| Technical Standard

X/Open Curses, Issue 7

The Open Group

© November 2009, The Open Group
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Technical Standard
X/Open Curses, Issue 7

ISBN: 1-931624-83-6
Document Number: C094

Published in the U.K. by The Open Group, November 2009.

This standard has been prepared by The Open Group Base Working Group. Feedback relating
to the material contained within this standard may be submitted by using the web site at
http:/ /austingroupbugs.net with the Project field set to "Xcurses Issue 7".

Technical Standard 2009

Chapter

Chapter

Chapter

X/Open Curses, Issue 7

Contents

1

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.2
1.2.1
1.2.2
1.3
1.3.1
14

2
2.1
2.1.1
2.1.2
2.2
221
2.3

3.1

3.1.1
3.1.2
3.2

3.3

3.3.1
3.3.2
3.3.3
3.34
3.35
3.3.6
34

341
342
343
344
3.5

3.5.1
352
3.5.3
354
3.6

3.6.1

Introduction

This Documentcccceeveuveennn.

Relationship to Previous ISSUESccccoeuvveicriniiicnneieiiccenas

Features Introduced in Issue
Features Withdrawn in Issue

7 et
7 e

Features Introduced INISSUE 4co.eveveveeeeeieeeeeeeeeeeeeeeeeee e

Conformance.......cccceeeveeeveeeeenn.
Base Curses Conformance

Enhanced Curses COnformance.........oocveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeneens

Terminologycccccevvvvirirencnnnes
Shaded Text.....cccoevvvvveeveevennennn.
Format of EntrieS.....ccccceveuveennn

General Information

Use and Implementation of Interfaces.........c.cccoeeeeivinninnnninncnnnnnnes
Use and Implementation of Functions...........ccccceevvvvvvniiiiininnnnns
Use and Implementation of Macroscccccevuvevivirivivvniinininnins

The Compilation Environment

The X/Open Name Space (ENHANCED CURSES)ccccc.c......

Interface Overview

Components..........ccoeeveverennenne

Relationship to the XSH Specification..........cccccoevvevriininiininininnns
Relationship to the XBD Specificationccccccevvevvveieiniicniincicnnns
Screens, Windows, and Terminalsc.ccceeeeveveiieeieneccececeeeeenee

Characters.......c.cccoevvvnirinencnnes
Character Storage Size...........
Multi-Column Characters.....
Attributes.........cccocvviiiinins
Rendition.......cccoeeiiiinnnne
Non-Spacing Characters
Window Properties

Conceptual Operations.............
Screen Addressing
Basic Character Operations ..
Special Characters..................

Rendition of Characters Placed into a Window.......ccccocvveevvvennnennn.

Input Processing..........ccccccueune.
Keypad Processing.................
Input Mode ..o
Delay Mode........c.cccooeemiriininnes
Echo Processing......................

The Set of Curses Functions
Function Name Conventions

NUT B W WDNDNNRPR R,

13
13
13
13
14
15
15
16
16
16
16
17
18
18
18
20
21
22
22
23
24
24
24
24

Chapter
Chapter

Chapter

Chapter

Appendix

3.6.2
3.7
3.8
3.9

7.1

7.1.1
7.1.2
713
714
7.1.5

A

Al
Al1l
Al2
A1l3
Al4
A1l5
Al6
Al7
A1l8
Al9
A1.10
Alll
Al12
A1.13
All4
A1.15
All6
A2
A21
A22
A23
A24
A25
A26
A27

Contents

Function Families Provided.........ccccccoeoiiiiiiiiiiiicccccenen 25
Interfaces Implemented as Macros..........cccoeovvviviiiniviiiniinniniiinnn, 26
Initialized Curses Environmentcccocceiviniiiiiinniinnniccinnnns 27
Synchronous and Networked Asynchronous Terminals.................. 27
Curses Interfaces 29
Headers 305
KCUISES. N> ..o 306
<termuh> ... 320
<unctrlh> o 321
Utilities 323
THfOCTIP oo e 324
FIC oot 328
EDUL oot 330
UTIEIC cevvveneneeteete ettt 335
Terminfo Source Format (ENHANCED CURSES)........... 337

Source File Syntax ... 337

Minimum Guaranteed Limitsccccoeeivniiinnii, 338

Formal Grammar..........cccoeeiiniiiiiininiiiiiccennes 338

Defined Capabilities ..o 340

Sample ENtry ... 349

Types of Capabilities in the Sample Entry..........cccoovvvviviiniinnns 349

Application Usage 353
Device Capabilities ... 353

Basic Capabilities ... 353

Parameterized Strings ..., 354

CUrsor MOtONS.....cccoviiiiiiiiiiiicc s 355

ATrea Clears........cocvviiiiiiiiiniiiiii s 356

Insert/Delete LINe......c.ooouiiiiiiiiieiicieeeeeeeeeeeete et 356

Insert/Delete Characterooovoveiviiiceiiciieeeeeeeeeee et 357

Highlighting, Underlining, and Visible Bells..........c.c.c.ccccooeiinii. 358

Keypad.....ooiccc s 360

Tabs and Initialization ..., 360

DEIAYS «.ovvvieiictitiit s 361

Status LINeScccviiiiiiiiiiiiiiic 361

Line GraphicCs......ccoeiiiiiiiiiiccciccccce s 361

Color Manipulation ... 363

MIiSCEIlANEOUSccvviiiiiiiiicc s 364

Special Cases.......cciuiuiuiuiiiriiiiiiiciitcr s 365

Similar Terminalsccooeiiiniiiiiniiie 366
Printer Capabilities ..o 366

Rounding Values ... 366

Printer ResoIUtion ... 366

Specifying Printer Resolution...........cccoovvvviiiiiviiinniiiiccnns 367

Capabilities that Cause Movement............cccceeeiiiiiieininienennnen, 369

Alternate Character Sets...........coceeeeiiceeeeeceeeeeeeeeeeenenens 373

Dot-Matrix Graphics........cccceemiieiiiiciicccccccenes 374

Effect of Changing Printing Resolutionc.cccccovvviiiiniiininnns 375

Technical Standard 2009

Contents

X/Open Curses, Issue 7

A28
A29
A3
A4
A4l
A42

Print QUalityc.ooiiiiiiiii s 376
Printing Rate and Buffer Size ..., 376
Selecting a Terminal..........cccocuoviiiiiiiii 377
Application Usage.........cccoviiiviniiiiiiiiii s 377
Conventions for Device ALASesccocovviviiiviviiiniiiiiicnns 377
Variations of Terminal Definitions..........cccccevueurrevereuerneccinene 378
Glossary 379
Index 381
\

Vi

Technical Standard 2009

Preface

The Open Group

The Open Group is a vendor-neutral and technology-neutral consortium, whose vision of
Boundaryless Information Flow™ will enable access to integrated information within and
between enterprises based on open standards and global interoperability. The Open Group
works with customers, suppliers, consortia, and other standards bodies. Its role is to capture,
understand, and address current and emerging requirements, establish policies, and share best
practices; to facilitate interoperability, develop consensus, and evolve and integrate
specifications and Open Source technologies; to offer a comprehensive set of services to enhance
the operational efficiency of consortia; and to operate the industry’s premier certification service,
including TOGAF™ and UNIX® certification.

Further information on The Open Group is available at www.opengroup.org.

The Open Group has over 20 years’ experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of test
suites used to validate conformance to an open standard or specification.

More information is available at www.opengroup.org/ certification.

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical and Product Standards and Guides, but which also
includes white papers, technical studies, branding and testing documentation, and business
titles. Full details and a catalog are available at www.opengroup.org/bookstore.

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards-compatible and those which are not:

e A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

» A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published at www.opengroup.org/corrigenda.
This Document

This Technical Standard defines the X/Open Curses interface offered to application programs by
X/Open Curses-conformant systems. Readers are expected to be experienced C-language
programmers and to be familiar with the XBD specification.

This Technical Standard is structured as follows:

¢ Chapter 1 introduces Curses, gives an overview of enhancements that have been made to
this version, and lists specific interfaces that have been withdrawn. This chapter also
defines the requirements for conformance to this document and shows the generic format
followed by interface definitions in Chapter 4.

X/Open Curses, Issue 7 Vil

http://www.opengroup.org
http://www.opengroup.org/certification
http://www.opengroup.org/bookstore
http://www.opengroup.org/corrigenda

viii

Preface

Chapter 2 describes the relationship between Curses and the C language, the compilation
environment, and the X/Open System Interface operating system requirements. It also
defines the effect of the interface on the name space for identifiers and introduces the
major data types that the interfaces use.

Chapter 3 gives an overview of Curses. It discusses the use of some of the key data types
and gives general rules for important common concepts such as characters, renditions, and
window properties. It contains general rules for the common Curses operations and
operating modes. This information is implicitly referenced by the interface definitions in
Chapter 4. The chapter explains the system of naming the Curses functions and presents a
table of function families. Finally, the chapter contains notes regarding use of macros and
restrictions on block-mode terminals.

Chapter 4 defines the Curses functional interfaces.

Chapter 5 defines the contents of headers which declare the functions and global variables,
and define types, constants, macros, and data structures that are needed by programs
using the services provided by Chapter 4.

Chapter 6 replaces the specification of the fput utility in the XCU specification and defines
additional Curses utilities.

Chapter 7 discusses the terminfo database, which Curses uses to describe terminals. The
chapter specifies the source format of a terminfo entry using a formal grammar, an
informal discussion, and an example. Boolean, numeric, and string capabilities are
presented in tabular form.

Appendix A discusses the use of these capabilities by the writer of a terminfo entry to
describe the characteristics of the terminal in use.

The chapters are followed by a glossary, which contains normative definitions of terms used in
the document. Comprehensive references are available in the index.

Typographical Conventions

The following typographical conventions are used throughout this document:

* Bold font is used in text for options to commands, filenames, keywords, type names, data

structures, and their members.

e Italic strings are used for emphasis or to identify the first instance of a word requiring

definition. Italics in text also denote:

— Command operands, command option-arguments, or variable names; for example,
substitutable argument prototypes

— Environment variables, which are also shown in capitals
— Utility names
— External variables, such as errno

— Functions; these are shown as follows: name(); names without parentheses are C
external variables, C function family names, utility names, command operands, or
command option-arguments

« Normal font is used for the names of constants and literals.

