

ISO C Migration Decimal Integer Constants

14.3 Decimal Integer Constants

The default type of a decimal integer constant is either int, long, or long long (previously int,
long, and unsigned long), depending on which type is large enough to hold the value without
overflow.

The standard added LL to specify long long , and ULL to specify unsigned long long

14.3.1 String Literals

The standard defines a number of macros as expanding into character string literals that are
frequently needed as wide strings.

One example is the format specifier macros in <inttypes.h> . Rather than specifying two forms
of each macro, one character string literal and one wide string literal, the decision was made to
define the result of concatenating a character string literal and a wide string literal as a wide
string literal.

14.4 Implicit Declarations

Implicit declaration of functions is no longer permitted by the standard. There must be a least
one type specifier otherwise a diagnostic is issued. However, after issuing the diagnostic, an
implementation may choose to assume an implicit declaration and continue translation in order
to support existing source code.

For example, the declaration fpm(); was valid in previous revisions of the standard (equivalent to
int fpom();) but is now invalid.

14.4.1 sizeof

With the addition of variable length arrays, the sizeof operator is a constant expression only if the
type of the operand is not a variable length array type.

Note: It is still possible to determine the number of elements in a variable length array vla with
sizeof (vla)/sizeof (vla[0]).

14.4.2 Multiplicative Operators

In previous revisions of the standard, division of integers involving negative operands could
round upward or downward in an implementation-defined manner. The standard now mandates
that, as in Fortran, the result always truncates toward zero.

For example, both of the following truncate towards zero:

-22/ 7 =-3
-22 %7 = -1

This was done to facilitate porting of code from Fortran to C.

The Single UNIX® Specification: Authorized Guide to Version 4 367

Implicit Declarations ISO C Migration

14.4.3 Enumeration Specifiers

A common extension to many C implementations is to allow a trailing comma after the list of
enumeration constants. The standard now permits this.

14.5 Variable Length Array

A new array type, called a variable length array type, was added to the standard. The number of
elements specified in the declaration of a variable length array type is not specified by the source
code; rather it is a computed value determined at runtime.

Multi-dimensional variable-length arrays are permitted.

Some things cannot be declared as a variable length array type, including:
= File scope identifiers
= Arrays declared using either static or extern storage class specifiers
= Structure and union members

The rationale behind this new array type was that some standard method to support runtime
array sizing was considered crucial for C’s acceptance in the numerical computing world. Before
this revision of the standard, the size expression was required to be an integer constant
expression.

14.5.1 Array Declarations

The static storage class specifier and the type-qualifiers restrict , const, or volatile can now be
used inside the square brackets of an array type declaration, but only in the outermost array type
derivation of a function parameter.

int foo(const int a[static 10]);

In the above example, the static keyword will guarantee that the pointer to the array a is not
NULL, and points to an object of the appropriate type.

14.5.2 Array Type Compatibility

Array type compatibility was extended so that variable length arrays are compatible with both an
array of known constant size and an array with an incomplete type.

14.5.3 Incomplete Array Structure Members

The last member of a structure with more than one member can now be an incomplete array
type. This incomplete member is called a flexible array member.

Consider the following example

struct s { int n;
double d[];
s

size t sz = sizeof (struct s);
struct s *sp = nalloc(sz + 10);

368 A Source Book from The Open Group (2010)

ISO C Migration Variable Length Array

The structure pointer sp behaves as if the structure s had been declared as

struct s { int n;
doubl e d[10];

s

The size of the structure is equal to the offset of the last element of an otherwise identical
structure that replaces the flexible array member with an array of unspecified length. When a
.’ ora’->" operator point to a structure with a flexible array member and the right operand
names that member, it behaves as if that member were replaced with the longest array with the
same element type that would not make the structure larger than the object being accessed.

The offset of the array remains that of the flexible array member, even if this would differ from
that of the replacement array. If this array would have no elements, it behaves as if it had one
element. However, behavior is undefined if any attempt is made to access that element or to
generate a pointer one past it.

14.5.4 Blocks

A common coding practice is to always use compound statements for every selection and
iteration statement to guard against inadvertent problems when changes are made to the source
code.

Because this can lead to surprising behavior in connection with certain uses of compound
literals, the concept of a block was expanded in this revision of the standard.

As in C++, all selection and iteration statements, and their associated substatements, are now
defined to be blocks, even if they are not also compound statements. If compound literals are
defined in selection or iteration statements, their lifetimes are limited to the implied enclosing
block.

14.5.5 The for Statement

The standard now permits loop counter variables as part of a for statement. Such a variable is in
a new scope (so it does not affect any other variable of the same name), is destroyed at the end
of the loop, and must have auto or register storage class.

for (int i = 0; i < 10; i++)
printf("Loop nunber: %\n", i);

14.5.6 errno
For underflow, errno is no longer required to be set to [EDOM] or [ERANGE].

The Single UNIX® Specification: Authorized Guide to Version 4 369

Comments ISO C Migration

14.6

146.1

14.6.2

14.6.3

14.6.4

370

Comments

Support for / / -style comments was added due to their utility and widespread existing practice,
especially in dual C/C++ translators. This is a quiet change which could cause different
semantics between this standard and C89. Consider the following example:

a=~>b//*divisor:*/ f
+ e;

According to this standard this is the same as:
a=>b+ e
but in previous revisions of the standard it was the same as:

a=b/ f + e

Hexadecimal Floating-Point Constants

Because hexadecimal notation more clearly expresses the significance of floating constants, the
standard now supports hexadecimal floating-point constants.

The binary-exponent part is required, instead of being optional as it is for decimal notation, to
avoid ambiguity resulting from an ' f’ suffix being mistaken as a hexadecimal digit. The
exponent indicates the power of 2 by which the significant part is to be scaled.

Predefined Macros
New predefined macros include:

__STDC _VERSION__ Defined to be 199901L to indicate the current revision of the
standard.

__STDC_HOSTED_ Defined as 1 if the implementation is hosted; otherwise, 0.

Sour ce File Inclusion

The number of significant characters in header and source file names was raised from six to
eight, and digits are now allowed.

Translation-Time Arithmetic

The standard now mandates that translation-time arithmetic be done using intmax t or
uintmax_t , which must comprise at least 64 bits and must match the execution environment.

Previously, a translator was permitted to evaluate expressions using the long integer or
unsigned long integer arithmetic native to the translation environment.

A Source Book from The Open Group (2010)

ISO C Migration Comments

14.6.5 Minim um Maximum Line Length

The minimum maximum line length was increased from 254 to 4095.

14.6.6 Case-Sensitive ldentifiers

All identifiers are now case-sensitive. In previous revisions of the standard, it was
implementation-defined whether an implementation ignored the case of external identifiers.

14.6.7 #line Directive

This directive now allows the specification of a line humber up to 2**31-1. Previously the limit
was 32 767.

14.6.8 Empty Argument Macros

Empty arguments are now explicitly allowed. In previous revisions of the standard, this resulted
in undefined behavior. Stringification (# operator) of an empty argument yields the empty string,
concatenation (## operator) of an empty argument with a non-empty argument produces the
non-empty argument, and concatenation of two empty arguments produces nothing.

14.6.9 Pragmas

Some pragma directives have been standardized. Directives whose first preprocessing token is
STDC are reserved for standardized directives.

As an alternative syntax for a pragma directive, the preprocessing operator _Pragma is
specified. This has the advantage that it can be used in a macro replacement list.

14.6.10 Translation Limits
A number of the program translation limits were significantly increased.

The number of significant initial characters in an internal identifier or a macro name was
increased from 31 to 63.

The number of significant characters in an external identifier has increased from 6 to 31 case-
sensitive characters.

Note that each universal character name (UCN) specifying a short identifier of 0000FFFF or less
is considered to be 6 characters, while a long UCN counts as 10 characters.

While an implementation is not obliged to remember more than the first 63 characters of an
identifier with internal linkage, or the first 31 characters of an identifier with external linkage, the
programmer is effectively prohibited from intentionally creating two different identifiers that are
the same within the appropriate length.

The minimum maximum limit of cases in a switch statement was increased to 1 023.

The Single UNIX® Specification: Authorized Guide to Version 4 371

Comments ISO C Migration

14.6.11 Token Pasting

The standard replaced non-digit with identifier-non-digit in the grammar to allow the token
pasting operator, ##, to work as expected with characters which are not part of the basic
character set.

14.6.12 Variadic Macros

The standard extended the functionality of the punctuator "..." (ellipsis; denoting a variable
number of trailing arguments) to function-like macros. For replacement, the variable arguments
(including the separating commas) are “collected” into one single extra argument that can be
referenced as __VA_ARGS__ within the macro’s replacement list.

For example:
#define MyLog(...) fprintf(stderr, _ VA ARGS)
mai n()
{
int array_bound = 10;
int array_index = 11;

MyLog("ERROR: | ndex out of bound: % %\n", array_index,
array_bound);

There must be at least one argument to match the ellipsis. This requirement avoids problems
that might occur when the trailing arguments are included in a list of arguments to another macro
or function.

14.6.13 va_copy()

372

In previous revisions of the standard, it was not possible to backtrack and examine one or more
arguments a second time when processing a variable argument list. The only way to do this was
to reprocess the variable argument list.

The va_copy() macro provides a mechanism for copying the va_list object used to represent
processing of the arguments. Calling the va_copy() macro exactly duplicates the va_list object.

Note: A separate call to the va_end() macro is required to remove the new va_list object.

A Source Book from The Open Group (2010)

ISO C Migration

14.7 Headers

Headers

The following new headers were added to the standard:

<complex.h>

<fenv.h>

<inttypes.h>

<stdbool.h>

<tgmath.h>

Defines a number of macros and functions for use with the three complex
arithmetic types defined in the standard.

Defines a number of types, macros, and functions that can be used to test,
control, and access an implementation’s floating-point environment.

Defines a type and a number of macros and functions for manipulating
integers; <stdint.h> is a subset of this header.

Defines a number of macros for accessing the new Boolean type Bool and
writing Boolean tests.

Defines a large number of type-generic macros that invoke the correct math
function from <math.h> or from <complex.h> depending upon their argument
types.

14.8 Integer Types

The purpose of the <inttypes.h> header is to provide a set of integer types whose definitions
are consistent across platforms. Consistent use of these integer types should greatly increase
the portability of source code across platforms.

The header <stdint.h> is a subset of <inttypes.h> and may be more suitable for use in
freestanding environments, which might not support the formatted I/O functions. It declares sets
of integer types having specified widths and corresponding macros that specify limits of the
declared types and construct suitable constants.

The following categories of integer types are defined:

= Types having exact widths

= Types having at least certain specified widths

Fastest types having at least certain specified widths
Types wide enough to hold pointers to objects

Types having greatest width

14.8.1 Exact-Width Integer Types

The typedef name intN_t designates a signed integer type with width N bits, no padding bits,
and a two’s complement representation. The typedef name uintN_t designates an unsigned
integer type with width N.

For example, int16_t is an unsigned integer type with a width of exactly 16 bits.

Exact-width types are optional. However, if an implementation provides integer types with widths
of 8, 16, 32, or 64 bits, it must define the corresponding typedef names.

The Single UNIX® Specification: Authorized Guide to Version 4 373

Integer Types ISO C Migration

14.8.2

14.8.3

14.8.4

14.8.5

374

Minim um-Width Integer Types

The typedef names int_leastN_t and uint_leastN_t , respectively, designate signed and
unsigned integer types with a width of at least N bits, such that no signed integer type with lesser
size has at least the specified width.

For example, uint_least16 t denotes an unsigned integer type with a width of at least 16 bits.
The following types are mandatory:

int_least8_t int_least32_t uint_least8_t uint_least32_t
int_leastl6 t int least64_t uint_leastl6_t uint_least64 t

Fastest Minimum-Width Integer Types

The typedef names int_fastN_t and uint_fastN_t , respectively, designate the (usually) fastest
signed and unsigned integer types with a width of at least N bits.

The following types are mandatory:

int_fast8_t int fast32_t uint_fast8 t uint_fast32_t
int fastl6 t int fast64 t uint fastl6 t uint_fast64 t

Integ er Types Capable of Holding Object Pointers

The optional intptr_t and uintptr_t types, respectively, designate a signed and unsigned integer
type with the property that any valid pointer to void can be converted to this type, then converted
back to a pointer to void and the result will compare equal to the original pointer.

Greatest-Width Integer Types

The intmax_t and uintmax_t types, respectively, designate a signed integer type capable of
representing any value of any signed integer type, and an unsigned integer type capable of
representing any value of any unsigned integer type.

For each type declared in <stdint.h> conversion macros, which expand to the correct format
specifiers, are defined for use with the formatted input/output functions such as fprintf() and
fscanf().

The fprintf() macros for signed integers are:

PRIAFASTN PRIAMAX PRIAPRT PRIILEASTN PRIIN
PRIDLEASTN PRIdN PRIIFASTN PRIIMAX PRIIPRT

The PRId macros each expand to a string literal suitable for use as a d print conversion specifier,
plus any needed qualifiers, to convert values of the types int8_t, intl6 t, int32_t, or int64 t,
respectively.

The PRIDLEAST macros each expand to a string literal suitable for use as a d print conversion
specifier, plus any needed qualifiers, to convert values of the types int_least8 t , int_leastl6 t ,
int_least32_t , orint_least64 t , respectively.

The PRIAFAST macros each expand to a string literal suitable for use as a d print conversion
specifier, plus any needed qualifiers, to convert values of the types int fast8 t , int fastl6 t,
int_fast32_t, orint_fast64 t , respectively.

A Source Book from The Open Group (2010)

ISO C Migration Integer Types

The PRIAMAX macro expands to a string literal suitable for use as a d print conversion specifier,
plus any needed qualifiers, to convert values of the type intmax _t .

The PRIAPTR macro expands to a string literal suitable for use as a d print conversion specifier,
plus any needed qualifiers, to convert values of the type intptr_t .

The following example shows part of one possible implementation of the these macros in an
LP64 programming model:

#define PRI d8 “hhd"
#define PRI d16 "hd"
#define PRI d32 "d"
#defi ne PRI d64 "l d"
#def i ne PRI dFAST8 “hhd"

#defi ne PRI dFAST16 "hd"
#def i ne PRI dFAST32 "d"
#def i ne PRI dFAST64 "l d"

#defi ne PRI dLEAST8 “hhd"
#define PRI dLEAST16 "hd"
#define PRI dLEAST32 "d"
#define PRI dLEAST64 "Id"

Corresponding fprintf() macros are defined for unsigned integers (PRIo, PRIu, PRIX, and PRIX).

For fscanf(), the macro names start with SCN instead of PRN. (SCNd and SCNi for signed
integers; SCNo, SCNu, SCNx for unsigned integers.)

A new structure type imaxdiv_t is defined. It is the type of structure returned by imaxdiv().
The following function computes the absolute value of an integer j:

intmax_t inmaxabs(intmax_t j);

The following function computes both the quotient and remainder in a single operation:

i maxdiv_t inmaxdiv(intmax_t numer, intnmax_t denonj;

The following functions are equivalent to the strtol family of functions, except that the initial
portion of the string is converted to intmax_t and uintmax_t representation, respectively:

intmax_t strtoi nax(const char *restrict nptr,
char **restrict endptr, int base);

uintmax_t strtounmax(const char *restrict nptr,
char **restrict endptr, int base);

The following functions are equivalent to the wcstol family of functions, except that the initial
portion of the wide string is converted to intmax_t and uintmax_t representation, respectively:

i nt max_t wcstoi nax(const wchar _t *restrict nptr,
wchar _t **restrict endptr, int base);

ui nt max_t west ounmax(const wchar _t *restrict nptr,
wchar _t **restrict endptr, int base);

The Single UNIX® Specification: Authorized Guide to Version 4 375

Integer Types ISO C Migration

14.8.6

14.8.7

14.9

376

Limits of Specified-Width Integer Types

The standard specifies the minimum and maximum limits for all of the types declared in the
<stdint.h> header.

For example, the minimum value of an exact-width unsigned integer type is {UINTn_MAX},
where n is an unsigned decimal integer with no leading zeros, whose value is exactly 2*n-1.

Macros

The macros INTN_C() and UINTN_C() expand to a signed integer constant whose type and
value is int_leastN _t , and an unsigned integer constant whose type and value is uint_leastN_t ,
respectively.

The macro INTMAX_C() expands to a integer constant whose type is intmax _t, and
UINTMAX_C() expands to an unsigned integer constant whose type uintmax _t .

Comple x Numbers

Support for complex numbers and complex number arithmetic is new, and was added as part of
the effort to make the C language more attractive for general numerical programming. The
underlying implementation of the complex types is explicitly stated to be Cartesian, rather than
polar, for consistency with other programming languages. Thus values are interpreted as
radians, not degrees.

The header <complex.h> contains the macro definitions and function declarations that support
complex arithmetic.

Two new type specifiers were defined:

_Complex

_Imaginary (Only if an implementation supports a pure imaginary type.)

A new type qualifier complex (actually a macro which expands to _Complex) is used to denote a
number as being a complex number.

Three complex types were defined:
= float complex
= double complex
= long double complex

The corresponding real type is the type obtained by deleting the type qualifier complex from the
complex type name.

A complex type has the same representation and alignment requirements as an array type
containing exactly two elements of the corresponding real type; the first element is equal to the
real part, and the second element to the imaginary part, of the complex number.

There is no special syntax for constants; instead there is a new macro _Complex_I, which has a
complex value whose real part is zero and whose imaginary part is x. Note that
_Complex_I* Complex_I has a value of -1, but the type of that value is complex .

The standard reserves the keyword _Imaginary for use as a type-specifier in conjunction with
the pure imaginary type. The macros imaginary and Imaginary | are defined only if an

A Source Book from The Open Group (2010)

ISO C Migration Complex Numbers

implementation supports a pure imaginary type. Such support is optional. See Annex G of the
standard for further details. If defined, they expand to _Imaginary and a constant expression of
type const float _Ima ginary with the value of the imaginary unit.

The macro | expands to _Imaginary_|, if defined, else to _Complex_I. Thus a complex number
constant (3.0 +4.0i) could be written as either 3.0+4.0*1 or 3.0+4.0 *_Complex_|.

The choice of " | ' instead of i’ for the imaginary unit was because of the widespread use of
the identifier " i * for other purposes. A program can use a different identifier (for example, ' z')
for the imaginary unit by undefining ’ 1 * and defining * z’ as follows:

#i ncl ude <conpl ex. h>
#undef |
#define z _Imaginary z

Annex G, which is marked informative, specifies complex arithmetic intended to be compatible
with the IEC 60559: 1989 standard real floating-point arithmetic, This annex was designated as
informative because of insufficient prior art for normative status. An implementation claiming
such conformance should define __STDC_IEC_559 COMPLEX to be 1.

The pragma STDC CX_ LIMITED_RANGE can be used to indicate (ON) that the usual
mathematical formulas for complex arithmetic may be used. Such formulas are problematic
because of overflow, underflow, and handling of infinities.

The following new functions relate to complex arithmetic.

14.9.1 Trigonometric Functions

The complex arc cosine functions compute the complex arc cosine of z, with branch cuts outside
the interval [-1,+1] along the real axis.

doubl e conpl ex cacos(doubl e conplex z);
fl oat conpl ex cacosf(float conplex z);
| ong doubl e conpl ex cacosl (1 ong doubl e conpl ex z);

The complex arc sine functions compute the complex arc sine of z, with branch cuts outside the
interval [-1,+1] along the real axis.

doubl e conpl ex casi n(doubl e conpl ex z);
fl oat conpl ex casinf(float conplex z);
| ong doubl e conpl ex casinl (I ong doubl e conplex z);

The complex arc tangent functions compute the complex arc tangent of z, with branch cuts
outside the interval [-i,+i] along the imaginary axis.

doubl e conpl ex catan(doubl e conpl ex z);
fl oat conplex catanf(float conplex z);
| ong doubl e conpl ex catanl (1 ong doubl e conpl ex z);

The complex cosine functions compute the complex cosine of z.

doubl e conpl ex ccos(doubl e conpl ex z);
fl oat conplex ccosf(float conplex z);
| ong doubl e conpl ex ccosl (I ong doubl e conpl ex z);

The complex sine functions compute the complex sine of z.

doubl e conpl ex csin(doubl e conplex z);
fl oat conplex csinf(float conplex z);
| ong doubl e conpl ex csinl (1 ong double conplex z);

The Single UNIX® Specification: Authorized Guide to Version 4 377

Complex Numbers ISO C Migration

14.9.2

14.9.3

378

The complex tangent functions compute the complex tangent of z.

doubl e conpl ex ctan(doubl e conpl ex z);
float conplex ctanf(float conplex z);
| ong doubl e conpl ex ctanl (I ong doubl e conpl ex z);

Hyperbolic Functions

The complex arc hyperbolic cosine functions compute the complex arc hyperbolic cosine of z,
with a branch cut at values less than 1 along the real axis.

doubl e conpl ex cacosh(doubl e conpl ex z);
fl oat conpl ex cacoshf(float conplex z);
| ong doubl e conpl ex cacoshl (1 ong doubl e conpl ex z);

The complex arc hyperbolic sine functions compute the complex arc hyperbolic sine of z, with
branch cuts outside the interval [-i,+i] along the imaginary axis.

doubl e conpl ex casi nh(doubl e conpl ex z);
fl oat conpl ex casinhf(float conplex z);
| ong doubl e conpl ex casi nhl (I ong doubl e conpl ex z);

The complex arc hyperbolic tangent functions compute the complex arc hyperbolic tangent of z,
with branch cuts outside the interval [-1,+1] along the real axis.

doubl e conpl ex catanh(doubl e conpl ex z);
fl oat conpl ex catanhf(float conplex z);
| ong doubl e conpl ex catanhl (I ong doubl e conpl ex z);

The complex hyperbolic cosine functions compute the complex hyperbolic cosine of z.

doubl e conpl ex ccosh(doubl e conplex z);
fl oat conplex ccoshf(float conplex z);
| ong doubl e conpl ex ccoshl (1 ong doubl e conpl ex z);

The complex hyperbolic sine functions compute the complex hyperbolic sine of z.

doubl e conpl ex csinh(doubl e conplex z);
fl oat conpl ex csinhf(float conplex z);
| ong doubl e conpl ex csinhl (I ong doubl e conpl ex z);

The complex hyperbolic tangent functions compute the complex hyperbolic tangent of z.

doubl e conpl ex ctanh(doubl e conplex z);
fl oat conplex ctanhf(float conplex z);
| ong doubl e conpl ex ctanhl (I ong doubl e conpl ex z);

Exponential and Logarithmic Functions
The complex exponential functions compute the complex base-e exponential of z.

doubl e conpl ex cexp(doubl e conpl ex z);
float conplex cexpf(float conplex z);
| ong doubl e conpl ex cexpl (I ong doubl e conpl ex z);

The complex natural logarithm functions compute the complex natural logarithm of z, with a
branch cut along the negative real axis.

A Source Book from The Open Group (2010)

ISO C Migration Complex Numbers

doubl e conpl ex cl og(doubl e conpl ex z);
float conplex clogf(float conplex z);
| ong doubl e conpl ex clogl (I ong doubl e conpl ex z);

14.9.4 Power and Absolute-Value Functions
The complex absolute value functions compute the modulus of x.

doubl e conpl ex cabs(doubl e conpl ex x);
fl oat conpl ex cabsf(float conplex x);
| ong doubl e conpl ex cabsl (I ong doubl e conpl ex x);

The complex power functions compute the complex power function x**y, with a branch cut for
the first parameter along the negative real axis.

doubl e conpl ex cpow doubl e conpl ex x, double conplex y);
fl oat conplex cpowf (float conplex x, float conplex y);
| ong doubl e conpl ex cpow (I ong doubl e conpl ex x,

| ong doubl e conpl ex y);

The complex square root functions compute the complex square root of z, with a branch cut
along the negative real axis.

doubl e conpl ex csqrt (doubl e conplex z);
float conplex csqrtf(float conplex z);
| ong doubl e conpl ex csqrtl (1 ong double conplex z);

14.9.5 Manipulation Functions

The complex argument functions compute the argument of z, with a branch cut along the
negative real axis.

doubl e carg(doubl e conplex z);
float cargf(float conplex z);
| ong doubl e cargl (I ong doubl e conpl ex z);

The complex imaginary functions compute the imaginary part of z.

doubl e ci mag(doubl e conpl ex z);
float cimagf(float conplex z);
| ong doubl e ci magl (1 ong doubl e conpl ex z);

The complex conjugate functions compute the complex conjugate of z, by reversing the sign of
its imaginary part.

doubl e conpl ex conj (doubl e conpl ex z);
float conplex conjf(float conplex z);
| ong doubl e conpl ex conjl (I ong double conpl ex z);

The complex projection functions compute a projection of z onto the Riemann sphere.

doubl e conpl ex cproj (doubl e conplex z);
float conplex cprojf(float conplex z);
| ong doubl e conpl ex cprojl (long double conplex z);

The complex real functions compute the real part of z.

The Single UNIX® Specification: Authorized Guide to Version 4 379

Complex Numbers ISO C Migration

14.10

doubl e creal (doubl e conplex z);
float creal f(float conplex z);
| ong doubl e creall (Il ong double conplex z);

Note that no errors are defined for any of the above functions.

Other Mathematical Changes

The standard extended the mathematical support via <math.h> by providing versions of
functions to support float and long doub le as well as the existing double floating type functions.

The functions ecvt(), fcvt(), and gevt() were dropped from the standard since their capability is
available using the sprintf() function.

The pragma STDC FP_CONTACT indicates to an implementation whether it is allowed (ON) or
disallowed (OFF) to contract expressions; that is, evaluated as though an expression is an
atomic operation, thereby omitting certain rounding errors.

The macro NAN is defined only if an implementation supports quiet NaNs.

14.10.1 Classification Macros

380

The following are defined for use with classification macros:

FP_NAN The floating-point number x is “Not a Number”.
FP_INFINITE The value of the number is either plus or minus infinity.
FP_ZERO The value of the number is either plus or minus zero.
FP_SUBNORMAL The number is in denormalized format.

FP_NORMAL There is nothing special about the number.

The macro fpclassify() classifies its argument as either NaN, infinite, normal, subnormal, zero,
or into another implementation-defined category.

int fpclassify(real-floating x);

The macro isfinite() determines whether its argument has a finite value (zero, subnormal, or
normal, and not infinite or NaN).

int isfinite(real-floating x);

The macro isinf() determines whether its argument value is an infinity (positive or negative).
int isinf(real-floating x);

The macro isnam() determines whether its argument value is a NaN.

int isnan(real-floating x);

The macro isnormal() determines whether its argument value is normal (neither zero,
subnormal, infinite, nor NaN).

int isnormal (real -floating x);
The macro signbit() determines whether the sign of its argument value is negative.

int signbit(real-floating x);

A Source Book from The Open Group (2010)

ISO C Migration Other Mathematical Changes

14.10.2 Trigonometric Functions
The following functions compute the arc cosine, arc sin, and arctan of x, respectively:

float acosf(float x);

| ong doubl e acosl (I ong doubl e x);
fl oat asinf(float x);

| ong doubl e asinl (I ong double x);
| ong doubl e tanl (1 ong doubl e x);

The following functions compute the arc tangent of y /x:

float atan2f(float y, float x);
| ong doubl e atan2l (1 ong double y, |ong double x);

The following functions compute the cosine, sin, and tangent of x, respectively:

float cosf(float x);
| ong doubl e cosl (1 ong doubl e x);
float sinf(float Xx);
| ong doubl e sinl (long double x);
float tanf(float Xx);
| ong doubl e tanl (1 ong doubl e x);

14.10.3 Hyperbolic Functions
The following functions compute the arc hyperbolic cosine of x:

float acoshf(float Xx);
| ong doubl e acoshl (1 ong doubl e x);

The following functions compute the arc hyperbolic sine of x:

float asinhf(float Xx);
| ong doubl e asinhl (1 ong double x);

The following functions compute the arc hyperbolic tangent of x:

float atanhf(float Xx);
| ong doubl e at anhl (1 ong doubl e Xx);

The following functions compute the hyperbolic cosine of x:

float coshf(float x);
| ong doubl e coshl (I ong doubl e x);

The following functions compute the hyperbolic sine of x:

float sinhf(float x);
| ong doubl e sinhl (I ong double x);

The following functions compute the hyperbolic tangent of x:

float tanhf(float x);
| ong doubl e tanhl (I ong doubl e x);

The Single UNIX® Specification: Authorized Guide to Version 4 381

Other Mathematical Changes ISO C Migration

14.10.4 Exponential and Logarithmic Functions
The following functions compute the base-e exponential of x:

float expf(float x);
| ong doubl e expl (1 ong doubl e x);

The following functions compute the base-2 exponential of x:

doubl e exp2(doubl e x);
float exp2f(float x);
| ong doubl e exp2l (I ong doubl e x);

The following functions compute the base-e exponential of (x —1):

fl oat expnilf(float Xx);
| ong doubl e expnil (1 ong doubl e x);

The following functions break a floating-point number into a normalized fraction and an integral
power of 2:

float frexpf(float value, int *exp);
| ong doubl e frexpl (1 ong doubl e val ue, int *exp);

The following functions extract the exponent of x:

int ilogbf(float x);
int ilogbl(long double x);

The following functions multiply a floating-point number by an integral power of 2:

float |dexpf(float x, int exp);
| ong doubl e | dexpl (1 ong double x, int exp);

The following functions compute the natural logarithm of x:

float |ogf(float x);
| ong doubl e | ogl (I ong doubl e x);

The following functions compute the base-10 logarithm of x:

float |ogl0Of (float Xx);
| ong doubl e | 0gl0l (1 ong doubl e x);

The following functions compute the natural logarithm of (x +1):

float |oglpf(float Xx);
| ong doubl e | oglpl (1 ong doubl e x);

The following functions compute the base-2 logarithm of x:

doubl e | og2(doubl e x);
float |og2f(float x);
| ong doubl e | 0g2l (I ong doubl e x);

The following functions extract the exponent of x:

float |ogbf(float x);
| ong doubl e | ogbl (I ong doubl e x);

The following functions break x into integral and fractional parts:

float nodff(float x, float *iptr);
| ong doubl e nodfl (I ong double x, |ong double *iptr);

382 A Source Book from The Open Group (2010)

ISO C Migration Other Mathematical Changes

The following functions compute x*FLT_RADIX**n efficiently:

doubl e scal bn(double x, int n);

float scalbnf(float x, int n);

| ong doubl e scal bnl (1 ong double x, int n);
doubl e scal bl n(double x, long int n);

float scalblnf(float x, long int n);

| ong doubl e scal bl nl (I ong double x, long int n);

The following functions compute the real cube root of x:

doubl e chbrt(double x);
float cbrtf(float x);
| ong doubl e cbrtl (I ong double x);

The following functions compute the absolute value of x:

float fabsf(float x);
| ong doubl e fabsl (I ong double x);

The following functions compute the square root of the sum of the squares of x and y:

float hypotf(float x, float y);
| ong doubl e hypotl (1 ong doubl e x, |ong double y);

The following functions compute x raised to the power of y:

float powf(float x, float y);
| ong doubl e pow (I ong double x, |ong double y);

The following functions compute the non-negative square root of x:

float sqrtf(float x);
| ong doubl e sqgrtl(long double x);

The following functions compute the error function of x:

float erff(float Xx);
| ong doubl e erfl (long double x);

The following functions compute the natural logarithm of the absolute value of the gamma
function of x:

float | gammaf(float x);
| ong doubl e | ganmal (|1 ong doubl e x);

The following functions compute the (true) gamma function of x:

doubl e t gamma(doubl e x);
float tgammaf(float x);
| ong doubl e tganmal (|1 ong doubl e x);

The Single UNIX® Specification: Authorized Guide to Version 4 383

Other Mathematical Changes ISO C Migration

14.10.5 Nearest Integer Functions

384

The following functions compute the smallest integer value not less than x:

float ceilf(float x);
| ong double ceill(long double x);

The following functions compute the largest integer value not greater than x:

float floorf(float x);
| ong doubl e floorl (long double x);

The following functions round x to an integer value in floating-point format, using the current
rounding direction and without raising the inexact floating-point exception:

doubl e near byi nt (doubl e x);
float nearbyintf(float x);
| ong doubl e nearbyintl (1 ong doubl e x);

The following functions round x to an integer value in floating-point format, using the current
rounding direction and may raise the inexact floating-point exception if the result differs in value
from the argument:

float rintf(float x);
| ong double rintl(long double x);

The following functions round x to the nearest integer value, rounding according to the current
rounding direction:

long int Irint(double x);

long int Irintf(float x);

long int Irintl(long double x);

long long int Ilrint(double x);

long long int Ilrintf(float x);

long long int Ilrintl(long double x);

The following functions round x to the nearest integer value in floating-point format, rounding
halfway cases away from zero, regardless of the current rounding direction:

doubl e round(doubl e x);
float roundf(float x);
| ong doubl e roundl (1 ong doubl e x);