« The notation <file.h> indicates a header file.

Technical Standard 2009

Preface

¢ Names surrounded by braces—for example, {ARG_MAX}—represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
define construct.

» The notation [EABCD] is used to identify an error value EABCD.

» Syntax, code examples, and user input in interactive examples are shown in fixed
width font. Brackets shown in this font, [] , are part of the syntax and do not indicate
optional items. In syntax the | symbol is used to separate alternatives, and ellipses (...)
are used to show that additional arguments are optional.

e Bold fixed width font is used to identify brackets that surround optional items in
syntax, [], and to identify system output in interactive examples.

e Variables within syntax statements are showninitalic fixed width font.
 Ranges of values are indicated with parentheses or brackets as follows:

— (a,b) means the range of all values from a to b, including neither a nor b.

— [a,b] means the range of all values from a to b, including a and b.

— [a,b) means the range of all values from a to b, including a, but not b.

— (a,b] means the range of all values from a to b, including b, but not a.

e Shading is used to identify X/Open Enhanced Curses material, relating to interfaces
included to provide enhanced capabilities for applications originally written to be
compiled on systems based on the UNIX operating system. Therefore, the features
described may not be present on systems that conform to XPG4 or to earlier XPG releases.
The relevant reference pages may provide additional or more specific portability warnings
about use of the material.

If an entire SYNOPSIS section is shaded and marked with EC, all the functionality
described in that entry is an extension.

The material on pages labeled ENHANCED CURSES and the material flagged with the EC
margin legend is available only in cases where the _XOPEN_CURSES version test macro is
defined.

Notes:

1. Symbolic limits are used in this document instead of fixed values for portability. The
values of most of these constants are defined in <limits.h> or <unistd.h>.

2. The values of errors are defined in <errno.h>.

X/Open Curses, Issue 7 iX

Trademarks

AT&T® is a registered trademark of AT&T in the U.S.A. and other countries.

Boundaryless Information Flow™ and TOGAF™ are trademarks and Motif®, Making Standards
Work®, OSF/1®, The Open Group®, UNIX®, and the “X” device are registered trademarks of
The Open Group in the United States and other countries.

Hewlett-Packard®, HP®, HP-UX®, and Openview® are registered trademarks of Hewlett-
Packard Company.

The names of terminals and of terminal manufacturers cited as examples in Chapter 7 and
Appendix A may be trademarks, which are the property of their respective owners.

Technical Standard 2009

“ Acknowledgements

The Open Group gratefully acknowledges:

e Novell, Inc. for permission to reproduce portions of its copyrighted System V Interface
Definition (SVID) and material from the UNIX System V Release 4.2 documentation.

» Hewlett-Packard Company, International Business Machines Corporation, Novell Inc., The
Open Software Foundation, and Sun Microsystems, Inc., for their work in developing the
X/Open UNIX Extension and sponsoring it through the X/Open Direct Review (Fast-
track) process.

X/Open Curses, Issue 7 Xi

Xii

Referenced Documents

The following documents are referenced in this Technical Standard:

ANSIC
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

ISO/IEC 646
ISO/IEC 646:1991, Information Processing — ISO 7-bit Coded Character Set for Information
Interchange.

ISO/IEC 6429:1992
Information Technology — Control Functions for Coded Character Sets.

ISO/IEC 10646
ISO/IEC 10646-1:1993, Information Technology — Universal Multiple-Octet Coded
Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

ISO 2022
ISO 2022:1986, Information Processing — ISO 7-bit and 8-bit Coded Character Sets —
Coded Extension Techniques.

ISO 8859-1
ISO 8859-1:1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

ISO/IEC 9899: 1990
ISO/IEC 9899:1990, Programming Languages — C, including Amendment 1:1995 (E), C
Integrity (Multibyte Support Extensions (MSE) for ISO C).

SVID, Issue 2
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
2; Morristown, NJ, UNIX Press, 1986.

SVID, Issue 3
American Telephone and Telegraph Company, System V Interface Definition (SVID), Issue
3; Morristown, NJ, UNIX Press, 1989.

System V Release 2.0
— UNIX System V Release 2.0 Programmer’s Reference Manual (April 1984 - Issue 2).
— UNIX System V Release 2.0 Programming Guide (April 1984 - Issue 2).
System V Release 4.2
Operating System API Reference, UNIX® SVR4.2 (1992) (ISBN: 0-13-017658-3).
The following documents published by The Open Group are referenced in this Technical
Standard:

Base Specifications, Issue 5
Technical Standard, February 1997, published by The Open Group:

 System Interface Definitions (XBD), Issue 5 (ISBN: 1-85912-186-1, C605)

Technical Standard 2009

Referenced Documents

e Commands and Utilities (XCU), Issue 5 (ISBN: 1-85912-191-8, C604)
» System Interfaces and Headers (XSH), Issue 5 (ISBN: 1-85912-181-0, C606)

Base Specifications, Issue 6
Technical Standard, April 2004, published by The Open Group:

» Base Definitions (XBD), Issue 6 (ISBN: 1-931624-43-7, C046)
 System Interfaces (XSH), Issue 6 (ISBN: 1-931624-44-5, C047)
 Shell and Utilities (XCU), Issue 6 (ISBN: 1-931624-45-3, C048)
» Rationale (XRAT), Issue 6 (ISBN: 1-931624-46-1, C049)

Base Specifications, Issue 7
Technical Standard, December 2008, Base Specifications, Issue 7 (ISBN: 1-931624-79-8, C082),
published by The Open Group.

Issue 2
X/Open Portability Guide, January 1987, Volume 3: System V Specification Supplementary
Definitions: XVS Terminal Interface (ISBN: 0-444-70176-1).

Issue 3
X/Open Specification, February 1992, Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapters 9 to 14 inclusive, Curses Interface; this specification
was formerly X/Open Portability Guide, Issue 3, Volume 3, January 1989, XSI
Supplementary Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004).

Issue 4
CAE Specification, January 1995, X/Open Curses, Issue 4 (ISBN:1-85912-077-6, C437),
published by The Open Group.

Issue 4, Version 2
CAE Specification, July 1996, X/Open Curses, Issue 4, Version 2 (ISBN:1-85912-171-3,
C610), published by The Open Group.

Issue 7
This standard.

X/Open Curses, Issue 7 Xiii

Referenced Documents

Xiv Technical Standard 2009

1.1

1.1.1

Chapter 1

Introduction

The Curses interface provides a terminal-independent method of updating character screens.

The functions in this document are oriented towards locally-connected asynchronous terminals
that recognize the codeset of the current locale. For such terminals, applications conforming to
this interface are portable. The Curses interface may also be used with synchronous and
networked asynchronous terminals, provided the restrictions described in Section 3.9 (on page
27) are considered.

This Document

This document is Issue 7.

Relationship to Previous Issues
Relationship to Issue 3

The unshaded material in this document preserves syntactic compatibility with the Curses
specification, Issue 3, except that some functions have been withdrawn (see Section 1.1.3, on
page 2). In addition, retained interfaces from the Curses specification, Issue 3 have been
clarified as a result of industry feedback.

Relationship between Issue 4, Version 1 and Issue 4, Version 2

Version 2 contains corrections and clarifications which have been suggested by industry
feedback. In particular, many of the function prototypes have been corrected, and color handling
has been further clarified. The CHANGE HISTORY section of the reference pages gives specific
detail on when changes were made.

Relationship between Issue 4, Version 2 and Issue 7

Issue 7 is updated as follows:

 Functionality marked “To Be Withdrawn” is removed.

» Clarification is added to explain that the int arguments passed to getbegyx(), getmaxyx(),
getparyx (), and getyx () must be modifiable lvalues.

+ The tparm() function is marked obsolescent.

» Features described in Section 1.1.2 (on page 2) are introduced.

X/Open Curses, Issue 7 1

This Document Introduction

1.1.2

1.1.3

1.1.4

Features Introduced in Issue 7
The following features are introduced in Issue 7:
« Function prototypes are updated to use const where appropriate.
e The tiparm() function is added.
¢ The following new utilities are added in Chapter 6:
infocmp
tic
tput
untic

Features Withdrawn in Issue 7

The following interfaces are withdrawn in this document:

Withdrawn Interfaces

tgetent () tgetnum) tgoto() vwprintw ()
tgetflag () tgetstr() vwscanw ()

Features Introduced in Issue 4

The following features were introduced in Issue 4.

Internationalization

This version of the Curses specification has been enhanced to support a wide range of
internationalized capabilities. Traditional single-byte character operations are preserved, and
multi-byte and wide-character interfaces are included to allow use of the Curses features with a
wide range of character codesets. The actual codesets supported are implementation-defined.

Enhanced Character Sets

Emerging character set standards specify characters with a constant width greater than an octet
(such as ISO/IEC 10646-1:1993), or multi-byte codesets (such as the ISO 2022:1986 EUC
encoding used to encode the Japanese and Chinese language characters).

The previous version of the Curses specification was capable of supporting ISO 8859-1:1987.
Many traditional implementations only supported ISO/IEC 646:1991 and preceding codeset
specifications, in which the length of a character was an octet.

The primary standardization issue with the increasing size of a character is that neither the ANS
X3.159-1989 or ISO/IEC 9899:1990 C language definition requires the existence of an integral
data type greater than 32-bits. Although such data types are commonly defined, The Open
Group cannot require support for them at this time. The opaque data type cchar_t and
associated routines address this issue.

Technical Standard 2009

Introduction This Document

1.2

1.2.1

Writing Direction

The references to writing direction have been generalized to permit both right-to-left and left-to-
right writing. This document does not specify whether the implementation supports more than
one direction of writing. The behavior of the interfaces in this document is unspecified if the
writing direction is vertical, or if the writing direction is horizontal with row height greater than
one.