The following functions round x to the nearest integer value, rounding halfway cases away from
zero, regardless of the current rounding direction:

I ong int Iround(double x);

long int Iroundf(float Xx);

long int Iroundl (Il ong double x);

long long int |lround(double x);

long long int Ilroundf(float Xx);

long long int |lroundl (I ong double x);

The following functions round x to the integer value, in floating format, nearest to but no larger in
magnitude than x:

doubl e trunc(doubl e x);
float truncf(float x);
| ong doubl e truncl (1 ong double x);

A Source Book from The Open Group (2010)

ISO C Migration Other Mathematical Changes

14.10.6 Remainder Functions
The following functions compute the floating-point remainder of x/y:

float frodf(float x, float y);
| ong doubl e fnodl (I ong double x, |ong double y);

The following functions compute the IEC 60559: 1989 standard remainder x REM y :

float remainderf(float x, float y);
| ong doubl e remai nderl (I ong doubl e x, |ong double y);

The following functions shall compute the same remainder as the remainder family of functions,
but in a different manner:

doubl e renquo(doubl e x, double y, int *quo);
float renguof(float x, float y, int *quo);
| ong doubl e remguol (1 ong doubl e x, long double y, int *quo);

14.10.7 Manipulation Functions
The following functions produce a value with the magnitude of and the sign of y:

doubl e copysi gn(doubl e x, double y);
float copysignf(float x, float y);
| ong doubl e copysignl (1 ong double x, |ong double y);

The following functions return a quiet NaN, if available, with content indicated by tagp:

doubl e nan(const char *tagp);
float nanf(const char *tagp);
| ong doubl e nanl (const char *tagp);

The following functions determine the next representable value:

float nextafterf(float x, float y);
| ong doubl e nextafterl (long double x, |ong double y);

The following functions are equivalent to the nextafter functions, except that the second
parameter has type long doub le and the functions return y converted to the type of the function
if x equals y:

doubl e nexttoward(double x, |ong double y);
float nexttowardf(float x, |ong double y);
| ong doubl e nexttowardl (I ong doubl e x, |ong double y);

The following functions determine the positive difference between their arguments:

doubl e fdi mdoubl e x, double y);
float fdinf(float x, float y);
| ong double fdim (Il ong double x, |ong double y);

The following functions determine the maximum numeric value of their arguments:

doubl e frax(double x, double y);
float frmaxf(float x, float y);
| ong doubl e fmaxl (I ong double x, |ong double y);

If the optional macros FP_FAST_FMA, FP_FAST_FMAF, and FP_FAST_FMAL are defined, it
indicates that the corresponding fma() function executes at least as fast as a multiply and an

The Single UNIX® Specification: Authorized Guide to Version 4 385

Other Mathematical Changes

add of double operands.

ISO C Migration

The following functions determine the minimum numeric value of their arguments:

doubl e fm n(double x, double y);
float fmnf(float x, float y);
| ong double fmnl(long double x, |ong double y);

The following functions compute (x*y)+z, rounded as one ternary operation:

doubl e frma(doubl e x, double y, double z);

float frmaf(float x, float y, float z);

| ong doubl e fmal (1 ong doubl e x, |ong double vy,
| ong double z);

14.10.8 Comparison Macros

386

The isgreater() macro tests whether x is greater than y.

int isgreater(real-floating x, real-floating y);

The isgreaterequal () macro tests whether x is greater than or equal to y .

int isgreaterequal (real-floating x, real-floating y);
The isless() macro tests whether x is less than y.

int isless(real-floating x, real-floating y);

The islessequal() macro tests whether x is less than or equal to y .

int islessequal (real-floating x, real-floating y);

The islessgreater() macro tests whether x is less than or greater than y.
int islessgreater(real-floating x, real-floating y);
The isunordered() macro tests whether x and y are unordered.

int isunordered(real-floating x, real-floating y);

Note: Annex F (normative) was added to specify the IEC 60559:1989 standard floating-point

arithmetic. An implementation that defines __STDC_IEC_559

specification detailed in this annex.

must conform to the

A Source Book from The Open Group (2010)

ISO C Migration Floating-Point Environment Support

14.11 Floating-P oint Environment Support

The header <fenv.h> declares the types, and defines the macros and functions that support
access to an implementation’s floating-point environment.

Two types are declared:
fenv_t Represents the entire floating-point environment.
fexcept_t Represents the collective floating-point status flags.

The pragma directive has three reserved forms, all starting with the preprocessor token STDC.
These are used to specify certain characteristics of the floating-point support to comply with the
IEC 60559: 1989 standard.

The pragma STDC FENV_ACCESS provides the means of informing an implementation when a
program might access the floating-point environment.

For example:

doubl e a;

#pragma STDC FENV_ACCESS ON
a=1.0+ 2.0;

#pragma STDC FENV_ACCESS OFF

14.11.1 Exceptions
The following function clears the supported floating-point exceptions:
voi d fecl earexcept (int excepts);

The following function stores an implementation-dependent representation of the states of the
floating-point status flags:

voi d fegetexceptflag(fexcept_t *flagp, int excepts);

The following function raises the supported floating-point exceptions represented by its
argument:

voi d feraiseexcept(int excepts);
The following function sets the floating-point status flags:
voi d fesetexceptflag(const fexcept_t *flagp, int excepts);

The following function tests which of a specified subset of the floating-point exception flags are
currently set:

int fetestexcept(int excepts);

Each of the following floating-point exception macros is defined if an implementation supports
these functions:

FE_DIVBYZERO

FE_INEXACT

FE_INVALID

FE_OVERFLOW

FE_UNDERFLOW

FE_ALL _EXCEPT (Bitwise OR of all the other macros.)

Additional implementation-defined floating-point exceptions, with macro definitions beginning

The Single UNIX® Specification: Authorized Guide to Version 4 387

Floating-Point Environment Support ISO C Migration

with FE_ and an uppercase letter, may also be defined by an implementation.

14.11.2 Rounding
The following functions respectively set and return the current rounding direction:

int fesetround(int round);
int fegetround(void);

Each of the following floating-point macros is defined if an implementation supports these
functions:

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

Additional implementation-defined rounding directions, with macro definitions beginning with FE_
and an uppercase letter, may also be defined by an implementation.

14.11.3 Environment
The following functions respectively set and return the floating-point environment function:

voi d fesetenv(const fenv_t *envp);
void fegetenv(fenv_t *envp);

The following function saves the currently raised floating-point exception(s), installs the floating-
point environment represented by the object pointed to by envp, and then raises the saved
floating-point exception(s):

voi d feupdateenv(const fenv_t *envp);

The following function saves the current floating-point environment in the object pointed to by
envp, clears the floating-point status flags, and then installs a non-stop (continue on floating-
point exceptions) mode, if available, for all floating-point exceptions:

i nt fehol dexcept (fenv_t *envp);

The macro FE_DFL_ENV represents the default floating-point environment; that is, the one
installed at program startup. It can be used as an argument with the above functions and is of
type *const fenv_t .

388 A Source Book from The Open Group (2010)

ISO C Migration Type-Generic Math

14.12 Type-Generic Math

Type-generic macros may enable the writing of more portable code, and reduce need for casting
and suffixing when porting applications to new platforms.

The header <tgmath.h> includes the headers <math.h> and <complex.h> and defines
numerous type-generic macros. Except for modf, there is a type-generic macro for each of the
functions in <math.h> and <complex.h> that do not have an ' f' (float) or ' I’ (long doub le)
suffix and have one or more parameters whose corresponding real type is double .

Such parameters are called generic parameters.

Use of a type-generic macro invokes a function whose corresponding real type and type domain
are determined by the arguments for the generic parameters. The real type is determined as
follows:

1. First, if any argument for generic parameters is a long doub le, the real type is long
double .

2. Otherwise, if any argument for generic parameters is a double or an integer type, the real
type is double .

3. Otherwise, the real type is float .

Type-generic macros that accept complex arguments also accept imaginary arguments. If an
argument is imaginary, the macro expands to an expression whose type is real, imaginary , or
complex , as appropriate for the particular function.

14.12.1 Unsuffix ed Functions With a C-Prefixed Counterpart

For each unsuffixed function in <math.h> for which there is a function in <complex.h> with the
same name except fora’ ¢’ prefix, the corresponding type-generic macro for both functions has
the same name as the function in <math.h>.

For example, the type-generic macro for tan() and ctan() is tan.

If at least one argument for a generic parameter is complex, then use of the macro invokes a
complex function; otherwise, a real function is invoked.

14.12.2 Unsuffix ed Functions Without a C-Prefixed Counterpart

For each unsuffixed function in <math.h> for which there is not a function in <complex.h> with
the same name but having a’ ¢’ prefix, the corresponding type-generic macro for both functions
has the same name as the function in <math.h>. If all arguments for generic parameters are
real, then use of the macro invokes a real function; otherwise, use of the macro results in
undefined behavior. Examples of such functions include fdim() and Iround().

For each unsuffixed function in <complex.h> for which there is not a function in <math.h> with
the same name but without a ' ¢’ prefix, the corresponding type-generic macro for both
functions has the same name as the function in <complex.h> . Use of the macro with any real
or complex argument invokes a complex function.

The Single UNIX® Specification: Authorized Guide to Version 4 389

Other Library Changes ISO C Migration

14.13 Other Library Changes

A number of new functions were added to the standard, prototypes for many functions now
contain the new keyword restrict as part of some parameter declarations, and a number of
functions had their definition clarified or extended.

atoll()

A numeric conversion function for the conversion of a string to a long long int representation.

long long int atoll (const char *nptr);

_Exit()

This function causes normal program termination to occur and control to be returned to the host
environment without triggering signals or atexit() registered functions.

This function name (rather than _exit()) was chosen to avoid potential conflict with existing
practice.
fpos_t

The description of fpos_t was changed to exclude array type objects.

isb lank()
This function tests whether c is a character of class blank in a program’s current locale.

int isblank(int c);

iswb lank()

This function tests whether wc is a wide-character which is a member of the class blank in the
program’s current locale.

int iswblank(wint t wc);

llabs()

In a similar manner to its counterparts abs() and lals(), this function computes the absolute
value of an integer.

long long int Ilabs(long long int j);

lidiv()

In a similar manner to its counterparts div() and Idiv(), this function retuns a structure of type
lidiv_t which contains both the quotient and the remainder, each of which is of type long long
int.

I1div_t Ildiv(long long int numer, long |long int denon;

390 A Source Book from The Open Group (2010)

ISO C Migration Other Library Changes

localecon v()

The standard added the following members to the Iconv structure (defined in <locale.h>) to
assign with long-standing POSIX practice and to permit additional flexibility with internationally
formatted monetary quantities:

char p_cs_precedes Set to 1 or O if the currency_symbol respectively precedes or
succeeds the value for a non-negative locally formatted monetary
guantity.

char n_cs_precedes Set to 1 or O if the currency_symbol respectively precedes or
succeeds the value for a negative locally formatted monetary
guantity.

char p_sep by space Set to a value indicating the separation of the currency_symbol , the
sign string, and the value for a non-negative locally formatted
monetary quantity.

char n_sep by space Set to a value indicating the separation of the currency_symbol , the
sign string, and the value for a negative locally formatted monetary
guantity.

char p_sign_posn Set to a value indicating the positioning of the positive_sign for a
non-negative locally formatted monetary quantity.

char n_sign_posn Set to a value indicating the positioning of the negative_sign for a
negative locally formatted monetary quantity.

printf(), fprintf(), sprintf()

New length modifiers were added to the standard:

hh Specifies that a following d, i , 0, u, X, or X conversion specifier applies to a signed ¢ har or
unsigned ¢ har argument; or that a following n conversion specifier applies to a pointer to a
signed c har argument. This modifier enables character types to be treated the same as all
other integer types.

Il Added to support the new long long int type. Specifies that a following d, | , 0, u, x, or X
conversion specifier applies to a long long int or unsigned long long int argument; or that
a following n conversion specifier applies to a pointer to a long long int argument.

The maximum number of characters that can be produced by any single conversion was
increased from 509 characters (C89) to 4 095 characters.

realloc()

The description of this function was changed to make it clear that the pointed-to object is
deallocated, a new object is allocated, and the content of the new object is the same as that of
the old object up to the lesser of the two sizes.

scanf(), fscanf(), sscanf()

The hh and I | length modifiers (see printf() above) were added.

Also the conversion modifiers a and A were added with A being equivalent to a.

These conversion modifiers match an optionally signed floating-point number, infinity, or NaN,
whose format is the same as expected for the subject sequence of the strtod() function. The
corresponding argument shall be a pointer to floating.

The behavior of the sscanf() function on encountering the end of a string has been clarified.

The Single UNIX® Specification: Authorized Guide to Version 4 391

Other Library Changes ISO C Migration

setvb uf()
The function prototype was changed to include the restrict type qualifier:

int setvbuf (FILE *restrict stream char *restrict buf,
int type, size_ t size);

In previous revisions of the standard it was not clear about what, if anything, size means when
buf is a null pointer. The standard now warns that size might not be ignored, so portable
programs should supply a reasonable value.

snprintf()

This function was added to the standard to address the problem of sprintf() potentially
overrunning an output buffer. It is equivalent in functionality to sprintf() except that it performs
bounds checking on the output array. Extra characters are discarded and a null character is
written at the end of the characters actually written to the array.

strftime()

The definition of this function was changed to incorporate additional conversion specifiers
defined in the ISO POSIX-1:1996 standard, including %C, 9O, %, %, %g, %5, %, %, % , %R
% , 9, %, and %/, as well as the E and O modifiers.

strtod(), strtof(), strtold ()
The following two functions were added to the standard:

float strtof (const char *restrict nptr,
char **restrict endptr);

| ong double strtold (const char *restrict nptr,
char **restrict endptr);

In a similar manner to their counterpart, the strtod() function, these functions convert the initial
portion of the string pointed to by nptr to float and long doub le representation, respectively.
Support for subject sequences relating to floating-point (NaN, INF, and so on) was also added.

strtoll(), strtoull()

The following two functions were added to the standard:

long long int strtoll (const char *restrict nptr,
char **restrict endptr, int base);

unsigned long int strtoull (const char *restrict nptr,
char **restrict endptr, int basefb);

In a similar manner to their counterparts, the strtol() and strtoul() functions, these functions
convert the initial portion of the string pointed to by nptr to long long int and unsigned long int
representation, respectively.

392 A Source Book from The Open Group (2010)

ISO C Migration Other Library Changes

tmpnam()

The previous standard had a serious flaw regarding this function. If the function were called
fewer than {TMP_MAX} times but was unable to generate a suitable string because every
potential string named an existing file, there was no way to report failure and no undefined
behavior; hence there was no option other than to never return.

This standard resolved this issue by allowing the function to return a null pointer when it cannot
generate a suitable string and by specifying that {TMP_MAX} is the number of potential strings,
any or all of which may name existing files and thus not be suitable return values.

Note: This is a quiet change in the standard. Programs that call this function without checking for a
null return value may produce undefined behavior.

ungetc()

The standard deprecated the use of this function on a binary stream at the beginning of the file.

vfscanf()

The following functions are functionally the same as scanf(), fscanf(), and sscanf() respectively,
except that instead of being called with a variable number of arguments, they are called with an
argument list:

int vscanf(const char *restrict format, va list arg);
int vfscanf(FILE *restrict stream

const char *restrict format, va_ list arg);
i nt vsscanf(const char *restrict s,

const char *restrict format, va_ list arg);

viwscanf()

The following functions are functionally the same as fwscanf(), swscanf(), and wscanf()
respectively, except that instead of being called with a variable number of arguments, they are
called with an argument list:

int viwscanf(FILE *restrict stream
const wchar_t *restrict format, va list arg);
i nt vswscanf(const wchar t *restrict s,
const wchar_t *restrict format, va list arg);
i nt vwscanf(const wchar _t *restrict format, va list arg);

14.13.1 Wide-String Numeric Conversion Functions
The following functions were added to the existing wide-string numeric conversion functions:

float wecstof (const wchar _t *restrict nptr,
wchar _t **restrict endptr);

| ong doubl e westol d(const wchar _t *restrict nptr,
wchar _t **restrict endptr);

long long int westoll (const wchar_t *restrict nptr,
wchar _t **restrict endptr, int base);

long long int westoull (const wchar _t *restrict nptr,
wchar _t **restrict endptr, int base);

The Single UNIX® Specification: Authorized Guide to Version 4 393

Annexes ISO C Migration

14.14 Annexes

394

A number of new normative and informative annexes were added to the standard and some
exiting annexes were modified.

Annexes A, B, and E were modified to include the new keywords, universal character names,
types, implementation limits, macros and functions, and other changes to the C language.

Annex F (normative) was added to specify the IEC 60559:1989 standard floating-point
arithmetic. An implementation that defines __STDC IEC 559 ~ must conform to the
specification detailed in this annex.

Annex G (informative) was added to specify recommended IEC 60559:1989 standard-
compatible complex arithmetic. An implementation that defines
__STDC_IEC_559 COMPLEX__ should conform to the specification detailed in this annex. It is
non-normative because there were few existing implementations at the time this standard was
approved.

Annex H (informative) describes the extent of support in this standard for language-independent
arithmetic as specified in the ISO/IEC 10967-1: 1994 standard. This annex was added, however,
because all programming languages covered by ISO/IEC JTC1 SC22 standards are expected to
review the ISO/IEC 10967-1:1994 standard and incorporate and further define the binding
between that standard and each programming language.

A Source Book from The Open Group (2010)

Index

2 1] T USSP 371
- 1o 8 D PSP TPPR 47
=1 0= 11 0= 8 o PRSP RSR a7
ASSEIT. N> e 46
o]][0 1 DS EPPPPR a7
(01 1Y 0 1< D PRSP 46
0 11T o 011 T PP PP PP SUPPPP P 47
S 103 T o PP 47
=10 TSP PP P PTP PP 46-47
S 03 11 1 D PP PEERP R 47
S 1[0 L2 D PRSP 46
S 11011100 1o T 1 > PR 47
S 1011V D RSP 47
0 o 28 D PSRRI 47
S (070 1Y 1 PP 47
S = U o 1] {0 1 o PSRRI 47
S 110 T =1 o T D P UPERUPRR 47
0 110011650 DO 46-47
S (0T 1 1= o PSPPSR 46
111 11 0 10 D PP PPP TP PRP 46
S 1 00T 1] =T VA o PSRRI 47
1 00 U= U= D PRSPPI 47
11 | o o 10 TSRS 47
S 1 L=1 10 | o1 D PP 47
SNELNEYINNS ettt ettt e ettt e sttt e e steeesabbe e e snteeenneeeeanbeeeans a7
S 1 L= 10T 7] (o3 o 1 D PSSP a7
e 1] 1Y 0 LTS =P UPERUPRR 47
2 01| 1 o D PR 47
S 01101 (=T To 1 b TSP a7
1170 N o PR 47
ST o] 1Yo 13 TP RUPRRPPR a7
SSRANCNLND L. e 47
1= 01T o Lo L1 = o USRS a7
1= 1] 021 D PSPPSR 46-47
ST | = 0 PSP 46-47
1 (o F= T o 1 o SRS 46
(0 [0 1= 10 o SRR 46
D1 (0 [0 T o SO RTSOUROURRTI 46-47
S (0 11 303 SRR 46
] 1] o T D PR 46
1 11 T T D PRSP a7

The Single UNIX® Specification: Authorized Guide to Version 4 395

396

5] 1 (0] o] 1 2 P UPERUPRRNS 47
KOV S IPC. N> e e e e e e e e e ——rataaaaaesaaananran 47
51 A7 1010V T D P PPERUPRRNS 47
51V 100 o B P UPERUPRRN 47
o) VAT (=TS0 LU o = o D UPEEUPRRNS 47
o) VAT 1= (=Tt 1 o P UPERUPRRNS 47
o) VAT 1= 1 1 B P UPERUPRRN 47
o) AT]] 1 1 1 P UPERUPRRN 47
o) AT S0 1o (] P PPERUPRRNS 47
o)1 €= L P URERUPRRNS 47
o) AT 51 €= LAV £ P PPERUPRRNS 47
) A7] 14100 P UPERUPRRN 47
o) A7 1411 o o P PPERUPRRNS 47
o) AT 141 TS o P UPERUPRRNS 47
o) 71 01T P UPERUPRRNS 47
S5 V£ 1010 1 2 P EPERUPRRN 47
SSYSIULSNAME.NS ..ot e e e e e e e e e s e s e e aeaaaea e e e e ananrae 47
) AT LT 11 1 o P PPERUPRRN 47
D51 V£ [0 To T P UPERUPRRNS 47
S - T 1 D PP PR 47
S (=] 11 1110 1S3 o b PRSP 47
S 1] 0 L= o D PP RRR 46-47
S| 1100 PSPPSR 47
01 (o 1 o TP RRP 47
U111 0 < o b PR PR 47
ST 1111) 1 D P URERUPRRN 47

(2L PP PUPPPRI 101
= ST PPPT R SPPPPIN 390
_POSIX_ADVISORY _INFOottt ittt ettt e st e e e s st e e s e st e e e s anbaeeeseansreas 33
_POSIX_ASYNCHRONOUS O ... uiiiiiiiiiiiiie ettt sttt e e s st e e s e snsbae e e s anbaeeeseenneeas 22
_POSIX_BARRIERS ...ttt ettt s e e e e s et e e e et e e e e e e e e nnreas 22
_POSIX_CLOCK_SELECTION......cttittiiiittiite sttt e sttt e e s sttt e e e st e e e s s nbaee e s s snsbee e e s anbaeeeesanneeas 22
_POSIX_CPUTIME ...ttt ettt e e sttt e e s et e e e s e bt e e e s annbbe e e e e annbaeaeeennseeas 33
_POSIX_C_SOURCEeiiiiiiiiiiee ettt ettt sttt e sttt e e e sttt e e e s sabaeeeeeabbeeeeesanbeeeaeeans 10, 46
B O 1S D S) 1V TSR 33
_POSIX_MAPPED _FILES ..ottt sttt et e e et e e e s enbae e e e e ennreas 22
_POSIX_MEMLOCK ...ttt ettt e e et e e sttt e e e st e e e s anbbee e e e enbbe e e e eannbaeeeeeannreas 33
_POSIX_MEMLOCK_RANGEcoitiiiiii ittt sttt a e e et e e e e e 33
_POSIX_MEMORY_PROTECTIONciiiiiitiiieiiiiiie et ettt e e sttt e e e s snsbee e e s antaeeeesenneeas 22
_POSIX_MESSAGE_PASSINGuuttiiiii ittt ettt ettt e e st e e e s st e e e s snsbee e e s anbaeeeeeennreas 33
_POSIX_MONOTONIC_CLOCK ...ttt ittt et e et e e st e e s st e e e s annbee e e s e nntbeeeeeenseeas 33
_POSIX_PRIORITIZED _IOttt ettt ettt st e e et e e e s enbae e e e e nnneeas 33
_POSIX_PRIORITY_SCHEDULINGcciitttitie ittt sttt et a e s e nnaea e e s s 33
_POSIX_READER_WRITER_LOCKSttt ettt 22
_POSIX_REALTIME_SIGNALS ...ttt ettt e et e e e st e e e e anbaeeeeeensreas 22
_POSIX_SEMAPHORESottt ettt et e e s et e e e st e e e e anbae e e e e ansreas 22
_POSIX_SHARED_MEMORY_OBJIECTScciiiiititieiiiiiiee sttt et sitaee et e s e nnnaee e e s enees 33
_POSIX_SOURCE ...ttt ittt e et e e s ettt e s ettt e e s e st e e e e s an bt e e e e e annbaeeeeennnreas 46
CPOSIX _SPAWN ...ttt ettt e e ettt e e e n bttt e e et e e e e e bt e e e e e n b b e e e e anbae e e e e enrres 33
_POSIX_SPIN_LOCKS ...ttt ettt e sttt e e et e e e s s bbbt e e s enbbe e e e e anbaeeeeeansreas 22
_POSIX_SPORADIC_SERVER ...ttt ettt sttt a e e et e e e ennneas 33
_POSIX_SYNCHRONIZED _IOciiiitiite ettt ettt e asb e e e st a e s anbae e e e e ennneas 33

A Source Book from The Open Group (2010)

Index

CPOSIX _THREADSttt e e e e e e e e et e e e e e e e e e et e et a bt e e eeaaaeeessaannnsrntaneeees 22
_POSIX_THREAD _CPUTIME ..ovtitiiieeiie ittt ettt e e e e e e e s s et aae e e e e e e e e e s e s nnnarnannneees 33
_POSIX_THREAD_PRIORITY_SCHEDULINGccciiiiiiiiiiteee et e e 33
_POSIX_THREAD _PRIO_INHERIT ...ttt e e e e e e e e s e aarnaee s 33
_POSIX_THREAD _PRIO _PROTECTciiccitiieeieee ettt e e e e s st vae e e e e e e e e e s e s snsnnanaeeees 33
_POSIX_THREAD_SAFE_FUNCTIONS ..ottt s st e e e e e e e e s e s s raaanaee e 22
_POSIX_THREAD_SPORADIC_SERVERoottiiiiiiiic ettt 33
CPOSIX TIMEOUTS ...ttt e e e e e e e e e st e e e e e e e e e e s e et et b s aeeeeaaaeeessaannsrnannenees 22
CPOSIX TIMERS ...ttt e e e e e e e et e e e e e e e e e e s et b e a e e e eaaaee e e e e annrrraaaaeees 22
B @ 157 G I 3 N O PR 34
_POSIX_TRACE_EVENT FILTER ..ottt e e e e e e e e s e s naanane s 34
_POSIX_TRACE_INHERIT ...ttt ettt e et e e e e e e s st e e e e e e e e e e s e annnnrnaanneees 34
_POSIX_TRACE_LOGttt ettt e e e s ettt e e e e e e e e e s et bt e e e e aaaeeesssanansraraneeees 34
_POSIX_TYPED_MEMORY_OBJECTSttt ettt e e e s s ssitavae s e e aa e e e s e s snnnaananeees 33
=31 1 1] o S EEUPR P 101
_XOPEN_SOURCEcccii ittt ettt e e e e e s e e e e e e e e e e e e s s st b a e e e e aaaeeeaeas 10, 14, 47
CXOPEN _UNIX coeeiiiiiiie ettt e e e e ettt et e e e e e e e s e st e e et e e eaeeeeesaaaeatbsaeeeeaeaeeeseaannnrraaeaeees 10
ADSOIULE-VAIUE FUNCLION.. ..o ettt e e e e e e e e e as 379
=Yoo 1= OO 104
= ToT0 1= o | TSSO 104
= ToT0 1= o | OO 104
=Yoo 1= OO 104
adb, rationale fOr OMISSION............coiiiiiieieeee e e e e e e e e e et e e e e e e e e e s e e eaeaeens 40
=T (o [od o H O 52
= To (o [od o a1 1 SO 52
=T (o [od g1 1 O 52
= To (o [1) | O 52
= To (o [T | O 52
Yo (o [LT (o] g = 1o] o FR OO 146
= To [0 £ | O 52
= To [0 1T | GO 52
=T o o o I P UPERUPRRN 52
=T o Yo o 1= | O URERUPRRNS 52
=T o o 1 | P UPERUPRRNS 52
= Yo 1101 o SRR 37-39
AAVANCEA TEAIIMIE ...veeiiie ettt e e e e e e e e e e e et e e e e e e e e e s e e eeeeeens 33
ADVANCED REALTIME ..ottt a e 117, 204-209, 215, 352
advanced realtime thrEadsooooiiiiiiiii et e e 33
ADVANCED REALTIME THREADS ..ottt a e e e e e e e e e e e e e aeeeseanns 226
AIAS ..o ettt —aeeeaeaeaeeeeeeeaatetetrtra— . —————————————— 38
=1 0] 0170 4 [0 U ESTR= T [0 (=T =L (= ST USPPTPRN 366
= | 38
=L Lo U] a1 gL i1 0 F= U] (01U SPPPPIIN: 371
Y411 0 g1 (ST 370
=T - \V Ao (=T F= = L o] o PSPPSR 368
array type CoOmMPAtibDIlityooiiiiie e e e e e e e e e 368
PR -\ 1[0 aF= 1L (o] o] 1 o157 (o] s AR 40
= LT 38
= Tox 110 = PP EREPRR 107
AN ettt e e e e e e et et et ettt ettt ———— b ———————eaeaeaeaeeeeeeatetetetttratat————————————————————————_ 107
ASINNT e ettt eaeeaeaeaeeeaeaaaetetetetr e ——————————————_ 107
ASINNL e et eeeaeeeaeaeaeaeaetetettar . ——————————————— 107

The Single UNIX® Specification: Authorized Guide to Version 4 397

398

ASIN et e e e e e ettt ettt et et e b b —————aaeaeaeaeeeeeeeaetetetttrrt——————————————————————————_ 107
ASYNC-SIGNAI-SATE......eeieiiiii i e e e e e e e —rraaaae e s e e ananran 10
= 1 38
=1 =1 124 AU O 108
=1 =1 1 124 DU 108
=1 =1 1| AU 108
=1 =1 2]) AU 108
=1 =1 1] | DSOS 108
=1 -1 | DO 108
=1 (0] | O UUPO PP PR 109, 390
Y110 1 AT 52
= 110 o P 52
= L= 52
=L o =] A U UPPPTPT 52
=Y o) 1 RPN 52
= 1 g o] o PP UPPPUPT 52
=L == U UPPPPPT 52
AWK e e e e e e ettt e et — bt b aeaeaeaeaeaeaaaetetetterrrr—————————————————— 9, 14, 38
banner, rationale for OMISSIONccooiiiiiiiiece e e e e e e e e e e e e e e e e bbb 40
DASENAIMEttt e e e e e e e e e e e aaaetet et et ————— 38
(11 (o] o TR PRPRUOUUOUORPRPPN 38
=100 = | (YU UUUUPOROR 52
i ettt ieaeaeaeeaaaaaaeaeeterterrrra—————————— 38
01T T o R 52
oo SR 38
0] (o o PR 52
0] 1 o KST= SRR 52
0] 1 1 T PR 52
o] 1 [o LS =1 SRR 52
o] [0 To2 R PPPRPTRUPUPURRPPRt 369
270 0] (Y- 1o EE PP PRURPUUUUUPUPRPRNS 365
oT0] o [T RO UUUUUOUOPU 52
oY (o 1= Y SRR 52
010 QPP PRPUUSPPRUORPRPPN 52
070)t Q=T -1 SR 52
C-language developmMENT tOOISuuuiiiiiiie i e e e e e e s s s r e e e e e e e e e s annnnes 38
O F= oo [F=To TR U] o] Lo o S PSR 9
(o1 1 RO 9, 38
(o= 101 OO 110
(o= 1o 1= U 110
(o= (oL 0) [RUUR OO O 111
(o= (oL 0] | U O 111
(o= (oL 0] o | IFU OO 111
(o= (L0) U 111
(o7 | U 38
calendar, rationale for OMISSIONcvvvuuiiiiiit et e e e e e e e e e e e e e e e e e e a e e e e s eeeeeeeens 40
cancel, rationale for OMISSIONooiiiiiiiiiii e e et e e e e e e e eeeeeeas 40
(o= L [o3 o= Ua o T oo (o (O PP ERUPRRRN 52
(07 1 o | PSRRI 111
(o7 1 o | PSRRI 111
(of: (Y oY I LA ST (0 (=101 11 =] £ 371
(o= 1= | [P O 111

A Source Book from The Open Group (2010)

Index

(o= 1= o | OO 112
(o= 1= [o o | KOO 112
(o= 1= | o | AU 111
o> 1 38
(o= L= 1o SO O 112
(o= L= 1 o] o | SO 112
(o= L= 1 o] o | IO 112
(o= L= 1o | USSR 112
(o= | ([0 1Y IO 15
(071 (0] K= USRI 15
(071 (0] 0] o F PSPPI 15
(o] o1 (=T= O 52
(o3 o 1 OO 113
(o3 o] | PSSO 113
[oToT0 1) [P O 113
[oToT0 1 o | [F TSSO 114
[oToT0 1 | KOO 114
(o701 IO 113
(o7 o F O 38
(oY1 [OOSR 114
(oY1 | RO 114
(074) P ERRPR 114
(0774 | PSRRI 114
(o3 101V 38-39
(o] o= Tale [T 1] (o] YRR 21, 39, 48, 53
(o] o - | RPN 52
(o] 0o | o SRR 38
(o3 0] 4T Yo H O 38
(o3 010 111 IR 38
Chroot, rationale fOr OMISSIONooviiiiiiiiie e e e e et et e e e e e e e e eaeeeens 41
(011 g = Lo | PSRRI 117
(011 a = Lo | SRR 117
(o3 <Y U] [38
(ol P TS o= 11 (0] T 1 1T Tl (0 H O 380
(o 17T O 52
(o1 1=T-T (o] O 52
(o3 oY S0 =1 1113 = P EREPRR 118
(0] 0T 1= 11 .1 1= PP 118
(03[0 | SRR 118
(03[0 | PP EURPRR 118
(o3 [0] o o) AU 52
(o [(01=To) F U 52
(03 0 11 o 1S PP UPPPPPTP 38
COl, rationNale fOr OMUSSIONccoiiiiiiieeeeeee et e e e e e e e e et e e e e e s e e eeeeeeas 41
(010]I] = S IO 52
(o0 (o] gl oo] 1] (=1 1 | P PPERUPRRNS 52
(1@ I @ 1= Y | P UPERUPRRNS 52
COLOR _PAIRS .ttt ettt e e e e ettt et e e e e e e s s s st b et e e e eeeaaeeesesaaseatbaaneeeaeaeeesansnnnenes 52
(o0 (0] (=T~ P UPERUPRRN 52
L0] IS TS 52
o0 1101 0 0 S 38
(o7] 121 T= 1T F O 38