Wide and Non-spacing Characters

New interfaces are introduced for use with wide characters and wide-character strings. The
traditional single-byte character string interfaces have been made more general for use with
multi-byte character strings. The traditional chtype interfaces note that they are usable only in
restricted environments and do not support extensible attributes. The behavior of the chtype
interfaces in this document is unspecified if the char data type is greater than 8 bits, or if any
single byte character takes more than one display column, or if the application or
implementation stores a multi-byte or wide-character value into a chtype object.

A new, extensible attribute model has been provided for wide-character interfaces. The display
model has been generalized to support both multi-column characters and non-spacing
characters. The concept of a complex character is introduced.

Other Enhancements

New interfaces and capabilities are introduced to support color terminals, printers, modems,
and mice.

Conformance

An implementation conforming to this document shall meet the requirements specified by Base
Curses conformance (see Section 1.2.1) or by Enhanced Curses conformance (see Section 1.2.2,
on page 4).

Base Curses Conformance
An implementation that claims Base Curses conformance shall meet the following criteria:

e The system shall support all the interfaces and headers defined within this document
except that it need not support those occurring on reference pages labeled ENHANCED
CURSES and in shaded areas marked with the EC margin legend.

 The chtype data type shall support at least octet-based codesets, such as ISO 8859-1:1987.

» The system may provide additional or enhanced interfaces, headers, and facilities not
required by this documen, provided that such additions or enhancements do not affect the
behavior of an application that requires only the facilities described in this document.

X/Open Curses, Issue 7 3

Conformance Introduction

1.2.2

1.3

Enhanced Curses Conformance
An implementation that claims Enhanced Curses conformance shall meet the following criteria:
¢ The system shall support Base Curses conformance as defined above.

¢ The system shall support the requirements in this document occurring on reference pages
labeled ENHANCED CURSES and in shaded areas marked with the EC margin legend.

¢ The system may provide additional or enhanced interfaces, headers, and facilities not
required by this document, provided that such additions or enhancements do not affect the
behavior of an application that requires only the facilities described in this document.

Terminology
The following terms are used in this document:

can
Describes a permissible optional feature or behavior available to the user or application. The
feature or behavior is mandatory for an implementation that conforms to this document. An
application can rely on the existence of the feature or behavior.

implementation-defined
Describes a value or behavior that is not defined by this document but is selected by an
implementor. The value or behavior may vary among implementations that conform to this
document. An application should not rely on the existence of the value or behavior. An
application that relies on such a value or behavior cannot be assured to be portable across
conforming implementations.

The implementor shall document such a value or behavior so that it can be used correctly
by an application.

legacy
Describes a feature or behavior that is being retained for compatibility with older
applications, but which has limitations which make it inappropriate for developing portable
applications. New applications should use alternative means of obtaining equivalent
functionality.

may
Describes a feature or behavior that is optional for an implementation that conforms to this
document. An application should not rely on the existence of the feature or behavior. An
application that relies on such a feature or behavior cannot be assured to be portable across
conforming implementations.

To avoid ambiguity, the opposite of may is expressed as need not, instead of may not.

must
Describes a feature or behavior that is mandatory for an application or user. An
implementation that conforms to this document shall support this feature or behavior.

shall
Describes a feature or behavior that is mandatory for an implementation that conforms to
this document. An application can rely on the existence of the feature or behavior.

should
For an implementation that conforms to this document, describes a feature or behavior that
is recommended but not mandatory. An application should not rely on the existence of the

Technical Standard 2009

Introduction Terminology

1.3.1

EC

OB

feature or behavior. An application that relies on such a feature or behavior cannot be
assured to be portable across conforming implementations.

For an application, describes a feature or behavior that is recommended programming
practice for optimum portability.

undefined
Describes the nature of a value or behavior not defined by this document which results
from use of an invalid program construct or invalid data input.

The value or behavior may vary among implementations that conform to this document.
An application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be portable
across conforming implementations.

unspecified
Describes the nature of a value or behavior not specified by this document which results
from use of a valid program construct or valid data input.

The value or behavior may vary among implementations that conform to this document.
An application should not rely on the existence or validity of the value or behavior. An
application that relies on any particular value or behavior cannot be assured to be portable
across conforming implementations.

will
Same meaning as shall; shall is the preferred term.

Shaded Text

Shaded text in this document is qualified by a code in the left margin. The codes and their
meanings are as follows:

X/Open Enhanced Curses

The functionality described relates to interfaces included to provide enhanced capabilities for
applications originally written to be compiled on systems based on the UNIX operating system.
Therefore, the features described may not be present on systems that conform to XPG4 or to
earlier XPG releases. The relevant reference pages may provide additional or more specific
portability warnings about use of the material.

If an entire SYNOPSIS section is shaded and marked EC, all the functionality described on that
reference page is an extension.

The functionality on reference pages labeled ENHANCED CURSES and the functionality
flagged with the EC margin legend are available only in cases where the _XOPEN_CURSES
version test macro is defined.

Obsolescent
The functionality described may be removed in a future version of this document. Applications
should not use obsolescent features.

Where applicable, the material is identified by use of the OB margin legend.

X/Open Curses, Issue 7 5

Format of Entries Introduction

14

Format of Entries

The entries in Chapter 4 and Chapter 5 are based on a common format, as follows. The only
sections relating to conformance are the SYNOPSIS, DESCRIPTION, RETURN VALUE, and
ERRORS sections.

NAME
This section gives the name or names of the entry and briefly states its purpose.

SYNOPSIS
This section summarizes the use of the entry being described. If it is necessary to
include a header to use this interface, the names of such headers are shown; for
example:

#include <stdio.h>

DESCRIPTION
This section describes the functionality of the interface or header.

RETURN VALUE
This section indicates the possible return values, if any.

If the implementation can detect errors, “successful completion” means that no error
has been detected during execution of the function. If the implementation does detect
an error, the error is indicated.

For functions where no errors are defined, “successful completion” means that if the
implementation checks for errors, no error has been detected. If the implementation
can detect errors, and an error is detected, the indicated return value will be returned
and errno may be set.

ERRORS
This section gives the symbolic names of the error values returned by a function or
stored into a variable accessed through the symbol errno if an error occurs.

“No errors are defined” means that error values returned by a function or stored into a
variable accessed through the symbol errno, if any, depend on the implementation.

EXAMPLES
This section is informative.

This section gives examples of usage, where appropriate.

APPLICATION USAGE
This section is informative.

This section gives warnings and advice to application developers about the entry.

RATIONALE
This section is informative.

This section contains historical information concerning the contents of the entry and
why features were included or discarded by the developers of this document.

FUTURE DIRECTIONS
This section is informative.

This section provides comments which should be used as a guide to current thinking;
there is not necessarily a commitment to adopt these future directions.

Technical Standard 2009

Introduction Format of Entries

SEE ALSO
This section is informative.

This section gives references to related information.

CHANGE HISTORY
This section is informative.

This section shows the derivation of the entry and any significant changes that have
been made to it.

The entries in Chapter 6 are in the same format as the utility reference pages in the XCU
specification (see the XCU specification, Section 1.4, Utility Description Defaults).

X/Open Curses, Issue 7 7

Introduction

Technical Standard 2009

Chapter 2

General Information

21 Use and Implementation of Interfaces

211 Use and Implementation of Functions

Each of the following statements shall apply to all functions unless explicitly stated otherwise in
the detailed descriptions that follow:

1.

If an argument to a function has an invalid value (such as a value outside the domain of
the function, or a pointer outside the address space of the program, or a null pointer), the
behavior is undefined.

Any function declared in a header may also be implemented as a macro defined in the
header, so a function should not be declared explicitly if its header is included. Any
macro definition of a function can be suppressed locally by enclosing the name of the
function in parentheses, because the name is then not followed by the left parenthesis that
indicates expansion of a macro function name. For the same syntactic reason, it is
permitted to take the address of a function even if it is also defined as a macro. The use of
the C-language #undef construct to remove any such macro definition shall also ensure
that an actual function is referred to.

Any invocation of a function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where
necessary, so it is generally safe to use arbitrary expressions as arguments.

Provided that a function can be declared without reference to any type defined in a
header, it is also permissible to declare the function explicitly and use it without including
its associated header.

If a function that accepts a variable number of arguments is not declared (explicitly or by
including its associated header), the behavior is undefined.

21.2 Use and Implementation of Macros

Each of the following statements shall apply to all macros unless explicitly stated otherwise:

1.

Any definition of an object-like macro in a header shall expand to code that is fully
protected by parentheses where necessary, so that it groups in an arbitrary expression as
if it were a single identifier.

Any definition of a function-like macro in a header shall expand to code that evaluates
each of its arguments exactly once, fully protected by parentheses where necessary, so
that it is generally safe to use arbitrary expressions as arguments.

X/Open Curses, Issue 7 9

Use and Implementation of Interfaces General Information

2.2

EC

2.2.1

EC

10

3. Any definition of a function-like macro in a header can be invoked in an expression
anywhere a function with a compatible return type could be called.

The Compilation Environment

The compilation environment in this document can exist in the following environment:
« Base Specifications, Issue 7

The compilation environment is defined as follows:

Applications shall ensure that the feature test macro _XOPEN_SOURCE is defined with the
value 700 before inclusion of any header. This is needed to enable the functionality described in
this document, and possibly to enable functionality defined elsewhere in the Common
Applications Environment.

In the compilation of an application that #defines the _XOPEN_SOURCE feature test macro, no
header defined by this document or by the Base Specifications, Issue 7 shall be included prior to
the definition of the feature test macro. This restriction also applies to any implementation-
defined header in which these feature test macros are used. If the definition of the macro does
not precede the #include, the result is undefined.

Identifiers in this document may only be undefined using the #undef directive as described in
Section 2.1.1 (on page 9) or Section 2.2.1. These #undef directives must follow all #include
directives of any XSI headers.

Since this document is aligned with the ISO C Standard, and since all functionality enabled by
_POSIX_C_SOURCE set equal to 200809L is enabled by _XOPEN_SOURCE set equal to 700,
there should be no need to define _POSIX_C_SOURCE if XOPEN_SOURCE is so defined.
Therefore, if _XOPEN_SOURCE is set equal to 700 and _POSIX_C_SOURCE is set equal to
200809L, the behavior is the same as if only _XOPEN_SOURCE is defined and set equal to 700.
However, should _POSIX_C_SOURCE be set to a value greater than 200809L, the behavior is
unspecified.