The Single UNIX® Specification: Authorized Guide to Version 4 399

400

(o7] 1010 1T o] ST P PP PP 370
(ooTa0 1 aTe] oo YTt PRSP 7
(ooTa01 g o) oo [Tg=Tox (o] 1= PR PSR 7
(ofo) 0] o F= T 110) 1 1 F- V] {0 PSP 386
(o0 0] 0117 Q11012 2] o 1= PR 376
(o7o] 0] o To 10T g T N 11 1= - | SRRSO 366
(od0] 0] 0] 12251 T USRI 38
COMPIESSION ULIILIES .oveeiiiiee et e e e e s e e e e e e e e e s s st e aeereeeaaeeseesnnnnnes 38
(070) 1]| RPN 120
(070) o]| SRR 120
(070 0)V7] T [PPSR 120
(o0 0771 T[] P EREPRR 120
(o0)21] o P UPERUPRRNS 52
(o0) SRR SRR 120
(o0 1] o | PRSP SRR 121
(o0 1] o | PRSP 121
(o0] PR PSSR 120
(o o PSPPI 38
CPIO, rationale fOr OMISSIONuuiiiiiiiiiii e e e e e e e e e s s e e e e e e aaeeesesannnnes 41
(031010 11 PSRRI 121
(03010 1 PSRRI 121
CPP, rationale for OMISSION ...t e e e e e e e s s et e e e e aaeeseesannenes 41
(0310 (0 | S SP SRR 121
(030 (0 | SRR 121
(o] 1T | SRR TPRRR 121
(o] 1T | PRSPPI 121
(o] 70]] = o 1RO 38
L3 = PSP 122, 128, 254
(o] o | PR SRR 122
(o] o] o | PRSP 122
(o] o] o | P PRSP 122
(o] o PRSP SRR 122
o= o] L S PREPPRR 9, 38
(00 | 7 PSRRI 123
(0= | | SRR 123
(03 120 ST USPPPRT 38-39
(o1 7= o | PP SRR 123
(o1 7= o o | PRSP 123
(o1 7= o o | PR TPRRR 123
(o1 7= o | PRSP 123
(011141 SRR 124
CU, rationNale fOr OMISSION......c.iiuiiiie it et e e e e st e e e e et e e e e e nntbe e e e e anneees 41
Lo | £ of PP P PP 52
(o8| === PSPPI 52
(o8| (=] o o U TSPPPPTT 52
o] | TP PP 38
Lo = PSPPSR 38-39
0 1= PP 38
(0 = 1Y T | | SRR 282
5] PRSP SR 124
(o o] 3 T [0 7= YRR 124
(o o] T [=1 (SRR 124

A Source Book from The Open Group (2010)

Index

(o o]0 T =T (o (PR 124
(o o] 0 T (=3 (od o PSRRI 124
(o o]0 T 1S3 1) PR 124
(oo LT 41200V AP EREPR R 124
(o o] T o) o 1= o 1P SRR 124
(o o] TS (o] 2P 124
dc, rationale fOr OMISSION.........cccuiiiiiiiii e e e e e e e e e e e e s s e aaeereaeaeesaesannnnnes 41
0 [0 PP 38
decimal INtEOET CONSTANT ..ot e e e e e e e e e e e e e e e e s s e b aaeeeeeaaeeesaesnnnnnne 367
(o LY i oY oo T 1 T Yo [PPERUPRRR 52
(o L= ST =Y | 1 o Lo = P PPERUPRRRNS 52
(o L= Py o U o | PP UPERUPRRN 52
(0 =1 o o RS 52
[0 L= = (= o P UPERUPRRNS 52
[0 L= R 1T o P UPERUPRRN 52
(0 =T | - PR 37-39
[0 Y T P UPERUPRRNS 52
(o L= I o | (= o o P UPERUPRRNS 52
[0 =T i1/ o P EPERRRRRNS 52
(o LTy [o [F= 1 (= To BT T (=1 =Y PR 366
DEVELOPMENT ...ttt sttt ettt ettt ettt e ettt e e e sttt e e e e st e e e e antbe e e e e s anbaeeeeeasbeeeeeann 37-38, 81
0 PP 38
o) 3 PP 38
5] PR TPSRR 119
dircmp, rationale for OMISSIONuuuiiiiiiie e e e e e e e e s s e e e e e eaeeeeeeannnnes 41
[0 18 =0 = P UREEURRRNS 38
dis, rationale for OMISSION ..o e e e e s e e e e e e e e e s s et aaaereeaaaeessesannnnnns 41
(o (0T UT oo F= L (=P UPERUPRRNS 52
(o] o] 1101 SRR 145
0 SRR 38
(0 0 o 12 PRSP SRR 127
(o 10T o)1/ o P UPEEUPRRNS 52
=] o P EUEPRRR 38, 52
[=T] o o3 o - P UPERUPRRN 52
L=To] Lo T £ - O UPERUPRRNS 52
< o PP PPPRTURPR 9, 38
eMacs, rationale for OMISSIONuuuiiiiiiie e e e e e e e e s s e aae e e e eeaeeseeaannnnes 41
EMPLY ArQUMENTE MAICIOS . .. i eeieeiitiae e e ettt s e e e e ettt e e et ee b e e e e e eebe e e e e eeetba s e e eeesbaaaneeeeeasbnneeeeeeanes 371
LT Ted Y/ 111 P EPERUPRRNS 32
L= T 11T P UPERUPRRNS 52
ENHANCED CURSES ..ottt st e e e e e s et e e e e st e e e s anbbe e e e e annreas 14
ENUMETALION SPECITIEN ..eiiii ittt e e e e e et e e e e e e s s et aaeereaaaeeeeaesnannnnes 368
(=] 1Y U PSPPI 38
(=T 121 €0 a1 141 o | SRR 388
ENVIFONMENT VANADIES ..o e e e e e e s s e et e e e e e e e e e s s annrnrenaeeees 7
LT r= U (o V2 PP EEEPR R 126
(=] = < PSPPI 52
[Ttz 11T g T | P UPERUPRRN 52
oY= 11T o] o - P UPERUPRRN 52
L= o PSRRI 130
L= o PSRRI 130
L= 1 P ERRPR 130

The Single UNIX® Specification: Authorized Guide to Version 4 401

402

L= PSRRI 130
(=T o o T TP PT ST PUPTPIIN 369
(=T (o] o (== Yox] 1 1o =P EEPR R 154
LT 0T 0 10T] =T P UPERUPRRNS 10
2 PR PPPRRSPR 9,38
Loy T VT L TN (=T [T g £/ L= P UERURRRt 373
L2y CeT=) o o P EREPR R 387
L2 PSRRI 131
L2y o = SRR 131
L2y | TP SERPRR 131
L2 (=T oY SO UOPPTPPTPUPTPIIN 131
L T oY= S USRI 131
L2 (T 03 o TR PUPPPIIN 131
L2 A PSRRI 132
L2 o 2 PSRRI 132
L2y =T Lo P EPERURRRN 38
L2 o PP ERRPR 132
L2 o PP 132
L2410 1 PSRRI 132
L2341 0 1 SRR 132
EXPONENLIAI FUNCHION.ciii i e e e e e s e r e e aaae e 378, 382
L2 o PSPPI 9, 38
external variable

Lo (VLo 1 (= (=T (=1 o7 = YRR 55
L= 0 1) SRR 133
L= 01 PR 133
L= Lo o117 | SRR 103
7= L= PRSPPI 38
fastest MiNIMUM-Width INtEOET TYPE ... e e 374
{3 SRR 38
L 1127 T F= PR 115
L 101177 - PR 116
L0 T 1 11 PSPPI 135
L0 711 11 PRSP RR 135
LET= 0T 0| (0 o TP RUERRR 32
LS U oI (=S B = o (0 SRR 10, 46
LLST1 0= 1Y/ PR 137
(SR (=2 (o= 0111 - Vo PP 137
LLET 11 {01 1T 1RO 137
LLS2CCT0LY = U 131
L R NI I 1 1 i PRSPPI 387
FE_DIVBYZEROciiiiitiiiie ittt ettt e e s sttt e e s sttt e e e s et e e e s annbee e e e enbbe e e e e ennbeeeeeenneee 387
FE_DOWNWARD ..ottt ettt ettt et e e sttt e e s sttt e e e s s bt e e e s s sbbe e e e eanabeeeesaansbeeeesannbeeeeeennees 388
L R N A 3 PR RRR 387
FE_INWVALID ...ttt sttt ettt e e ettt e e s n et e e e ettt e e e nsb e e e e s annbbe e e e e ansbeeeeeeneee 387
FE_OVERFLOW......oiiiiitiitie ittt ettt e sttt e e s sttt e e s ettt e e e e st e e e e e nbbeeeeesnnbaeeeeennees 387
FE_TONEAREST ..ottt ettt ettt ettt sttt e s ettt e e s n bt e e e s e bb e e e e e nbb b e e e s enbbeeeeeannbeeeeeennees 388
FE_TOWARDZERO ..ottt ettt s e e sttt e e s st e e e s annb e e e s e nnbbeeeeesnnbaeeeeennees 388
FE_UNDERFLOW ...ttt ettt e s sttt e e e sttt e e e sttt e e s annb e e e e e nbbe e e e e ennbaeeeeenneee 387
FE_UPWARD ...ttt ettt ettt e e e sttt e e sttt e e s e st e e e e ntb e e e e s anbbe e e e e nnnbeeeeeenees 388
o TSR 38
1T LSRR TPSRR 192

A Source Book from The Open Group (2010)

Index

1= SRR 38
1 PRSP 117, 134
L= T o TSRS 9
1T (o] g g F= Ll 0] = 1o o PP RRERPR 13
11 €= SRR 52
10T PR UPUPPPTRP 38
] =T o PRSPPI 52
flexible array MEMDETouiiiieieee e e e e e e s r e e e e e e e e e e e rrraeaes 368
floating-POINt CONSLANTuuiiiiiiiiie e e e e e e e e s e s s r e e e e e e e e e s sesnnrbnreeeeees 370
floating-POoiNt ENVIFONMENTciiiiie e e e e e e s e s e e e e e e e e e e s s e sanrbrraeeeees 387
L0 T 1 PP 141
L0 T 1 SRR 141
L] 10 11] o PP EURRR 52
L= PR 141
L= | USRI 141
L= VPP 142
L= O R 142
L0 L USRI 142
L0 PSR 142
L2101 PR 142
L 27e To EEEPPRE 142
0] o PR PPUPRRRTPRP 38
L0 =Y =1 (=1 141 | PP 369
(0] 8 1 AR PPRPRRRPN 38-39
FORTRAN .ottt ettt e e ettt e e e e ettt e e e e b be e e e e e asbbe e e e e ansbeeeeeanbeeeeeennseeas 37,39, 81
L 01 F= 7S 1 Y2 PP 380
L 010 1T RSP 390
L0 L PR 391
L S N PRSP 380
L S N | PRSPPI 380
[S N (O] PRSPPI 380
FP_SUBNORMAL ..ottt ittt ettt sttt e s sttt e e s ss bt ee s e sttt e e e ansbeeeeeeanbbeeaeeennbeeeeeennnes 380
[A = = (O L PRSP SRR 380
L= o RSP 148
L= o PR 148
LEST= 01 U 391
LEST=T2] o TR 148
LC] Lo U 151
L0 7 [0 1141 U 141
I SRR TPSR 200
function
ADSOIULE-VAIUE. ...t e e e e e e e e e e s e e e e e e e e e e s e e ranareaaaeas 379
L2 00T ALY o1 - P PEEPRRR 378, 382
1Y o T=1 1 oo TR 378, 381
To o F= 41 10 1o PR 378, 382
MANIPUIRLION ... e e e e e e e e s e a e e e e e e aeeesessnnnraaneeees 379, 385
LT V=S AT (T = GO P PEEPRTR 384
010 Y= PRSPPI 379
Lo (VLo 1 (= (=T (=] o7 = YOS 55
1= 0 =T To [PP PEEPRRR 385
L0 To o) 0 o] 10 T=Y o EEPRRR 377, 381
LU Y0110 o PP PERPRR 389

The Single UNIX® Specification: Authorized Guide to Version 4 403

404

Wide-StriNg NUMETIC CONVEISION ...coiiieeeiiiiiiiiiiiiee it e e ee e e e e s s ettt e e e e e e e e e e s e s ssnantaeaeeaeaaaeeeeseannnnnes 393
L8] 1 To o3 = PRSP PR 141
110 £ PR UTUPRROTPRP 38
(0] g T0r= | PP TUPTPPRRPPPPIN 15, 38
general terminal INTEITACE ... e e e e e e e s e e e e e e e e e e e e e anannnes 12
(o T=T T ol o =T = L0 0= Y PR 389
0] S PP USPPPT 37-39
[0 =Y =T [[1o SRR 146
[0 = (o1 =T o)Y P UPERUPRRNS 52
[0 =Y o] (o o P UPERUPRRNS 52
[0 =Y o] (| T P EPERUPRRNS 52
[0 =Y (ol od o = P UPERUPRRNS 52
[0 =Y (] SRR 52
(o= (od n F= VU] [Yo (=T I PEEPRR 155
[0 =Y oo 10) PSR 38
(00 | (=] o | O TR PUPRT PSPPI 128
[0 =1 (o[o [To 1N S PSPPSR 157
(o]0 | aT=T ¢ 1 (P TP PUPPPIIN: 158
[0 L= L0 (=T o SRR 128
[0 =Y 1T T PSRRI 156
(o L= 1o o |1 s N SRR 159
(0] (g T= 4 USRI 52
[0 L= LT 10)Y7= To (o | SRR 129
[0 T=Y gL o)V = o 4= SRR 129
(00 g L] =7 o | A PSPPSRI 129
(0] (1S 1 PP 52
(o T PSSP 52
(0] (0] o) S PP 38
(0T aT=T Y USSP 52
(01710 1 15T PSPPSRI 159
(o<1 o] o) (o 0)Y/ 0 -1 0 = RPN 129
(o T=T 4 o] o)1 (o071 Ty o] o =T CH PP 129
(o]0 o] (01=] o | AP UOPPTRPTRPUPPPIIN 129
(01011 o USSP 129
(o1 01N Y=o [SRR PUPPPIIN 161
[0 L= 1011110 T [P EREPRR 162
[0 T=Y T=T Y])77 1 7= V2 0 - PP 129
[0 T=Y T=T Y])77 Lo SRR 129
(01T YT o1 TP PUPPPIIN 129
(0] 51 S PSPPI 52
(0] 0= o | USRI 130
[0 L= (010 SRR 130
[0 L= (01041 TP EREPRR 130
[0 =Y 01/ o PR 52
(0] PSPPSR 52
[0 =Y o o P UPERUPRRN 52
[0 A TSP 52
(o] [o]) 1T SRR 164
(o 001110 0= P EURPR R 165
greatest-Width INtEOET TYPE e e e e e e s e r e e e e e e e e e e e snannnnes 374
[0 (=7 o I PRSPPI 9, 38
[0 (=7 o T USSP 9

A Source Book from The Open Group (2010)

Index

LE= 10 =1 SRR 52
T T o R 38
g F T oo [0 SRR 52
T TS o SRR 52
T T | SRR 52
0[S o)Y/ ERRPR 165
LT Vo U 38
LT Lo [PP 373

Lo (VLo 1 (= (=T (=] o7 = YRR 87
TST= Vo [T (1 =S TP 45
LT Lo [T PSRRI 341
hexadeCimal CONSIANT...........uuiiiiiiiie e e e e e e e e e e e e e s e s st e e raeeeees 370
] 1 = SRR 52
] T = SRS 52
TSTCT T o o SRR 165
] 10 1 EEERRPR 165
01/ 01T o To] [Tl U 1oV i) o 1P UEEPRR 378, 381
1Y/ 0T 1 PSR ERRPR 166
1Y/ 0T | SR EUUPR 166
L8N Lttt ettt ettt ettt e e e et bt e e e ea b bt e e e e ot bt e e e e e R b et e e e e et beeeeeabbaeeee e e Eaeeeeeanraeaeeaas 15
o o] 1 VPSSP 15, 38
o0 01V Z0 o [0 7= SRR 15
o0 1Y Z0 o] 0= o 1SR 15
o R 38
o o7)G 52
[0 =T a1 1= PSRRI 371
0| o 2 SRR 52
1o]) PSRRI 167
1o | P EEEURPR 167
0T =T [0 SRR 52
Tag] o [Tot oo [=Tod F=T = i o] o [SRR 367
] o o SR 52
T3]) 1 U 52
T3 1) 1 SRR 52
Tpledo) a] o] (=1 (== T4 -\ PSRRI 368
L= A] (0T WSS 168
L= A o] (o] o TSP ERRPR 168
] T €= o SR 52
T Ao 0] (o SRR 52
TS = | PRSP 52
]]SSR 365
T) o PR 52
T 1T | SRR 52
] o o TP 52
Yo 1= 1o R 52
7= 1 U 52
] 1) SRR 52
T 1 PR 52
] 1 L PSPPSRI 52
T EST 11T 1 U 52
L FST Y] o SRR 52
L EST)« SRR 52

The Single UNIX® Specification: Authorized Guide to Version 4 405

406

1) (=T L=T g 1Y/ o1 TSP ERUPR 373
EXACT-WIALN ... e e nees 373
fastest MINIMUM-WIAL ... e e e 374
Lo [Tz 10T LYo | o SRS 374
[gTo] o [T o o] o] [=Tox B o o] 1o (=T USSR 374
MINIMUM=WIAEN et e e s e e e s s e e e sbae e e e s ennneeeesannaeeas 374
SPECIfIEd-WIALh lIMIt........ooiiiiiiiiii e e e e e e e e e eee e s 376

11 =] =TT <IN oo 11 | PSSR 2

g1 g EoViTo] g T 1 4= o o IO PRSPPI 15

INtErProCESS COMMUNICALION. .. .uuiiiiiiieeeeesiceititee et e e e e e e e s e s st e e e e e eaeeeeessasaarbaaeeeeeaaeeeessannnnnreneeeees 11

gL L1 o PRSPPI 52

0] 1 PP 52

o o I PRSPPI 52

[115 1 SRR 52

[1) 1 SRR 52

] o3 o P 38

] o3 PR 38

552 11 .4 1 PSRRI 169

5532 1 o] o = 1 SRR 170

5] o =g |G PSPPSR 390

1Y 0] = Ut | G PSRRI 171

£ o] 1 1 P PERRPR 171

£o T 11 PSRRI 171

[£57=1 T 1T/ o PRSPPI 52

5] 1T PRSP 380

£0] = o] T PSP ERRPR 172

[E 0| =T 1 (] (PSRRI 386

[E 0| C=F 1= (=T 10T | SRR 386

5] | PRSP 380

1] 01V = S P EEERRPR 173

5] 1 = 00 PR SRR 380

5] o] 1 .4 = PRSP RRR 380

ST O 1T o =T PSPPI 45

ST @ O 7= g To F= T o [PRSP 363

1] 01| A SRR 174

1Y 01U] o A SRR 174

[ESY o = T = PSRRI 175

£ 0] 1= P ERRPR 175

LES V= 1T 1o T PSRRI 176

ES V= 1] o] - T SRR 176

L5511 o] = | PRSP SRR 390

LESiY o] = o |G SRR 176

LES Y] 1 € SRR 177

RS20/ o 1= PP 177

LES Y Lo 1 SRR 177

ES Y7 L= o] o T S ERRPR 178

LRSI [oT= EPERRPR 178

LESA7] o LT PSR 178

LES17] o1 LT PSRRI 179

[E TS o = o7 T SRR 179

RS0 o] o 1= (PSRRI 179

LES Yo o T SRR 180

A Source Book from The Open Group (2010)

Index

553 Co Lo T PSRRI 180
[EJ 1 =3 (o] ¥ [d =Y o SR 52
LEJ L7111 (o 10 od 1= o 1P 52
L ettt et e et e e et —— e et t— e e Ear e e R tee ettt e e asaeeeaRtee e R Eeeeanteeeanteeeanteeensreeennraeennes 180
TR 180
o o 1SRRI 38
o1 PRSP 38
= Lo 2 U ERUPR P 126
2T 101 RS S 52
2] 0 T IR 52
24T (o PSRRI 363
)V = 121 TR 52
Il ettt ettt e ettt et ettt e e aRt—e e R teeeaREeeeaRteeean Rt e e anteeeanteeeanteeeanteeeanaeennnen 38
Q113 = SR 52
QLY = VRSP 52
7 USSR 102
o3 o 11 o SRR 9
(o0 0o 72 SRR 126
(o T = L[] g F= 1 L= {0 o] 417 o] o SRR 41
[0 C o) P EEERRPR 182
[0 C o o RSP 182
=TSV 0] PR 52
LB ettt ettt e et e ettt e e ta e ettt e ettt e e te e e e Rae e ettt e et te e e neeearaeeennees 9, 38-39
13 T RSP ST 187
(o =T 0 10T SRR 182
(o =T 0 10T | SRR 182
] o] = P EERRPR 390
1T [T o 1 o P EREPR 371
ling, ratioNale fOr OMISSIONuuiiiiiie e e e e e e e e e e e e e e e e e e s e e nnenreaaeees 41
LINES oottt ettt ettt ettt et ettt e et ettt e e et e e eR b e e e aR R et e anteeeaR Rt e e anteeeante e e ataeeanteeeanaeennnen 52
K et e et e e e e e —eeee e e e e e e e ———————eetaeeeaeaaaa———————rertaaeeeaaaaanrarrarraaaaes 38
] | S EERUPR 182
[int, rationale fOr OMUSSIONuuuiiiiiiie s s e e nnnrnrrnaeees 41
= 0TSSR 181, 390
o USRS 182, 390
] PSR EURPR 184
] SRR 184
0T g T | SRR 184
0T g T | PSRRI 184
] TR 38
o To7= 1R URR TS 15, 38
[oTo7= 11T o0} o 1Y PSRRI 391
[oTo=11To 1= PR 15, 38
[oTo= 11119 U= PSRRI 184
o T 1 0 PSP 185
o T 1 0 PSRRI 185
o T 1 1 o PSRRI 185
o T T o PP 185
o T 12 P EEURPR 186
o T 2 P ESERRPR 186
[0garithmiC fUNCHION ... e e e e e s e st r e e e e e e e e e s annnnes 378, 382
0T o) P EEEURPR 186

The Single UNIX® Specification: Authorized Guide to Version 4 407

408

0T o] P EEERRPR 186
o T) S EEURPR 185
0T o =T SRR 38
[0gin, ratioNale fOr OMISSIONuuuiiiiie e e e e e e e e e e r e e e e e e e s e s snaenraeaeees 41
o T | P EEERRPR 185
[oTo [=T 4 1SR 38
(o7 T [=T 1o 1= SRR 52
lorder, rationale fOr OMUSSIONuiiiiiee e e e e e e e e e e e e e e e e e e s e e snarnraraeeees 42
o SRR 38
Ipstat, rationale for OMIUSSIONciiiiie e e e e e e e e e e e s s e s e e raeaeees 42
1= Vo 2 PSRRI 126
T« SRR 186
] (P EESURPR 186
10T o | PP 187
10T o | PSRRI 187
LS ettt ettt e e e e e e ————————eetaee e e e aaa————————eataeaaaeaaaa—a—t——erattaaeaeaaaaanrrraarreaaaes 38
5] €= | PRSP 9, 149
0 TP 38
[= o o PSPPSR PSPPI 376

[oTo] 1 4] 0 F= 1 <o o [U 386

Lo (VLo 1 (= (=T (=] o7 = YRS 55
Maiil, ratioNale fOr OMISSIONuuiiiiiiie et e e e e e e e e e e e e e e e e e s s e s nnrnraeaeees 42
0= 1D PRSI 14, 38
ATz 1P PPERSPR 38-39
= L PSPPSRI 38
MAaNIPUIAtion TUNCLION ... e e e s e e e e e e e e s e aeanes 379, 385
0] 015 a1 (01T oS ERUPR 189
L= o S PUPPPPOTUPPPRNS 38
0 T=7 = L P PUPPPPOT PPN 52
MIN/MAaX INE IENGLN ..o r e e e e e e s s e et reaeeees 371
aaT el Vg o 1 g I a1 (= Te (=T 1Y o L= PSSP 374
0] L] R 38
0] 0o LT PSRRI 191
0] o TSR 38
0] 4] {0 | PSRRI 192
MKNOd, rationale for OMISSION.........iiiii e e e e e e e e s e e s aeeees 42
0] Lo F- | SRR 192
0] 565 (=1 0] o SRR 191
1010 | P EEEUUPR 194
10T | SRR 194
010 = PP 9, 38
010 Y PP UPPPRNS 52
0T IR UL TTo [=ToT=T 1Y PSRRI 196
1o TR UL 1T [T =T o T SRR 196
a1 1= VgL SRR 126
g L0 LT][Tor= N i\ SR o] 0 =T = Lo) PP 367
010] Yo PP 193
0101 0T - 1 PSRRI 193
0 P PPPPPPOT PSPPI 38
001 o] | PRSPPI 52
N0 =T 4 SRR 52
01T o PR 52

A Source Book from The Open Group (2010)

Index

(T Lo LT oY {o] g 02 F= Lo o 1R USRI 159
=T (SIS 0 1= Tol PSP POPRPPPTPTNN 10
NAME SPACE TUIES ..ceei i e ettt e e e e e et e e e e e e e e e s s et e e e e e e e eaeeeeesaaseabaaseeeeaaaeeesssansnnsnrnneeees 45
L= 0 | PRSPPI 199
L= o | PRSP SR 199
L= o] 01 T PSPPSR 52
LTS T)Y/ | SRR 199
LTS T)Y/ | 1 PSRRI 199
LT TS a1 (=T o =T {0 o (oo SRR 384
01 Y] PP 12
LTCAT Yo o T PP PUPPPRNS 38
LTS o = Vo SR 52
NEWS, ratioNale fOr OMISSIONcii i s e e e et e e e e e 42
LS (=T o o PP PPPPPTTTRTTN 52
LT o T PRSPPI 52
1S = Vi (T o PRSP 200
1S e= Vi (T PRSP 200
L1 01 o [PRSP SRR 200
L1010 | PRSPPI 200
LTS 0= o PRSP 200
Tt TP 38
] PP 9, 38, 52
I F= U o T) o T PSRRI 201
] PP PP PP PP 38-39
(a1 Ted o] L= 1 RSP 52
10T [T - YRS 52
a0 7= X o T RSP RRP 52
1] T o SRR 38
010 o 1 TP 52
T o 1 L1 o SRR 52
LT0] = PP PPPPPPPPPPPRPRTPTN 52
(0011 4= 0T | RSP 52
o=V a0 72 PR STPSRR 126
0170 o | PRSP SR 165
L0170 PRSPPI 165
oo PP PP 38
(0] 0] o= TSP PUPPPIIN 201
(0] o =1 o Vo 11 SRR 135
(o] o =1 o1 o To PP 119
(o] 01T V0 0] 0 T C=T= T o S TSPPTPTN 202
(0] 0] = 1o R TSP PUPPPIIN 160
(0] 0] (=] 1 (ST PUPPPIIN 160
(0] o] 11 o SRR 160
(o] o1 1o o[o 11] o 1P UPERUPRRNS 32
(o] o1 i 0T o o 18] o =S UETRR 6
(o] o 10T 0 F= o To [T3V 2 UPERUPRRNS 34
(0] 0] (0] o A TP PURRT PSPPI 160
(01 =T - Y SRRSO 52
(01T T (= RSP RRP 52
pack, rationale for OMISSIONuiiiiii i e e e e e e e e e e e e e e s s s saeeraeaeees 42
[T 1T 70 0] (=T | RSP 52
PAIR_NUMBER ..ottt ittt ettt e sttt e e e ettt e e s et e e e s an bt e e e s e ntbe e e e e ansbaeeeeennseeas 52

The Single UNIX® Specification: Authorized Guide to Version 4 409

410

passwd, rationale for OMISSIONiciiii it e e e e e e e s e s aee e 42
0=] (= PSPPSR 38
= (o o SRR 38
T2 11T o PP 38
[T 11 [0 o | SRR 144
= PP 9, 38
pcat, rationale for OMISSION........uuiiiiii e e e e e e e e e e e s s s narnreaaeees 42
TS 0 - SRR 52
[Tt Lo T o - T SR 52
PG, rationale for OMISSIONuiiiiiiiiiie e e e e e e e e e e e e e e aee e e s e e nanenraeaeees 42
[T aTO T LT C=Y i (=T o ISR 52
10T = L1 1A 0T L= SRR 2
L0 TS =Y o X V177 = 1 1o SRR 207
POSIX_SPAWNALT SEIAGS . .vvviiiiiiiie e —————————— 207
POSIX_SPAWNALT SEIPGIOUDuvreeeeieeeeeeiiiietttteeeeeeeeeesassasteatraeeereaaeeessaasanrrareerraaaeeessasnsnsssrnneeeees 208
POSIX_Spawnattr SEtSChEAPAIAMcoiiiiiieiiee e e e e e e e e e s e raeeeees 208
PosixX_spawnattr SEtSChEAPOIICYcoii i 208
POSIX_spawnattr SetSIGAETAUILccoiii i ———————— 209
POSIX_SPAWNALT SEISIGMASK. . ..viiiiiiieeii i ittt e e e e e s e e e e e e e s et r e e e e e e e e s s s ananasraeeeees 209
L0 TT Q=Y 0T 11T/] SRR 206
posix_spawn_file_actions_ addOpPeN...........c.uuuiiiiiiiie e 206
POSIX_SPawn_file_@CtiONS INIT......cciiiieiiii e a e e e 207
POSIX_trace attr getCreateliMmecoiiii it e e e e e e e e s e s e eee s 210
POSIX_trace attr gEJENVEISIONcceiiiiiiiiiieeie e e e e e e e e s et e e e e e e e e e s e et e e e e aae e e s e s s nnnanraneeees 210
posix_trace_attr getlogfUullPOlICYcooi i ——————— 210
POSIX_trace _attr getmaXdataSIZe...........ccccuviiiiiieiie e e e e e 211
POSIX_trace _attr getmaXSYStEMEVENTSIZEuuuiiiieee i et e e e e e e s s e e e e e e eee s 211
POSIX_trace _attr getmMaXUSEIEVENTSIZEuuviiiiiieeeeie ittt e e e e e e s s e s e e e e e e e e s e s sarnraaeeees 211
POSIX_traCe attl gEINMAMEuuuiiiiiiee e e e i i e ettt ee e e e e e e e s s e e e e e e e e s s e e san b b e ae e e e aaaeeesaeannnsnsraneeees 210
posix_trace_attr_getstreamfullpoliCyccuvuiiiiiiiii e 210
POSIX_trace attr getSIIEAMISIZE.......ccce i ittt e e e e e e e e e e e e e e e s s e asnanaaaeeees 211
POSIX_trACE AF INIL .. .ciii it e e e s e e e e e e e e e e s s st e e e e e e e e e e s aesanrarrneeeees 209
POSIX_trace_attr SEtNNEITIEAoooiii i e e e s 210
posix_trace_attr SetlogfUllPOIICY........ccooii i ——————— 210
POSIX_trace attl SEUOQSIZEuvviiiiieieee ittt e e e e e e e e e e e e e e s e e e e s 211
POSIX_trace_attr SEtMaXAAtASIZEocccuuiiiieiie e e e e e e 211
POSIX_traCe Al SEINAIMIEuiviiiiiieee e ettt e e e e e e e e e e e e e e e e s e et ea e e e e e aaeeesssannsesanneeees 210
posix_trace_attr_setstreamfullpOliCyccc.vuiiiiiiiiie e 210
POSIX_trace attr SESIIEAIMSIZEcceii ittt e e e e e e e e e e e s s e e sanaeraeeeees 211
POSIX_trace Create WIthlOgeuiiiiee i e e e e e s e s e aeee s 212
POSIX_trace eventid gL NAIME.........ccoii i e e e e e e e s e s e eee s 213
POSIX_traCe EVENLIA OPEN....uuiiiiiiiiiie ettt e e e e e e e e e e e e e s e et e e et e e e e e e s s e asnnasraneeees 212
POSIX_trace EVENTSEL A1uuiiiiiiiiiie e e e e e e r e e e e e e s e s e e eeee s 213
POSIX_traCe EVENTSEL BIMPLY ..uviiiiiiiieee i e sttt e e e e s e e e e e e e e e s e et e e e e e eaeeessssnansesanneeees 213
POSIX_trace VENLSEL filluviiiiiiieieee e ———————— 213
POSIX_trace eventset ISMEMDEToo i 213
Posix_trace _eventtypeliSt rEWING...........cociiiiiiiie e e e e 213
POSIX_traCe fIUSH ...coiii i a e e e e e 212
POSIX_trACE gL STALUSuuviiiiiiiiiieee e e i et e e e e e e e s e e e e e e e e e s s et a e e e e aeaeeesasaannnnrenneees 214
L0 LT (= o= o] o 1= o IS PEEPRR 212
L0 T = ot =T (=171 (o SRR 212
POSIX_traCe SEL FIlLEI .. a e e e 214