The ¢99 utility shall recognize the following additional -1 option for standard libraries:

-1 curses This option shall make available all interfaces referenced in this document (except
for those labeled ENHANCED CURSES and except for portions marked with the
EC margin legend).

If the implementation defines ' XOPEN_CURSES, then -1 curses shall also make
available all interfaces referenced in this document and labeled ENHANCED
CURSES and portions marked with the EC margin legend.

It is unspecified whether the library libcurses.a exists as a regular file.

The X/Open Name Space (ENHANCED CURSES)

The requirements in this section are in effect only for implementations that claim Enhanced
Curses compliance.

All identifiers in this document are defined in at least one of the headers, as shown in Chapter 5.
When _XOPEN_SOURCE is defined, each header defines or declares some identifiers,
potentially conflicting with identifiers used by the application. The set of identifiers visible to the
application consists of precisely those identifiers from the header pages of the included headers,
as well as additional identifiers reserved for the implementation. In addition, some headers may

Technical Standard 2009

General Information The Compilation Environment

make visible identifiers from other headers as indicated on the relevant header pages.

Implementations may also add members to a structure or union without controlling the
visibility of those members with a feature test macro, as long as a user-defined macro with the
same name cannot interfere with the correct interpretation of the program.

The identifiers reserved for use by the implementation are described below:

1. Each identifier with external linkage described in the header section is reserved for use as
an identifier with external linkage if the header is included.

2. Each macro name described in the header section is reserved for any use if the header is
included.

3. Each identifier with file scope described in the header section is reserved for use as an
identifier with file scope in the same name space if the header is included.

4. Allidentifiers consisting of exactly two (2) uppercase letters.

If any header is included, identifiers with the _t suffix are reserved for any use by the
implementation.

If any header in the following table is included, macros with the prefixes shown may be defined.
After the last inclusion of a given header, an application may use identifiers with the
corresponding prefixes for its own purpose, provided their use is preceded by an #undef of the
corresponding macro.

Header Prefix
<curses.h> | A_, ACS_, ALL_, BUTTON, COLOR_, KEY_, MOUSE, REPORT_, WA_, WACS_
<term.h> ext_

The following identifiers are reserved regardless of the inclusion of headers:

1. With the exception of identifiers beginning with the prefix _POSIX_, all identifiers that
begin with an underscore and either an uppercase letter or another underscore are always
reserved for any use by the implementation.

2. All identifiers that begin with an underscore are always reserved for use as identifiers
with file scope in both the ordinary identifier and tag name spaces.

3. All identifiers listed as reserved in the XSH specification are reserved for use as
identifiers with external linkage.

4. All the identifiers defined in this document that have external linkage are always
reserved for use as identifiers with external linkage.

No other identifiers are reserved.

Applications must not declare or define identifiers with the same name as an identifier reserved
in the same context. Since macro names are replaced whenever found, independent of scope and
name space, macro names matching any of the reserved identifier names must not be defined if
any associated header is included.

Headers may be included in any order, and each may be included more than once in a given
scope, with no difference in effect from that of being included only once.

If used, a header must be included outside of any external declaration or definition, and it must
be first included before the first reference to any type or macro it defines, or to any function or
object it declares. However, if an identifier is declared or defined in more than one header, the
second and subsequent associated headers may be included after the initial reference to the
identifier. Prior to the inclusion of a header, the program must not define any macros with

X/Open Curses, Issue 7 11

The Compilation Environment General Information

names lexically identical to symbols defined by that header.

2.3 Data Types

All of the data types used by Curses functions are defined by the implementation. The following
list describes these types:

EC attr_t An integer type that can contain at least an unsigned short. The type attr_t is used
to hold an OR’ed set of attributes defined in <curses.h> that begin with the prefix
WA
bool As described in <stdbool.h>.
chtype An integer type that can contain at least an unsigned char and attributes. Values of

type chtype are formed by OR’ing together an unsigned char value and zero or
more of the base attribute flags defined in <curses.h> that have the A_ prefix. The
application can extract these components of a chtype value using the base masks
defined in <curses.h> for this purpose.

EC The chtype data type also contains a color-pair. Values of type chtype are formed
by OR’ing together an unsigned char value, a color pair, and zero or more of the
attributes defined in <curses.h> that begin with the prefix A_. The application can
extract these components of a chtype value using the masks defined in <curses.h>
for this purpose.

SCREEN An opaque terminal representation.

EC wint_t As described in <wchar.h>.
EC wchar_t As described in <stddef.h>.
EC cchar_t A type that can reference a string of wide characters of up to an implementation-

defined length, a color-pair, and zero or more attributes from the set of all
attributes defined in this document. A null cchar_t object is an object that
references an empty wide-character string. Arrays of cchar_t objects are
terminated by a null cchar_t object.

WINDOW An opaque window representation.

12 Technical Standard 2009

3.1

3.1.1

3.1.2

Chapter 3

Interface Overview

Components

A Curses initialization function, usually initscr(), determines the terminal model in use, by
reference to either an argument or an environment variable. If that model is defined in terminfo,
then the same terminfo entry tells Curses exactly how to operate the terminal.

In this case, a comprehensive API lets the application perform terminal operations. The Curses
runtime system receives each terminal request and sends appropriate commands to the terminal
to achieve the desired effect.

Relationship to the XSH Specification
Error Numbers

Most functions provide an error number in errno, which is a symbol defined or declared in
<errno.h> as either a macro or an identifier declared with external linkage; the symbol expands
to a modifiable lvalue of type int.

A list of valid values for errno and advice to application writers on the use of errno appears in the
XSH specification.
Signals

Curses implementations may provide for special handling of the SIGINT, SIGQUIT, and
SIGTSTP signals if their disposition is SIG_DFL at the time initscr() is called (see initscr(), on
page 126).

Any special handling for these signals may remain in effect for the life of the process or until the
process changes the disposition of the signal.

None of the Curses functions are required to be safe with respect to signals (see sigaction () in the
XSH specification).
Thread-Safety

The interfaces defined by this document need not be thread-safe.

Relationship to the XBD Specification

Applications using Curses should not also control the terminal using capabilities of the general
terminal interface defined in the XBD specification, Chapter 11, General Terminal Interface.

There is no requirement that the paradigms that exist while in Curses mode be carried over
outside the Curses environment (see def_prog_mode()).

X/Open Curses, Issue 7 13

Components Interface Overview

3.2

14

Signals

The behavior of Curses with respect to signals not defined by the XBD specification is
unspecified.

Screens, Windows, and Terminals
Screen

A screen is the physical output device of the terminal. In Curses, a SCREEN data type is an
opaque data type associated with a terminal. Each window (see below) is associated with a
SCREEN.

Window

The Curses functions permit manipulation of window objects, which can be thought of as two-
dimensional arrays of characters and their renditions representing all or part of a terminal’s
physical screen. Windows do not have to correspond to the entire screen. It is possible to create
smaller windows and also to indicate that a window is only partially visible on the screen. It is
possible to create windows larger than the terminal screen using pads. A default window called
stdscr, which is the size of the terminal screen, is supplied. Others may be created with
newterm().

Data structures declared as WINDOW refer to windows (and to subwindows, derived
windows, pads, and subpads, as described elsewhere). These data structures are manipulated
with functions described in Chapter 7.

Among the most basic functions are move() and addch() which manipulate the default window
stdscr, and refresh() which tells Curses to update the user’s screen from stdscr. More general
versions of these functions enable specific windows to be manipulated and refreshed.

Line drawing characters may be specified to be output. On input, Curses is also able to translate
arrow and function keys that transmit escape sequences into single values. The line drawing
characters and input values use names defined in <curses.h>.

Each window has a flag that indicates that the information in the window could differ from the
information displayed on the terminal device. Making any change to the contents of the
window, moving or modifying the window, or setting the window’s cursor position, sets this
flag (touches the window). Refreshing the window clears this flag. (For further information, see
is_linetouched () (on page 141).)

Subwindow

A subwindow is a window, created within another window (called the parent window), and
positioned relative to the parent window. A subwindow can be created by calling derwin(),
newpad (), or subwin ().

Subwindows can be created from a parent window by calling subwin (). The position and size of
subwindows on the screen must be identical to or totally within the parent window. Changes to
either the parent window or the subwindow affect both. Window clipping is not a property of
subwindows.

Technical Standard 2009

Interface Overview Screens, Windows, and Terminals

3.3

3.3.1

Ancestor

The term ancestor refers to a window’s parent, or its parent, and so on.

Derived Window

Derived windows are subwindows whose position is defined by reference to the parent window
rather than in absolute screen coordinates. Derived windows are otherwise no different from
subwindows.

Pad

A pad is a specialized case of a window which can be bigger than the actual screen size and is
not necessarily associated with a particular part of the screen. Pads should be used whenever a
window larger than the terminal screen is required.

Subpad

A subpad is a specialized case of a window created within another pad.

Terminal

A terminal is the logical input and output device through which character-based applications
interact with the user. TERMINAL is an opaque data type associated with a terminal. A
TERMINAL data structure primarily contains information about the capabilities of the terminal,
as defined by terminfo. A TERMINAL also contains information about the terminal modes and
current state for input and output operations. Each screen (see above) is associated with a
TERMINAL.

Characters

Character Storage Size

Historically, a position on the screen has corresponded to a single stored byte. This
correspondence is no longer true for several reasons:

e Some characters may occupy several columns when displayed on the screen (see Section
3.3.2, on page 16).

» Some characters may be non-spacing characters, defined only in association with a spacing
character (see Section 3.3.5, on page 16).

» The number of bytes to hold a character from the extended character sets depends on the
LC_CTYPE locale category.

The internal storage format of characters and renditions is unspecified. There is no implied
correspondence between the internal storage format and the external representation of
characters and renditions in objects of type chtype and cchar_t.

X/Open Curses, Issue 7 15

Characters I nterface Overview

3.3.2

EC

3.3.3

EC

3.34

EC

EC

3.3.,5

EC

16

Multi-Column Characters

Some character sets define multi-column characters that occupy more than one column position
when displayed on the screen.

Writing a character whose width is greater than the width of the destination window is an error.

Attributes

Each character can be displayed with attributes such as underlining, reverse video, or color on
terminals that support such display enhancements. Current attributes of a window are applied
to all characters that are written into the window with waddch(), wadd_wch(), waddstr(),
waddchstr (), waddwstr (), waddwchstr (), and wprintw(). Attributes can be combined.

Attributes can be specified using constants with the A_ prefix specified in <curses.h>. The A_
constants manipulate attributes in objects of type chtype. Additional attributes can be specified
using constants with the WA_ prefix. The WA_ constants manipulate attributes in objects of type
attr_t.

Two constants that begin with A_ and WA_ and that represent the same terminal capability refer
to the same attribute in the terminfo database and in the window data structure. The effect on a
window does not differ depending on whether the application specifies A_ or WA_ constants.
For example, when an application updates window attributes using the interfaces that support
the A_ values, a query of the window attribute using the function that returns WA_ values
reflects this update. When it updates window attributes using the interfaces that support the
WA_ values, for which corresponding A_ values exist, a query of the window attribute using the
function that returns A_ values reflects this update.

Rendition
The rendition of a character displayed on the screen is its attributes and a color pair.

The rendition of a character written to the screen becomes a property of the character and moves
with the character through any scrolling and insert/delete line/character operations. To the
extent possible on a particular terminal, a character’s rendition corresponds to the graphic
rendition of the character put on the screen.

If a given terminal does not support a rendition that an application program is trying to use,
Curses may substitute a different rendition for it.

Colors are always used in pairs (referred to as color-pairs). A color-pair consists of a foreground
color (for characters) and a background color (for the field on which the characters are
displayed).

Non-Spacing Characters

The requirements in this section are in effect only for implementations that claim Enhanced
Curses compliance.

Some character sets may contain non-spacing characters. (Non-spacing characters are those, other
than the \O' character, for which wcwidth() returns a width of zero.) The application may
write non-spacing characters to a window. Every non-spacing character in a window is
associated with a spacing character and modifies the spacing character. Non-spacing characters

Technical Standard 2009

Interface Overview Characters

3.3.6

in a window cannot be addressed separately. A non-spacing character is implicitly addressed
whenever a Curses operation affects the spacing character with which the non-spacing character
is associated.

Non-spacing characters do not support attributes. For interfaces that use wide characters and
attributes, the attributes are ignored if the wide character is a non-spacing character. Multi-
column characters have a single set of attributes for all columns. The association of non-spacing
characters with spacing characters can be controlled by the application using the wide-character
interfaces. The wide-character string functions provide codeset-dependent association.

Two typical effects of a non-spacing character associated with a spacing character called 'c’ are
as follows:

¢ The non-spacing character may modify the appearance of 'c’ . (For instance, there may be
non-spacing characters that add diacritical marks to characters. However, there may also
be spacing characters with built-in diacritical marks.)

¢ The non-spacing character may bridge 'c’ to the character following 'c’ . (Examples of
this usage are the formation of ligatures and the conversion of characters into compound
display forms, words, or ideograms.)

Implementations may limit the number of non-spacing characters that can be associated with a
spacing character, provided any limit is at least five (5).

Complex Characters

A complex character is a set of associated characters, which may include a spacing character and
may include any non-spacing characters associated with it. A spacing complex character is a
spacing character followed by any non-spacing characters associated with it; that is, a spacing
complex character is a complex character that includes one spacing character. An example of a
code set that has complex characters is ISO/IEC 10646-1: 1993.

A complex character can be written to the screen; if it does not include a spacing character, any
non-spacing characters are associated with the spacing complex character that exists at the
specified screen position. When the application reads information back from the screen, it
obtains spacing complex characters.

The cchar_t data type represents a complex character and its rendition. When a cchar_t
represents a non-spacing complex character (that is, when there is no spacing character within
the complex character), then its rendition is not used; when it is written to the screen, it uses the
rendition specified by the spacing character already displayed.

An object of type cchar_t can be initialized using setcchar() and its contents can be extracted
using getcchar(). The behavior of functions that take a cchar_t input argument is undefined if
the application provides a cchar_t value that was not initialized in this way or obtained from a
Curses function that has a cchar_t output argument.

Window Properties

Associated with each window are the following properties that affect the placing of characters
into the window (see Section 3.4.4, on page 21).

X/Open Curses, Issue 7 17

Characters I nterface Overview

Window Rendition

Each window has a rendition, which is combined with the rendition component of the window’s
background property described below.

Window Background

Each window has a background property. The background property specifies:

» A spacing complex character (the background character) that will be used in a variety of
situations where visible information is deleted from the screen

+ A rendition to use in displaying the background character in those situations, and in other
situations specified in Section 3.4.4 (on page 21)

34 Conceptual Operations

3.4.1 Screen Addressing

Many Curses functions use a coordinate pair. In the DESCRIPTION, coordinate locations are
represented as (y, x) since the y argument always precedes the x argument in the function call.
These coordinates denote a line/column position, not a character position.

The coordinate y always refers to the row (of the window), and x always refers to the column.
The first row and the first column is number 0, not 1. The position (0, 0) is the window’s origin.

For example, for terminals that display the ISO 8859-1:1987 character set (with left-to-right
writing), (0, 0) represents the upper left-hand corner of the screen.

Functions that start with mv take arguments that specify a (y, x) position and move the cursor (as
though move() were called) before performing the requested action. As part of the requested
action, further cursor movement may occur, specified on the respective reference page.

3.4.2 Basic Character Operations
Adding (Overwriting)

The Curses functions that contain the word add—such as addch()—actually specify one or more

EC characters to replace (overwrite) characters already in the window. If these functions specify
only non-spacing characters, they are appended to a spacing character already in the window;
see also Section 3.3.5 (on page 16).

When replacing a multi-column character with a character that requires fewer columns, the new
character is added starting at the specified or implied column position. All columns that the
former multi-column character occupied that the new character does not require are orphaned
columns, which are filled using the background character and rendition.

Replacing a character with a character that requires more columns also replaces one or more
subsequent characters on the line. This process may also produce orphaned columns.

18 Technical Standard 2009

Interface Overview Conceptual Operations

EC

EC

EC

Truncation, Wrapping, and Scrolling

If the application specifies a character or a string of characters such that writing them to a
window would extend beyond the end of the line (for example, if the application tries to
deposit any multi-column character at the last column in a line), the behavior depends on
whether the function supports line wrapping:

« If the function does not wrap, it fails.

o If the function wraps, then it places one or more characters in the window at the start of
the next line, beginning with the first character that would not completely fit on the
original line.

If the final character on the line is a multi-column character that does not completely fit on
the line, the entire character wraps to the next line and columns at the end of the original
line may be orphaned.

If the original line was the last line in the window, the wrap may cause a scroll to occur:

— If scrolling is enabled, a scroll occurs. The contents of the first line of the window are
lost. The contents of each remaining line in the window move to the previous line.
The last line of the window is filled with any characters that wrapped. Any
remaining space on the last line is filled with the background character and
rendition.

— If scrolling is disabled, any characters that would extend beyond the last column of
the last line are truncated.

The scrollok() function enables and disables scrolling.

Some add functions move the cursor just beyond the end of the last character added. If this
position is beyond the end of a line, it causes wrapping and scrolling under the conditions
specified in the second bullet above.

Insertion

Insertion functions (such as insch()) insert characters immediately before the character at the
specified or implied cursor position.

The insertion shifts all characters that were formerly at or beyond the cursor position on the
cursor line toward the end of that line. Since none of the insertion functions support wrapping,
the characters that would thus extend beyond the end of the line are removed from the window.
This may produce orphaned columns.

If multi-column characters are displayed, some cursor positions are within a multi-column
character but not at the beginning of a character. Any request to insert data at a position that is
not the beginning of a multi-column character will be adjusted so that the actual cursor position
is at the beginning of the multi-column character in which the requested position occurs.

There are no warning indications relative to cursor relocation. The application should not
maintain an image of the cursor position, since this constitutes placing terminal-specific
information in the application and defeats the purpose of using Curses.

Portable applications cannot assume that a cursor position specified in an insert function is a re-
usable indication of the actual cursor position. Portable applications should use getyx() to
obtain the current cursor position in a window.

X/Open Curses, Issue 7 19

Conceptual Operations Interface Overview

EC
EC

EC

EC

3.4.3

20

Deletion

Deletion functions (such as delch()) delete the simple or complex character at the specified or
implied cursor position, no matter which column of the character this is. All column positions
are replaced by the background character and rendition and the cursor is not relocated. If a
character-deletion operation would cause a previous wrapping operation to be undone, then the
results are unspecified.

Window Operations

Overlapping a window (that is, placing one window on top of another) and overwriting a
window (that is, copying the contents of one window into another) follows the operation of
overwriting multi-column glyphs around its edge. Any orphaned columns are handled as in
the character operations.

Characters that Straddle the Subwindow Border

A subwindow can be defined such that multi-column characters straddle the subwindow
border. The character operations deal with these straddling characters as follows:

e Reading the subwindow with a function such as in_wch() reads the entire straddling
character.

» Adding, inserting, or deleting in the subwindow deletes the entire straddling character
before the requested operation begins and does not relocate the cursor.

o Scrolling lines in the subwindow has the following effects:

— A straddling character at the start of the line is completely erased before the scroll
operation begins.

— A straddling character at the end of the line moves in the direction of the scroll and
continues to straddle the subwindow border. Column positions outside the
subwindow at the straddling character’s former position are orphaned unless
another straddling character scrolls into those positions.

If the application calls a function such as border(), the above situations do not occur because
writing the border on the subwindow deletes any straddling characters.

In the above cases involving multi-column characters, operations confined to a subwindow can
modify the screen outside the subwindow. Therefore, saving a subwindow, performing
operations within the subwindow, and then restoring the subwindow may disturb the
appearance of the screen. To overcome these effects (for example, for pop-up windows), the
application should refresh the entire screen.

Special Characters
Some functions process special characters as specified below.