A Source Book from The Open Group (2010)

Index

POSIX_traCe SNULAOWNuuiiiiiiiiiie st a e e e e e e e e e e s s e santnsaeneeeeas 212
L0 LT (- ToT I (o] o ISP 215
POSIX_trace timedgetNEXt BVENT..........oii i e e e e s e r e e e e e e s e e s narraeeeees 214
POSIX_trace trid_eVENLIA OPEN......ciii it e e e e e e 213
POSIX_trace trygetNEXE BVENT......coii i ittt e e e e e e e e e e e e e e e e e s s s e nnteeaaeeeees 214
o101V =T g {1 ox 1o o SRR 379
01011 SRR 215
0101 S EEURPR 215
O PSPPSRI 38
01T |1 1 = L P UOPPUPPT PSPPI 371
ST £== o PSPPI 241
[T g=To (=il aT=To I o =T o) U] 1Y SRR 366
[T g=To (= T aT=To [o 1=V o NSRRI 370
L= o SRR 52
0] PP PRRRPUPPRR 38, 145, 391
L1 8P 52
process

setting real and effeCtive USEI IDS..........uuiiiiiiiiee e e e 255
Prof, rationale for OMISSIONuuiiiiiii e e e e e e e s s e e eaeees 42
[oTgeTe =gl Tl aTo TR=10)VZ1 0] a1y 1T o] PR 9
1 T PP RPN 37-39
1S PSPPSRI 38
TS0] = PSRRI 216
(1L aTE=F=To I (g T PSP 217
pthread_attr SEtdetaChSIALE.ciiii i a e e e s ee s 217
pthread_attr SEIQUAIASIZEuuuiiiiiee e e e e e e e e e e e e e s e s e b raeeeees 218
pthread_attr SEtiNNENtSCNEd.........ccoo i 218
pthread_attr SEtSChedPAramccoeiiiiii e e e e 218
pthread_attr SEtSChEAPONICYvvvviiiiiee e e e e e e ee s 219
1L aTE=T= Vo I LT ¢ o] o1 PR 219
Pthread_attr SEESTACKcccciiiiiii e e e e e e e e e r e e e e e e e e s e e anrnreees 220
pthread_attr SESTACKSIZE.......uuuiiiiiiie e e e e e e e s e eee s 220
(1L aTE=F=To I oF= Vg £ T=T = L (T SRR 221
pthread_barrierattr_ SEtPSNAIEd............ooi i 221
Pthread _Darrier NItoooiiee e e e e e e e e e e r e e e e e e e e e s e e narnraees 220
pthread_CleanupP _PUSKuiie e e e e e e e s e ree s 222
(o1 1 aTg=F=To I wlo] g Lo =Y £ g | PR 223
pthread_coNdattr SELCIOCKueiiiiiiieii e e e e e e s e e eee s 224
pthread_condattr SEtPSNArEdcooiiiiiiii e e 224
(11 aT¢=F=To I wlo] o Uo N T o V| (PSR 222
pthread _COoNd_SIGNAL ... e e e e e 222
Pthread _CONA WALooiiieeec e e e e e e e e s e r e e e e e e e e e s e e nnneneeees 223
Pthread MUEEXALE INIt........c..eieiiiiiie e e e e e e e e s s e e e e e e e e e e s s s e anraraaeeeees 230
pthread_mutexattr SEtPrioCEIlINGccciii i e e e e e s 230
pthread_mutexattr SEIPrOtOCOL..........ccoiii it e e e e e s e eee s 231
pthread_mutexattr SEtPSNArEd............ooiiiiiiii e 231
pthread _MULEXAttr SEIrODUST........ciiii i e e e e e s e raeeee s 232
Pthread MUIEXALT SEHYPE .. .uuiiiiiiiiee e e e e e e e e e e e e e e s e s e e e raeeeees 233
(o1 L aTE=T= Vo I 4 10 11 G [PSRRI 228
PTHREAD_MUTEX_ROBUSTcoittiiie ettt ettt ettt e e et a e e e st e e e s s ntaee e e e nnneeas 232
pthread_MUteX_SEtPHOCEIIING......ciii i e e e e e s e eee s 229
PTHREAD_MUTEX_STALLED ...ttt ettt e e e st e e s 232

The Single UNIX® Specification: Authorized Guide to Version 4 411

412

pthread _MUEEX _TrYIOCKuiiiiiiiiie e e e e e e e s e e e reeeeees 229
pthread _MUEEX_ UNIOCKuuiiiiiiiiie e e e e e e e e s e e e e e e e e e e e s e s eanrarraeeeeeas 229
(1L aTE=F=To I VY (o To3 - L G T PR U 235
pthread_rwlockattr SEtPSNArEdoooiiiiiiiiii e 236
(o1 L aTg=F=To I Y] [o Tox G T L] S ERUPR 233
pthread_ MWIOCK _rYIAIOCK.uuiiiiiieee e e e e e e e e e e s e e e e eeees 234
Pthread MWIOCK WITOCKuuiiiiiiiiie e e e e e e e e e e e e e e e e s e e s e rrraeeeeeas 235
Pthread _SELCANCEILYPEeeiiiiiiiiie e e e e e e e e e e e e e e e e e s e e annrarraeeeees 236
11 aTE=F=To JEST= (oo a Lo U =1 s [os SRR 225
11 aTE=T=To JEST=Y Yol g 1= To | 0 F= = T o 4 PR 226
11 aTE=T=To JEST=] 0= od 1o PR 226
(o1 L aTE=T=To IS o 1 1 O 237
Pthread_SPIN_trYIOCK ... e e e e e e e e e e e 238
(o1 1 aTE=T=To [1S (o7= 1 Uo7 =) U 236
o181 (ot g =T U 1[0 Tox (= o [SRR 155
o181 (o ¥ 1] (0Tt 2= PSRRI 155
101 o PSP UPPPTNS 52
01U 110] 00 ST o T P TOPPTTPTPUPPPIIN 239
1010 |0 = PSRRI 130
T 10T/ o TR 52
0111 U 38
01T L (= P ESEURPR 297
(0 =] (= PR 38-39
(o o - PR 38-39
(o | 0] o PP 38-39
o 11 1= o PR 52
(0] 4101 PP 38-39
0] .01 o SRS 38-39
[0 =T] SO SPPPR 38-39
o 1 PP 38-39
(0 7= [T o AP 38-39
[0 LS o PSPPSR 38-39
[0 1S3 = PP UUPPPR 38-39
(0 T8] o PR 38-39
(=T a0 (o] o [PRSP 168
7= o [S EERRPR 240
2= U PP PPPPPTPPPPORPRTPTN 52
RCS, rationale for OMISSIONoiiiiiiiiie ettt e s e e e et e e e e seeees 42
== Vo PP 38
(== o (o 1 T EPERRPR 241
== To |1 1 PSPPI 9
[=T=To |1]2 PR RRR 241
== 1o o PRSP 391
L£=T= 1] 0= L1 o SRR 9
== 1] 0 PP PRSP 11, 32
REALTIME ...oooiiiiiiiiii et 134, 193, 195-197, 247-248, 256-257, 347
=1L Lo g LT Vo L PRSPPI 33
REALTIME THREADSooiiiiiiiei ettt 218-219, 226, 229-231, 237
red, rationale for OMISSIONiii i s e e et bee e e e e st e e e e e enneeas 42
=10 L=\ T o USRS 52
=31 1= 1] o [R PRRP 52
(=10 =T o] PRSPPI 243

A Source Book from The Open Group (2010)

Index

(210123 = o PSPPSRI 243
=70 (T EPEURPR 243
=To U] F= U=y o] (== (o SRR 9
=T [T L= U 11T SRR 40
FEMAINAET FUNCIIONevtititiitccee ettt e e s e e s et e e eeeeeeeeeeeeeeeeeeeeesesssesrararanas 385
=T 0 gT= T Lo (= o PP PPRRPUPUUUPUPPPRNS 244
=T 0 gT= T To (=T o PP PPURPTUPUUPUPRPRNS 244
(=] 0 T0 U P TOPPTTPT PSPPI 169
=] 1070 10 o PSRRI 244
=] 1070 10 o PSRRI 244
L= = 1 1 T= = | PP 244
=] 01 (o PP PRPUUOPUOUORPRPP 38
reserved name

= V0] o [oo T PRSP 48
(ST 1 PRSPPI 52
=111 A o (oo TR .40 Lo [= TSP 52
FESEL _SHEI _MOAE ...t e e e e e e s e e e e e e e e s s s s nnneeraeeeees 52
L1SES] = (=] o 1 52
L1011 SRR PPRPUPUPUPURRPPIRt 246
101 PP RPPRPRPRUUPUORPPRt 246
LT o1} 1 = SRS 52
2 P 38
10T =Y ISP 37-39
[10T L] PP PRPRUOPUOUORPRPPN 38
(10 1o | PP PPRPUUUUUPURPRRRS 246
(o 18] o [T o PSSR 388
(010 o To | PP RPURPUUOUUPUPRPPNS 246
ISh, rationale fOr OMUSSIONuiii i eaesere bbb aaaes 42
LS (o 37-39
T2 V= PP SPPPPPR 52
oY= 1 o]) RSP 246
LY=o} 1 SRR 246
LY=o o O RPRPR 246
LSYor= 1 o] o RSP 246
LY=o o | ISP 246
LY=L (o || SRR 106
LYo | R 148, 391
LYo > 11 1 P 52
] O 08 SO 37
LS o 03 37-39
LYot =T I T A 1 (o 1 Y20 .1 PSRRI 247
LYl RSP RPRPR 52
LYol (0] | PR 52
LYol (0]][] O 52
LYo o 18] 2 1] o PSRRI 52
ST 1L R PPPERRRR 52
Yol g (=] (0] (PSPPI 52
Yol (ST PSSP PP 52
Yo [M =\ i o] aF= 1I=TR (o] o) 0 1T (o) s IR 42
Siff, rationale fOr OMISSIONooviiieiiiii ettt e e e e e e e e eeeeas 43
LY=o DRSSP 9, 38
LY=L= 2 TSRS 126

The Single UNIX® Specification: Authorized Guide to Version 4 413

414

L= [T o SRS UPPPPTPPPRR 216
LY Tz UL PSPPI 251
L= (ool o - | PP PRPTPPPPRN 52
TS0 | (=7 o | A PSP UPPPPPTR 128
L1 01 =T o | PO TPPPPUPPRRR 128
L= 11141 PP UUPPPPUPPRR 159
SEHOGMASK .. e r e e e e e e e a i —rraaaaaeaaaaaaa 119
ST (g Tc (=T o PP R RPN 129
L1110 60 412U PPEEPPRR 161
1211 0] (00T 0| A PP UPPPPPTR 129
L1211 0111 o | PSP UPPPPPTR 129
L= 11 0 T PP UPPPRPPRRR 162
TSI T o] £ (=T o R TSP 52
1] 5T YT o | PP RPPPPP 129
1] 1] €= 1P PPPP 168
TS] o] (<] USRI 52
S TS] (010 o PSSR 130
L= 1Y/ L PO UPPPPTPPPRR 392
ST o U =T o TSP 52
ST (=] 0 USSP 52
L] ORI 38
shar, rationale for OMISSION.uuiiii i e et e e e s st e e e s st e e e e e snbaeeeeeanes 43
shell commMaNd [ANQUAGEccoooi i e e e e e e e e e s s e e rrr e e e aaaaaeeeas 13
Shl, rationale fOr OMISSIONcooiiiiiii et e et e e e s st e e e e e snbeeeeeeanes 43
LS T o 101U PPRERPRR 260
LS Lo [T LI oo g o7 =T o =R PSRRRPR 10
LT [o | P PPEEPPRR 380
LT [T F- 14 1P PPEEPPRR 182
LS T o= T £ = PSPPI 260
LS T o] o od 4= 1= G P PUERPRR 237
LS (=] ST P PPSEPPRR 260
LS T = PSPPI 260
LS T0 \TATz= UL 1 PSPPI 262
L] PO PPPPPTPPRR 262
SiNgle UNIX ENVIFONMENT.......cciiiiiiiiiieeee e e e sttt e e e e e e e e s et e e e e e e e e e e s e s saantaaaeeeeeeaeeesesannsnrenneeees 1
L] | PSPPI 263
L] o PO PPPPTPPPRR 263
L] PO PPPPTPPRR 262
Size, rationale fOr OMISSIONccoiiiiiii et e et e e e s st e e e e st e e e e s snbaeeeeeanes 43
L=] PO UPPPRUPPPR 367
LS L= =T o PO PPSEPRRR 38
LS L= L4 (] P PPERSRR 52
LS L= 114 (o PRSP 52
LS L= L4 £ PSRRI 52
LS L= L1 4 o) | PRSP 52
LS L= L1 4 o P PERERR 52
LS L= L ==Y P PERERPR 52
LS o3 LT T P PEURRR 52
£ 2 o] o PSRRI 52
£ 1 O PPERRRR 52
LS L3 = Lo 1= PRSPPI 52
LS L o UL 1= (=T P PRRSPRR 52

A Source Book from The Open Group (2010)

Index

LS L (=1 =) P PERRRRR 52
LS L (=151 (o] (PRSPPI 52
LS LS PP PPEEPRRR 52
£ 2 (o 10] o P PERRRR 52
LS LT P PERRRR 52
LS 0] 01 PR 145, 392
L0103 = PP 12
LT o TP 38
SOUICE fIlE INCIUSIONeiiiiiiiie e e e st e e s st e e s nbb e e e s snneaeee s 370
SPECIfIEd-WIdth INTEOET tYPE ... e e r e e e e e e e e 376
spell, rationale for OMISSIONccoiiiiiiiiie e e e e e e e s reaeaeeeeeas 43
S o] L PSS PPERPRRR 38
S 0 10 RSP 145, 391
LS | P PPSEPPRR 264
LS | | PP PPEEPPRR 264
L] Lo PO UPPPRUPPRRR 240
L] =T [0 V2 PRSP UPPPPTPPRRR 126
L] = o [o] 0 PP UTTPPPPTPPRRR 168
LSS0 L o | PP OTTPPR 148, 391
SEANAAND 1/O SITEAMS ...t e ettt e ettt e e e s sttt e e e sttt e e e e s ssbaeeeessnbaeeaeeansbeeeeeaanes 11
L] 7= T [T o o [P PRPUPPPPRN 52
L] 7= o[0T | SR PPRPUPPPPRN 52
S]] (o] P PEURRR 52
] 1= | PP RRRPPPP 149
L] 1= 1LY £ PO UPPPPRPPRR 150
L] 10 =7 o PP UPPPPUPPRRR 264
L] 1o o U | P UPPPPUPPPRR 264
L] (0 R o P PPP PSP 52
ST 0o o) PSP UPPPPPTR 266
L5110 (o o)V PP UPPPPPTR 269
LS (o= 11T o 1 o1 o PP PUEEPRRR 264
£ (o7]| P PESPPRR 265
STREAM L.ttt et e ettt e e e e et e et et e e e e e b r e e e e e e b be e e e e e nbee e e e e e bae e e e e anreeeeeeneee 239
STREAMS ..ottt e e sttt e e e st e e e e st e e e e e rraeeaeen 11, 135, 159, 169, 354
LS L= (o] PSRRI 267
YU ¢ o] (PP UPPPPPTR 267
£ 110 o] o T P PPEEPPRR 267
L] 1] L PP UPPPRUPPPR 392
L] 1101 1= PSPPI 268
LS (1o TN L1 (=] = | P PPUERPRR 367
L] 11T T PR PPSPPRRR 38
L] 1 o T PEERPR 38-39
YU lor= =Tl 1 0 o O PP UPPPPPTR 264
LS (o= 1Y =Yl] o N P PPUEEPRR 264
L] 1o 11 o P PPEEPPRR 266
L] 11 (oo PP UTUPPPRTPPPRR 392
L] 11 o) PP OTPPPR 271, 392
LS 170]G P PPEERPRR 271
L] 13 o o PP UTPPPRR 271, 392
L] 11 o PP TPPPRRE 271, 392
L] 11 (o | PP UPPR 272, 392
S (01U 0 = PSSR 271