In functions that do not move the cursor based on the information placed in the window, these
special characters would only be used within a string in order to affect the placement of
subsequent characters; the cursor movement specified below does not persist in the visible
cursor beyond the end of the operation. In functions that do move the cursor, these special
characters can be used to affect the placement of subsequent characters and to achieve
movement of the visible cursor.

Technical Standard 2009

Interface Overview

<backspace>

Conceptual Operations

Unless the cursor was already in column 0, <backspace> moves the cursor one
column toward the start of the current line and any characters after the
<backspace> are added or inserted starting there.

<carriage-return> Unless the cursor was already in column 0, <carriage-return> moves the

<newline>

<tab>

cursor to the start of the current line. Any characters after the <carriage-
return> are added or inserted starting there.

In an add operation, Curses adds the background character into successive
columns until reaching the end of the line. Scrolling occurs as described in
Truncation, Wrapping, and Scrolling (on page 19). Any characters after the
<newline> character are added, starting at the start of the new line.

In an insert operation, <newline> erases the remainder of the current line with
the background character (effectively a wclrtoeol()) and moves the cursor to
the start of a new line. When scrolling is enabled, advancing the cursor to a
new line may cause scrolling as described in Truncation, Wrapping, and
Scrolling (on page 19). Any characters after the <newline> character are
inserted at the start of the new line.

If lines equals one, the behavior is unspecified (note that the filter() function
sets lines equal to one).

Tab characters in text move subsequent characters to the next horizontal tab
stop. Curses may assume that tab stops are in column 0, 8, 16, and so on.

In an insert or add operation, Curses inserts or adds, respectively, the
background character into successive columns until reaching the next tab stop.
If there are no more tab stops in the current line, wrapping and scrolling occur
as described in Truncation, Wrapping, and Scrolling (on page 19).

Control Characters

The Curses functions that perform special-character processing conceptually convert control
characters to the caret (™) character followed by a second character (which is an uppercase
letter if it is alphabetic) and write this string to the window in place of the control character. The
functions that retrieve text from the window will not retrieve the original control character.

3.4.4 Rendition of Characters Placed into a Window

When the application adds or inserts characters into a window, the effect is as follows:

If the character is not the <space> character, then the window receives:

o The character that the application specifies

¢ The color that the application specifies; or the window color, if the application does not
specify a color

e The attributes specified, OR’ed with the window attributes

If the character is the <space> character, then the window receives:

¢ The background character

¢ The color that the application specifies; or the window color, if the application does not
specify a color

X/Open Curses, Issue 7

21

Conceptual Operations Interface Overview

3.5

3.5.1

EC

EC

22

¢ The attributes specified, OR’ed with the window attributes

Input Processing

The Curses input model provides a variety of ways to obtain input from the keyboard.

Keypad Processing

The application can enable or disable keypad translation by calling keypad (). When translation is
enabled, Curses attempts to translate a sequence of terminal input that represents the pressing of
a function key into a single key code. When translation is disabled, Curses passes terminal input
to the application without such translation, and any interpretation of the input as representing
the pressing of a keypad key must be done by the application.

The complete set of key codes for keypad keys that Curses can process is specified by the
constants defined in <curses.h> whose names begin with KEY_. Each terminal type described
in the terminfo database may support some or all of these key codes. The terminfo database
specifies the sequence of input characters from the terminal type that correspond to each key
code (see Section A.1.8, on page 360).

The Curses implementation cannot translate keypad keys on terminals where pressing the keys
does not transmit a unique sequence.

When translation is enabled and a character that could be the beginning of a function key (such
as escape) is received, Curses notes the time and begins accumulating characters. If Curses
receives additional characters that represent the pressing of a keypad key, within an unspecified
interval from the time the first character was received, then Curses converts this input to a key
code for presentation to the application. If such characters are not received during this interval,
translation of this input does not occur and the individual characters are presented to the
application separately. (Because Curses waits for this interval to accumulate a key code, many
terminals experience a delay between the time a user presses the escape key and the time the
escape is returned to the application.)

In addition, No Timeout Mode provides that in any case where Curses has received part of a
function key sequence, it waits indefinitely for the complete key sequence. The “unspecified
interval” in the previous paragraph becomes infinite in No Timeout Mode. No Timeout Mode
allows the use of function keys over slow communication lines. No Timeout Mode lets the user
type the individual characters of a function key sequence, but also delays application response
when the user types a character (not a function key) that begins a function key sequence. For this
reason, in No Timeout Mode many terminals will appear to hang between the time a user
presses the escape key and the time another key is pressed. No Timeout Mode is switchable by
calling notimeout ().

If any special characters (see Section 3.4.3, on page 20) are defined or redefined to be characters
that are members of a function key sequence, then Curses will be unable to recognize and
translate those function keys.

Several of the modes discussed below are described in terms of availability of input. If keypad
translation is enabled, then input is not available once Curses has begun receiving a keypad
sequence until the sequence is completely received or the interval has elapsed.

Technical Standard 2009

Interface Overview

3.5.2 Input Mode

Input Processing

The XBD specification (Special Characters) defines flow-control characters, the interrupt
character, the erase character, and the kill character. Four mutually-exclusive Curses modes let
the application control the effect of these input characters:

Input Mode

Effect

Cooked Mode

EC

This achieves normal line-at-a-time processing with all special
characters handled outside the application. This achieves the
same effect as canonical-mode input processing as specified in
the XBD specification. The state of the ISIG and IXON flags are
not changed upon entering this mode by calling nocbreak(), and
are set upon entering this mode by calling noraw().

The implementation supports erase and kill characters from any
supported locale, no matter what the width of the character.

cbreak Mode

Characters typed by the user are immediately available to the
application and Curses does not perform special processing on
either the erase character or the kill character. An application can
select cbreak mode to do its own line editing but to let the abort
character be used to abort the task. This mode achieves the same
effect as non-canonical-mode, Case B input processing (with
MIN set to 1 and ICRNL cleared) as specified in the XBD
specification. The state of the ISIG and IXON flags are not
changed upon entering this mode.

Half-Delay Mode

The effect is the same as cbreak, except that input functions wait
until a character is available or an interval defined by the
application elapses, whichever comes first. This mode achieves
the same effect as non-canonical-mode, Case C input processing
(with TIME set to the value specified by the application) as
specified in the XBD specification. The state of the ISIG and
IXON flags are not changed upon entering this mode.

Raw Mode

Raw mode gives the application maximum control over terminal
input. The application sees each character as it is typed. This
achieves the same effect as non-canonical mode, Case D input
processing as specified in the XBD specification. The ISIG and
IXON flags are cleared upon entering this mode.

The terminal interface settings are recorded when the process calls initscr() or newterm() to
initialize Curses and restores these settings when endwin() is called. The initial input mode for
EC Curses operations is unspecified unless the implementation supports Enhanced Curses
compliance, in which case the initial input mode is cbreak mode.

The behavior of the BREAK key depends on other bits in the display driver that are not set by

Curses.

X/Open Curses, Issue 7

23

Input Processing Interface Overview

3.5.3

3.5.4

3.6

3.6.1

24

Delay Mode

Two mutually-exclusive delay modes specify how quickly certain Curses functions return to the
application when there is no terminal input waiting when the function is called:

No Delay The function fails.

Delay The application waits until the implementation passes text through to the
application. If cbreak or Raw Mode is set, this is after one character. Otherwise, this
is after the first <newline> character, end-of-line character, or end-of-file character.

The effect of No Delay Mode on function key processing is unspecified.

Echo Processing

Echo mode determines whether Curses echoes typed characters to the screen. The effect of Echo
mode is analogous to the effect of the ECHO flag in the local mode field of the termios structure
associated with the terminal device connected to the window. However, Curses always clears
the ECHO flag when invoked, to inhibit the operating system from performing echoing. The
method of echoing characters is not identical to the operating system’s method of echoing
characters, because Curses performs additional processing of terminal input.

If in Echo mode, Curses performs its own echoing: Any visible input character is stored in the
current or specified window by the input function that the application called, at that window’s
cursor position, as though addch() were called, with all consequent effects such as cursor
movement and wrapping.

If not in Echo mode, any echoing of input must be performed by the application. Applications
often perform their own echoing in a controlled area of the screen, or do not echo at all, so they
disable Echo mode.

It may not be possible to turn off echo processing for synchronous and networked asynchronous
terminals because echo processing is done directly by the terminals. Applications running on
such terminals should be aware that any characters typed will appear on the screen at wherever
the cursor is positioned.

The Set of Curses Functions

The Curses functions allow: overall screen, window, and pad manipulation; output to windows
and pads; reading terminal input; control over terminal and Curses input and output options;
environment query functions; color manipulation; use of soft label keys; access to the terminfo
database of terminal capabilities; and access to low-level functions.

Function Name Conventions

The reference pages in Chapter 4 present families of multiple Curses functions. Most function
families have different functions that give the programmer the following options:

* A function with the basic name operates on the window stdscr. A function with the same
name plus the w prefix operates on a window specified by the win argument.

When the reference page for a function family refers to the current or specified window, it
means stdscr for the basic functions and the window specified by win for any w function.

Technical Standard 2009

Interface Overview

3.6.2

The Set of Curses Functions

Functions whose names have the p prefix require an argument that is a pad instead of a
window.

e A function with the basic name operates based on the current cursor position (of the
current or specified window, as described above). A function with the same name plus the
mv prefix moves the cursor to a position specified by the y and x arguments before
performing the specified operation.

When the reference page for a function family refers to the current or specified position, it
means the cursor position for the basic functions and the position (y, x) for any mv
function.

The mvw prefix exists and combines the mv semantics discussed here with the w
semantics discussed above. The window argument is always specified before the
coordinates.

A function with the basic name is often provided for historical compatibility and operates
only on single-byte characters. A function with the same name plus the w infix operates on
wide (multi-byte) characters. A function with the same name plus the _w infix operates on
complex characters and their renditions.

¢ When a function with the basic name operates on a single character, there is sometimes a
function with the same name plus the n infix that operates on multiple characters. An n
argument specifies the number of characters to process. The respective reference page

specifies the outcome if the value of n is inappropriate.

Function Families Provided

Function Names Description s |w|c Refer to

Add (Overwrite)

[mo][w]addch() Add a character Y |Y|Y |addch()

[mv][w]addch[n]str() | Add a character string N |N | N |addchstr()

[mo][w]add[n]str() Add a string Y |Y|Y |addnstr()

[mo][w]add[n]wstr() Add a wide-character string Y |Y|Y |addnwstr()

[mo][w]add_wch() Add a wide character and rendition Y |Y|Y |add_wch()

[mv][w]add_wch[n]str() | Add an array of wide characters and renditions | ? |N | N |add_wchnstr()
Change Renditions

[mo][w]chgat() Change renditions of characters in a window — | N | N |chgat()
Delete

[mo][w]delch() Delete a character —|—|N |delch()
Get (Input from Keyboard to Window)

[mv][w]getch() Get a character Y |Y|Y|getch()

[mu][w]get[n]str() Get a character string Y |Y|Y |getnstr()

[mv][w]get_wch() Get a wide character Y |Y|Y |get_wch()

[mo][w]get[n]_wstr() |Get an array of wide characters and key codes | Y | Y | Y |get_wstr()
Explicit Cursor Movement

[w]move() move the cursor — |—|—|move()
Input (Read Back from Window)

[mo][w]inch() Input a character — |—|—inch()

[mo][w]inch[n]str() Input an array of characters and attributes — | —|—|inchnstr()

[mo][w]in[n]str() Input a string — | —|—innstr()

X/Open Curses, Issue 7

25

The Sat of Curses Functions

3.7

EC
EC

EC

26

Interface Overview

Function Names Description s|w|c Refer to
[mo][w]in[n]wstr() Input a string of wide characters — | —|—|innwstr()
[mo][w]in_wch() Input a wide character and rendition — | —|—in_wch()
[mo][w]in_wch[n]str() |Input an array of wide characters and renditions | —|—|—|inwchnstr()

Insert
[mo][wlinsch() Insert a character Y |N | N |insch()
[mo][w]ins[n]str() Insert a character string Y | N | N |insnstr()
[mo][wlins_[n]wstr() |Insert a wide-character string Y | N | N |ins_nwstr()
[mo][wlins_wch() Insert a wide character Y |N | N |ins_wch()
Print and Scan
[mo][w]printw() Print formatted output — | —|— | moprintw()
[mo][w]scanw() Convert formatted output — |—|—|movscanw()
Legend

The following notation indicates the effect when characters are moved to the screen. (For the Get
functions, this applies only when echoing is enabled.)

s Y means these functions perform special-character processing (see Section 3.4.3, on page 20).
N means they do not. ? means the results are unspecified when these functions are applied
to special characters.

w Y means these functions perform wrapping (see Truncation, Wrapping, and Scrolling, on
page 19). N means they do not.

¢ Y means these functions advance the cursor (see Truncation, Wrapping, and Scrolling, on
page 19). N means they do not.

— The attribute specified by this column does not apply to these functions.

Interfaces Implemented as Macros

The following interfaces with arguments shall be implemented as macros:

Macros

Reference Page

COLOR_PAIR, PAIR_NUMBER()

Refer to can_change_color ().

getbeqyx(), getmaxyx (), getparyx(), getyx()

Refer to getbegyx ().

The int arguments passed to getbegyx(), getmaxyx(), getparyx(), and getyx() shall be modifiable

Ivalues.

Technical Standard 2009

Interface Overview Initialized Curses Environment

3.8

EC

3.9

Initialized Curses Environment

Before executing an application that uses Curses, the terminal must be prepared as follows:
o If the terminal has hardware tab stops, they should be set.
 Any initialization strings defined for the terminal must be output to the terminal.

The resulting state of the terminal must be compatible with the model of the terminal that
Curses has, as reflected in the terminal’s entry in the terminfo database (see Chapter 7).

To initialize Curses, the application must call initscr() or newterm() before calling any of the
other functions that deal with windows and screens, and it must call endwin () before exiting. To
get character-at-a-time input without echoing (most interactive, screen-oriented programs want
this), the following sequence should be used:

initscr()
cbreak()
noecho()

Most programs would additionally use the sequence:

nonl()
intrflush(stdscr, FALSE)
keypad(stdscr, TRUE)

Synchronous and Networked Asynchronous Terminals

This section indicates to the application writer some considerations to be borne in mind when
driving synchronous, networked asynchronous (NWA), or non-standard directly-connected
asynchronous terminals.

Such terminals are often used in a mainframe environment and communicate to the host in
block mode; that is, the user types characters at the terminal then presses a special key to initiate
transmission of the characters to the host.

Frequently, although it may be possible to send arbitrary sized blocks to the host, it is not
possible or desirable to cause a character to be transmitted with only a single keystroke.

This can cause severe problems to an application wishing to make use of single-character input;
see Section 3.5 (on page 22).
Output

The Curses interface can be used in the normal way for all operations pertaining to output to the
terminal, with the possible exception that on some terminals the refresh() routine may have to
redraw the entire screen contents in order to perform any update.

If it is additionally necessary to clear the screen before each such operation, the result could be
undesirable.

X/Open Curses, Issue 7 27

Synchronous and Networked Asynchronous Terminals Interface Overview

Input

Because of the nature of operation of synchronous (block-mode) and NWA terminals, it might
not be possible to support all or any of the Curses input functions. In particular, the following
points should be noted:

« Single-character input might not be possible. It may be necessary to press a special key to
cause all characters typed at the terminal to be transmitted to the host.

« It is sometimes not possible to disable echo. Character echo may be performed directly by
the terminal. On terminals that behave in this way, any Curses application that performs
input should be aware that any characters typed will appear on the screen at wherever the
cursor is positioned. This does not necessarily correspond to the position of the cursor in
the window.

28 Technical Standard 2009

Chapter 4

Curses Interfaces

This chapter describes the Curses functions, macros, and external variables to support
applications portability at the C-language source level.

The display model defined in Section 3.4 (on page 18) contains important information, not
repeated for individual interface definitions, regarding cursor movement, relocation of the
cursor in the case of multi-column characters, wrapping of characters to subsequent lines of the
screen, truncation of characters, and other important concepts. The reference pages must be read
in conjunction with this overview information.

X/Open Curses, Issue 7 29

COLOR_PAIRS ENHANCED CURSES Curses Interfaces
NAME
COLOR_PAIRS, COLORS — external variables for color support

SYNOPSIS
EC #include <curses.h>

extern int COLOR_PAIRS;
extern int COLORS;

DESCRIPTION
Refer to can_change_color ().

30 Technical Standard 2009

Curses Interfaces

NAME

COLS — number of columns on terminal screen

SYNOPSIS
EC #include <curses.h>

extern int COLS;

DESCRIPTION

The external variable COLS indicates the number of columns on the terminal screen.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
initscr(), <curses.h>

CHANGE HISTORY

First released in Issue 4.

X/Open Curses, Issue 7

ENHANCED CURSES

COLS

31

LINES

NAME

LINES — number of lines on terminal screen

SYNOPSIS
EC #include <curses.h>

extern int LINES;

DESCRIPTION

ENHANCED CURSES

Curses Interfaces

The external variable LINES indicates the number of lines on the terminal screen.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
initscr(), <curses.h>

CHANGE HISTORY

First released in Issue 4.

32

Technical Standard 2009

Curses Interfaces ENHANCED CURSES add_wch()

NAME
add_wch, mvadd_wch, mvwadd_wch, wadd_wch — add a complex character and rendition to
a window

SYNOPSIS

EC #include <curses.h>
int add_wch(const cchar_t * weh);
int mvadd_wch(int y, i nt X, c onstcchar_ t* weh);
int mvwadd_wch(WINDOW * win, i nt y, i nt x, ¢ onstcchar_t* weh);
int wadd_wch(WINDOW * wi n, ¢ onstcchar t* weh);

DESCRIPTION
These functions add information to the current or specified window at the current or specified
position, and then advance the cursor. These functions perform special character processing.
These functions perform wrapping.

o If wch refers to a spacing character, then any previous character at that location is removed,
a new character specified by wch is placed at that location with rendition specified by wch;
then the cursor advances to the next spacing character on the screen.

o If wch refers to a non-spacing character, all previous characters at that location are
preserved, the non-spacing characters of wch are added to the spacing complex character,
and the rendition specified by wch is ignored.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO
Section 3.4.4 (on page 21), addch (), <curses.h>
CHANGE HISTORY

First released in Issue 4.

Issue 4, Version 2
Corrections made to the SYNOPSIS.

X/Open Curses, Issue 7 33

add_wchnstr() ENHANCED CURSES Curses Interfaces

NAME
add_wchnstr, add_wchstr, mvadd_wchnstr, mvadd_wchstr, mvwadd_wchnstr,
mvwadd_wchstr, wadd_wchnstr, wadd_wchstr — add an array of complex characters and
renditions to a window
SYNOPSIS
EC #include <curses.h>
int add_wchnstr(const cchar_t * wchstr, i nt n);
int add_wchstr(const cchar_t * wehstr);
int mvadd_wchnstr(int y, i nt X, c onstcchar_ t* wchstr, i nt n);
int mvadd_wchstr(int y, i nt X, c onstcchar_ t* wehstr);
int mvwadd_wchnstr(WINDOW * win, i nt y, i nt X, c onstcchar_t* wechstr,
int n);
int mvwadd_wchstr(WINDOW * win, i nt y, i nt X, c onstcchar t* wechstr);
int wadd_wchnstr(WINDOW * W n, c onstcchar t* wchstr, i nt n);
int wadd_wchstr(WINDOW * wi n, ¢ onstcchar t* wechstr);
DESCRIPTION
These functions write the array of cchar_t specified by wchstr into the current or specified
window starting at the current or specified cursor position.
These functions do not advance the cursor. The results are unspecified if wchstr contains any
special characters.
These functions end successfully on encountering a null cchar_t. The functions also end
successfully when they fill the current line. If a character cannot completely fit at the end of the
current line, those columns are filled with the background character and rendition.
The add_wchnstr(), mvadd_wchnstr(), mowadd_wchnstr(), and wadd_wchnstr() functions end
successfully after writing n cchar._ts (or the entire array of cchar_ts, if 7 is -1).
RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO
<curses.h>
CHANGE HISTORY

First released in Issue 4.