The Single UNIX® Specification: Authorized Guide to Version 4 415

416

Index

structure member

T oTo] 4] 0] = (= 14 - VPP PRERRRR 368
L3 1141 2 P PPREPPRR 272
LY ST PPN 38
SU, rationNale fOr OMISSION.......ciii it e e e e e r e e e e e e e e s e e e a b raerreeaaeeeeeas 43
LS o] 0= Lo 1P PEURRR 52
LS o1/ PSRRI 52
SUM, ratioNale for OMUSSION........ccii it e e e e e e e e e e e e s s e nb e e e e eaaaeeeeas 43
STV =T U LT PP 41
L1177 o 1L PP PPEERPRR 153
LS T Tox L | PSPPI 154
LS4 0 oL [T 1 PR 13
LS8 110 EEPPRRR 9
L4011 8] | P PPEEPPRR 273
SYNICOK vttt ittt e e ettt e e e e e e e e e et e e e e e e e e ————————taeeeeeaa e e a———————raaaaaeaeeaa e nrrrrrrreaaaeeaaaaaans 52
LS £1 [0 PRSPPI 119
1 (=1] (=1 = (o =T PRSP 101
2= 101U 38
7= 1| PR 38
7= || RPN 38
L= L) USRS 274
L= 1] o) PR 274
L= L] o U 274
L= L SRR 274
tar, rationale fOr OMUSSIONuiiiiii e e e e e e e s e e e e e e e e e e e s e e arnbanrreeaaaeeeeas 43
LS = O SUPPPPPT 38
LS 0= L PSPPI 52
TErMINAL INTEITACES ...t e e e e e e s e e et e e e e e s s s e anneaereees 14,51
L0 0 0T 1= U T PSP PPRPTTPPPR 52
L0 0 (= UL PSP PPRPTRTPPPR 52
(ST ST PSPPPPPR 38
L1110 PO 276
L0 F= L 0] 10 U 277
L0 F= L 0] 10 -1 SRR 277
L1 =T Vo £ PSR 12
LT =1 1 =T [PPSR 52
LT =1 11U o PP 52
LT =1 £ 1 SRR 52
L1100 TSP 38
LT TS0 T | PP 52
LU LT o L= T 0= U 278
LU TS =111 PP 278
L] o= Tt .1 SRR 52
L] 1 1= U o PP PPP PR 393
TIMP _IMAX ettt ettt e e ettt e e e ekttt e e e aa b et e e e e e b bt e e e e e anEae e e e e et beeeeeeantaeeeeearaeeeeeaas 393
L0010 = 1) (1T TSR 372
L0001 = o PR 280
170 10 o o T U 38
170 10 Tod o 11 = PRSPPI 52
170 18 Tod 011/ P PERRRR 52
L1 10]'0] 0= PP 280
L0 111 = T PP 280

A Source Book from The Open Group (2010)

Index

L0 1Y [0 1Y SR RRR 281
LL YU o] o 1T PP 281
L1 0=V 0 0 [P PSPPSR 52
101U RSP UPPPPPT 38
11010 PP SPPPPPTR 52
TSP 38
L1V o PR 34
LI AU L PP PRPR 209-215
LU= TS F= 1T o I 1103 SO 371
translation-time arthMELICooiiiiii e e e e 370
g Te o] a o] aal=T i g o 111 od 1] o ISR 377, 381
L0 TSP 38
L0 T PP RPN 281
LU0 Lo PO RR R 281
LESTT= 1 o o PRSPPI 276
[£5T0 1 PSPPI 38
1 PO PPPPPPPT 38
L8774 F= T 0= S PP PPPP PPN 282
LT 1L ORI 276
L8] S L= PP SPPPTPPPN 38, 364
L3 LI [V = 1) 1= PP 364
TYPE-0ENEIIC MAN......ci e e e e e e e s e s s r e e e e e e e e s s e e nanabaranreeeeaeas 389
£ 0TIz 1 1= Lo 1P PERRRPR 52
|74 1= 10 0T PP RR R PPPPPP 282
|74 =] ST PP 282
LU SRR TPRR 365
L0 g Y PRSP 376
0] 1 o PR 38
0 4=] SRR 38
B = 1= T TSP RRP 38
00 =T 0 0T PP PP PP PPPPPPR TN 38
BT oTo] g 0] 0] (=1S 1T PSP POPPPPPTPTNN 38
0 o 1 PP 52
0TSt 0= L o SRR 38
UL o = S PRSPPI 37-39
(UL 0 =] (o PSPPSRI 393
0o 7= (o o SR 52
0o 1= ALY o SRR 52
0 o o SR 38
UNIVETSAl CRAIACIEr NAME ...ttt e e e e st e e e e snb e e e e st b e e e e ssbaeeeeeanneeas 365
0] T G PRSP RRP 38
0] T S | PRSP RRR 283
unpack, rationale for OMISSIONiiiiii it e e e e e e e s e s aeees 43
unsuffixed function
With C-prefiXed COUNTEIPAIT.........eiiiii et e e e e e e e e r e e e e aaeeesaeananeenes 389
Without C-prefiXed COUNTEIPAIT.........ocei it e e e e e e e e e e e e e e enanenes 389
8 1 (o 0] 01V o PRSPPI 52
user ID
FEAl AN EFfECHIVEeeiii e st e e s e e naaee s 255
setting real and EffECTHIVE ———————— 255
ST = 1 1Y SO TSPPTPTNN 52
UBIEIES ottt e sttt e e e s bt e e e s nb et e e e e n s bb e e e e e nbb et e e e e nbae e e e e nnnbeeeeeeneee 299
The Single UNIX® Specification: Authorized Guide to Version 4 417

418

Index

utility

Lo (VLo 1 (= (=T (=] o7 = Y USSP 81
01T =T TS | SRR 152
0111 =PSRRI 152
U8 o o PP PPN 37-39
010 T [T o o Yo [SRR 38
0T 1T o To'o Yo [SRR 38
U0] = PSPPI 37-39
U PP UPPUPOTURPPPINE 37-39
1= | PR PPRPRPRP 37-39
variable [ENGEN @ITAYuiiiiiiiiii e e e e e e e e aaaas 368
Az LA T= Lo [o 0 =T (o T PP 372
(V2= T 0] oV PP PPPPPPTN 372
L7 o 110 PR 285
RV S TP RR 356
L2071 | PR 393
VIWSCANT L.t e e e e e e e e e et e e e e e e s e e e —t e e ea e e e e e e e a e rrar—aaraaaaaas 393
PR PRR 9, 38
Ao =« 1 SRR 52
Ao | 10 PSR 52
Ao - 4 PR 52
Ao T o V)P PERRRR 52
A 1= TR 52
AT T] APPSR 52
170 L1 285
LTS0S 286
L2 1] 10 L« PP 285
LTS 11« R 285
LT3 L o | R 286
L2511 o 0 PR 286
LTSS o7= | PR 286
AT o1 SRR 286
LA LTS o7= 0) PR 286
A ATV o1 PSSR 52
A A= T0x= 11 PSP PPTPTRTPPPR 52
1T V| PR 38
11211 T PR 287
wall, rationale for OMISSIONciiiii i e e e e e e e s e e erreaaaeaeeas 43
1T L0] 1 PP 52
17122 L0 o PP UPPPPPRP 52
112 L ST RSO UPPTPPTP 52
11122 L o = PRSP PPRPTR PPN 52
1V 11 o) 1 RSP 52
171V L o o R PSP PPRPTRTPPPNE 52
{12 LT SRR SPPPP PR 52
117701 T PRSPPI 52
1T 0] 2o o 1] PRSPPI 52
1V 0] 2o Lo PSR 52
1V 0] 2o | o 7= PSSR 52
1T o (o 1= P PERSRPR 52
1V oo (o [T (Y= PP EUERPR 52
1o PP PUPPPPPT 38

A Source Book from The Open Group (2010)

Index

1T o3 LT T PSR 52
1T o3 [(0] o T PRSP 52
1T o3 (0= o PRSP 52
1T (o 0] (o] =Y~ AP PRRERRR 52
11170 o Lo o V2 PP PPPP PR 289
111V od o 0[] o V2 PP PPPP PR 291
LT (ot=Y o= Y= Tox o o T PR 288
LT (o= oo] | PP 289
AT 08] o= 1T =T ox o 1] o PP PPPPP PR 288
(o2 g Tor= ET=Tod o o T PP 288
Lo 1= o PP 290
Lo g1 (0] 4] 01U 292
1103 (o) RSP 293
1703 (o] o PR 293
1103 (o | PR 293
L1703 o || U 294
{1023 (o181 = D PP PPPPPTPPN 293
LT3y a1 1 1 T PR 294
L0310 1= PP 295
L0310 1= PP 295
1T ol €53 Y] [U] o PSP PPTPTTPPPN 52
V(o L= 1= 1= [PSRRI 52
1T C=Td o Tod - | PP ERSRPR 52
1V C=Tod o [T o] - PP EEEPPR 52
41T = LT PSPPSR 52
V0 =1 120 T P PERRRR 52
1T | PP PRRPRTRRP 37-39
1T o SRR 38
wide-string nuMeric CoNVErsion FUNCLIONoiiiieii i 393
1T TS L1 | PRSPPI 52
1T TS =T o o PRSP 52
17T 10RO SPPPPPT 52
LV Lo TU i 1= (= o PP RERRPR 52
L0 o 1 == PR 297
1177]« PRSI 153
LV =T o |- 111 Lo P PERRRRR 52
T2 (=) P PEEERR 52
1T (= U 38
LTS Lo | U 154
1T o PR 52
(VLT EST =] Kol £ (=T [PSP PPTPTRTPPPR 52
1V 253 2= U o [= o o PRSP 52
LTS3 2= U o [0 11| P PEURRRR 52
1T 25V o0 [0 o PSRRI 52
17153V (o o PSP PPTPTPPPN 52
1T 1= o 11 | PRSP 52
1T (o 10]][PRSP 52
1T 10 o 1 PP 52
D=1 (0 PSPPI 38
D (O I =Y 01V T o o 4= | PSRRI 13
D (@1 o] o] 1T o 1= PRSPPI 37

The Single UNIX® Specification: Authorized Guide to Version 4 419

420

Index

XCURSES

Lo (VLo 1 (= (=T (=] o7 = Y USSP 91
DSl 4 TT= 1o L= = R PRP PPN 47
XS SHIBAIMS ...t r e e e e e e e e e e et et e et e e e e e e e e n e s 34
L2 PP PP PP OPPPPPPPPPP 298
2= (o oSSR 8, 38-39
A\ O O =010 1 =1 S SO PPRTR PSPPI 8
L P PP TP PO PPPPPPPPPP 298
4 o7 = | TP PP 38

A Source Book from The Open Group (2010)

	Contents
	About This Document
	GOSOLO5
	1 The Single UNIX Environment
	1.1 Introduction
	1.2 Interface Counts
	1.3 Formal Standards Alignment
	1.4 Portability Codes
	1.5 Option Groups
	1.6 Common Directories and Devices
	1.7 Environment Variables
	1.8 YACC Grammars as Specifications
	1.9 Regular Expressions
	1.10 File Access
	1.11 Programming Environment
	1.11.1 C-Language Support
	1.11.2 Feature Test Macros and Name Space Issues
	1.11.3 Error Numbers
	1.11.4 Signal Concepts
	1.11.5 Standard I/O Streams
	1.11.6 STREAMS
	1.11.7 XSI Interprocess Communication
	1.11.8 Realtime
	1.11.9 Threads
	1.11.10 Sockets
	1.11.11 General Terminal Interface
	1.11.12 How to Read an XSH Reference Page

	1.12 Commands and Utilities Environment
	1.12.1 Shell Command Language
	1.12.2 Symbolic Links
	1.12.3 File Format Notation
	1.12.4 How to Read an XCU Reference Page

	1.13 Terminal Interfaces Environment
	1.14 Internationalization

	2 The Single UNIX Specification, Version 4
	2.1 Base Definitions (XBD)
	2.2 System Interfaces (XSH)
	2.3 Shell and Utilities (XCU)
	2.4 Rationale (XRAT)
	2.5 X/Open Curses (XCURSES)

	3 System Interfaces
	3.1 Base Documents
	3.2 Overview of Changes
	3.3 System Interfaces by Category
	3.4 XSH Option Groups
	3.5 Options Policy

	4 Shell and Utilities
	4.1 Options in XCU
	4.2 Functional Overview
	4.3 Base Documents
	4.4 Overview of Changes
	4.5 Exclusion of Utilities

	5 Headers
	5.1 Header and Name Space Rules
	5.1.1 ISO C Headers
	5.1.2 POSIX.12008 Base Headers
	5.1.3 XSI Headers

	5.2 Names Safe to Use
	5.3 Base Documents
	5.4 Overview of Changes

	6 Terminal Interfaces
	6.1 Functional Overview
	6.1.1 Curses Interfaces
	6.1.2 Curses Utilities

	6.2 Overview of Changes

	7 System Interface Table
	7.1 Introduction
	7.2 System Interface Table

	8 Utility Interface Table
	8.1 Introduction
	8.2 Utility Interface Table

	9 Header Interface Table
	9.1 Introduction
	9.2 Header Interface Table

	10 XCURSES Interface Table
	10.1 Introduction
	10.2 XCURSES Interface Table

	11 System Interfaces Migration
	11.1 Introduction
	11.2 System Interfaces

	12 Utilities Migration
	12.1 Introduction
	12.2 Utilities

	13 Headers Migration
	13.1 Introduction
	13.2 Headers

	14 ISO C Migration
	14.1 Introduction
	14.2 Language Changes
	14.2.1 New Keywords
	14.2.2 New Types
	14.2.3 Type Qualifiers
	14.2.4 Boolean
	14.2.5 Universal Character Names
	14.2.6 inline
	14.2.7 Predefined Identifiers
	14.2.8 Compound Literals
	14.2.9 Designated Initializers

	14.3 Decimal Integer Constants
	14.3.1 String Literals

	14.4 Implicit Declarations
	14.4.1 sizeof
	14.4.2 Multiplicative Operators
	14.4.3 Enumeration Specifiers

	14.5 Variable Length Array
	14.5.1 Array Declarations
	14.5.2 Array Type Compatibility
	14.5.3 Incomplete Array Structure Members
	14.5.4 Blocks
	14.5.5 The for Statement
	14.5.6 errno

	14.6 Comments
	14.6.1 Hexadecimal Floating-Point Constants
	14.6.2 Predefined Macros
	14.6.3 Source File Inclusion
	14.6.4 Translation-Time Arithmetic
	14.6.5 Minimum Maximum Line Length
	14.6.6 Case-Sensitive Identifiers
	14.6.7 #line Directive
	14.6.8 Empty Argument Macros
	14.6.9 Pragmas
	14.6.10 Translation Limits
	14.6.11 Token Pasting
	14.6.12 Variadic Macros
	14.6.13 va_copy()

	14.7 Headers
	14.8 Integer Types
	14.8.1 Exact-Width Integer Types
	14.8.2 Minimum-Width Integer Types
	14.8.3 Fastest Minimum-Width Integer Types
	14.8.4 Integer Types Capable of Holding Object Pointers
	14.8.5 Greatest-Width Integer Types
	14.8.6 Limits of Specified-Width Integer Types
	14.8.7 Macros

	14.9 Complex Numbers
	14.9.1 Trigonometric Functions
	14.9.2 Hyperbolic Functions
	14.9.3 Exponential and Logarithmic Functions
	14.9.4 Power and Absolute-Value Functions
	14.9.5 Manipulation Functions

	14.10 Other Mathematical Changes
	14.10.1 Classification Macros
	14.10.2 Trigonometric Functions
	14.10.3 Hyperbolic Functions
	14.10.4 Exponential and Logarithmic Functions
	14.10.5 Nearest Integer Functions
	14.10.6 Remainder Functions
	14.10.7 Manipulation Functions
	14.10.8 Comparison Macros

	14.11 Floating-Point Environment Support
	14.11.1 Exceptions
	14.11.2 Rounding
	14.11.3 Environment

	14.12 Type-Generic Math
	14.12.1 Unsuffixed Functions With a C-Prefixed Counterpart
	14.12.2 Unsuffixed Functions Without a C-Prefixed Counterpart

	14.13 Other Library Changes
	14.13.1 Wide-String Numeric Conversion Functions

	14.14 Annexes