34 Technical Standard 2009

Curses Interfaces ENHANCED CURSES add_wchnstr()

Issue 4, Version 2
Corrections made to the SYNOPSIS.

X/Open Curses, Issue 7 35

addch() CURSES Curses Interfaces

NAME
addch, mvaddch, mvwaddch, waddch — add a single-byte character and rendition to a window
and advance the cursor

SYNOPSIS
#include <curses.h>

int addch(const chtype ch);

int mvaddch(int y, i nt X, c onstchtype ch);

int mvwaddch(WINDOW * win, i nt y, i nt X, c onstchtype ch);
int waddch(WINDOW * wi n, ¢ onst chtype ch);

DESCRIPTION
The addch(), mvaddch(), mvwaddch(), and waddch() functions place ch into the current or
specified window at the current or specified position, and then advance the window’s cursor
position. These functions perform special character processing. These functions perform
wrapping.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.4.4 (on page 21), add_wch(), attroff(), doupdate(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4

The entry is rewritten for clarity. Also the type of argument ch is changed from chtype to const
chtype.

36 Technical Standard 2009

Curses Interfaces CURSES addchstr()

NAME
addchstr, addchnstr, mvaddchstr, mvaddchnstr, mvwaddchstr, mvwaddchnstr waddchstr,
waddchnstr — add string of single-byte characters and renditions to a window

SYNOPSIS
#include <curses.h>

int addchstr(const chtype * chstr);
EC int addchnstr(const chtype * chstr, i nt n);

int mvaddchstr(int y, i nt X, c onstchtype* chstr);
EC int mvaddchnstr(int y, i nt X, c onstchtype * chstr, i nt n);

int mvwaddchstr(WINDOW * win, i nt y, i nt X, c onstchtype* chstr);
EC int mvwaddchnstr(WINDOW * win, i nt y, i nt x, c onstchtype* chstr,

int n);

int waddchstr(WINDOW * W n, c onstchtype * chstr);
EC int waddchnstr(WINDOW * Wi n, c onst chtype * chstr, i nt n);
DESCRIPTION

These functions overlay the contents of the current or specified window, starting at the current
or specified position, with the contents of the array pointed to by chstr until a null chtype is
encountered in the array pointed to by chstr.

These functions do not change the cursor position. These functions do not perform special
character processing. These functions do not perform wrapping.

EC The addchnstr(), mvaddchnstr(), mvwaddchnstr(), and waddchnstr() functions copy at most n
items, but no more than will fit on the current or specified line. If n is —1 then the whole string is
copied, to the maximum number that fit on the current or specified line.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
addch(), add_wch(), add_wchnstr(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Corrections made to the SYNOPSIS.

X/Open Curses, Issue 7 37

addnstr() ENHANCED CURSES Curses Interfaces

NAME
addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr, waddnstr, waddstr — add a
string of multi-byte characters without rendition to a window and advance cursor

SYNOPSIS
EC #include <curses.h>
int addnstr(const char * str, i nt n);
int addstr(const char * str);
int mvaddnstr(int y, i nt x, constchar* str, i nt n);
int mvaddstr(int y, i nt X, constchar* str);

int mvwaddnstr(WINDOW * win, i nt y, i nt x, constchar* str, i nt n);
int mvwaddstr(WINDOW * win, i nt y, i nt x, constchar* str);

int waddnstr(WINDOW * win, constchar* str, i nt n);

int waddstr(WINDOW * wi n, c onstchar* str);

DESCRIPTION
These functions write the characters of the string str on the current or specified window starting
at the current or specified position using the background rendition.

These functions advance the cursor position. These functions perform special character
processing. These functions perform wrapping.

The addstr (), mvaddstr (), mvwaddstr(), and waddstr() functions are similar to calling mbstowcs()
on str, and then calling addwstr (), mvaddwstr (), mowaddwstr (), and waddwstr (), respectively.

The addnstr (), mvaddnstr (), mvwaddnstr (), and waddnstr () functions use at most n bytes from str.
These functions add the entire string when n is —1. These functions are similar to calling
mbstowcs () on the first n bytes of str, and then calling addwstr (), mvaddwstr (), mvwaddwstr (), and
waddwstr (), respectively.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
addnwstr (), mbstowcs () (in the XSH specification), <curses.h>

CHANGE HISTORY
First released in Issue 4.

In Issue 3, the addstr(), mvaddstr(), mowaddstr(), and waddstr() functions were described in the
addstr() entry. In Issue 4, the type of the str argument defined for these functions is changed
from char * to const char *, and the DESCRIPTION was changed to indicate that the functions
will handle multi-byte sequences correctly.

38 Technical Standard 2009

Curses Interfaces ENHANCED CURSES

Issue 4, Version 2
Corrections made to the SYNOPSIS.

X/Open Curses, Issue 7

addnstr()

39

addnwstr()

ENHANCED CURSES

Curses Interfaces

NAME
addnwstr, addwstr, mvaddnwstr, mvaddwstr, mvwaddnwstr, mvwaddwstr, waddnwstr,
waddwstr — add a wide-character string to a window and advance the cursor
SYNOPSIS
EC #include <curses.h>
int addnwstr(const wchar_t * wstr, i nt n);
int addwstr(const wchar_t * wst r);
int mvaddnwstr(int y, i nt X, c onstwchar t* wstr, i nt n);
int mvaddwstr(int y, i nt X, c onstwchar t* wst r);
int mvwaddnwstr(WINDOW * win, i nt y, i nt x, c onstwchar t* wstr, i nt n);
int mvwaddwstr(WINDOW * win, i nt y, i nt X, c onstwchar_t* wst r);
int waddnwstr(WINDOW * wi n, ¢ onstwchar_t* wstr, i nt n);
int waddwstr(WINDOW * wi n, ¢ onstwchar t* wst r);
DESCRIPTION
These functions write the characters of the wide character string wstr on the current or specified
window at that window’s current or specified cursor position.
These functions advance the cursor position. These functions perform special character
processing. These functions perform wrapping.
The effect is similar to building a cchar_t from the wchar_t and the background rendition and
calling wadd_wch(), once for each wchar_t character in the string. The cursor movement
specified by the mv functions occurs only once at the start of the operation.
The addnwstr(), mvaddnwstr (), mowaddnwstr(), and waddnwstr() functions write at most n wide
characters. If n is —1, then the entire string will be added.
RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO
add_wch(), <curses.h>
CHANGE HISTORY

First released in Issue 4.

Issue 4, Version 2

Corrections made to the SYNOPSIS.

40

Technical Standard 2009

Curses Interfaces ENHANCED CURSES attr_get()

NAME
attr_get, attr_off, attr_on, attr_set, color_set, wattr_get, wattr_off, wattr_on, wattr_set,
wcolor_set — window attribute control functions
SYNOPSIS
EC #include <curses.h>
int attr_get(attr_t *attrs, s hort *col or_pair_nunber, v oid *opts);
int attr_off(attr_t attrs, void *opts);
int attr_on(attr_t attrs, void *opts);
int attr_set(attr_t attrs, s hort col or_pair_nunber, v oid *opts);
int color_set(short col or _pai r_nunber, v oid* opts);
int wattr_get(WINDOW *Win, attr t *attrs, s hort *col or_pair_nunber,
void *opts);
int wattr_off(WINDOW *Win, attr t attrs, void *opts);
int wattr_on(WINDOW *Win, attr t attrs, void *opts);
int wattr_set(WINDOW *Win, attr t attrs, s hort col or_pair_nunber,
void *opts);
int wcolor_set(WINDOW *win, s hort color_pair_nunber, void *opts);
DESCRIPTION
These functions manipulate the attributes and color of the window rendition of the current or
specified window.
The attr_get() and wattr_get() functions obtain the current rendition of a window. If attrs or
color_pair_number is a null pointer, no information will be obtained on the corresponding
rendition information and this is not an error.
The attr_off() and wattr_off() functions turn off attrs in the current or specified window without
affecting any others.
The attr_on() and wattr_on() functions turn on attrs in the current or specified window without
affecting any others.
The attr_set() and wattr_set() functions set the window rendition of the current or specified
window to attrs and color_pair_number.
The color_set() and wcolor_set() functions set the window color of the current or specified
window to color_pair_number.
RETURN VALUE
These functions always return OK.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.

X/Open Curses, Issue 7 41

attr_get() ENHANCED CURSES Curses Interfaces

SEE ALSO
attroff(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
This entry is rewritten to include the color handling functions wcolor_set () and color_set ().

42 Technical Standard 2009

Curses Interfaces CURSES attr off()

NAME
attroff, attron, attrset, wattroff, wattron, wattrset — restricted window attribute control functions
SYNOPSIS
#include <curses.h>
int attroff(int attrs);
int attron(int attrs);
int attrset(int attrs);
int wattroff(WINDOW * win,int attrs);
int wattron(WINDOW * win, i nt attrs);
int wattrset(WINDOW * win,int attrs);
DESCRIPTION
These functions manipulate the window attributes of the current or specified window.
The attroff() and wattroff() functions turn off attrs in the current or specified window without
affecting any others.
The attron() and wattron() functions turn on atfrs in the current or specified window without
affecting any others.
The attrset() and wattrset() functions set the background attributes of the current or specified
window to attrs.
It is unspecified whether these functions can be used to manipulate attributes other than
A_BLINK, A_BOLD, A_DIM, A_REVERSE, A_STANDOUT, and A_UNDERLINE.
RETURN VALUE
These functions always return either OK or 1.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE
Historical implementations returned either OK or 1. This revision allows either behavior.
FUTURE DIRECTIONS
None.
SEE ALSO
attr_get (), standend (), <curses.h>
CHANGE HISTORY
First released in Issue 2.
Issue 4

This entry is rewritten for clarity. The DESCRIPTION is updated to specify that it is undefined
whether these functions can be used to manipulate attributes beyond those defined in Issue 3.

The standend(), standout (), wstandend (), and wstandout() functions are moved to the standend ()
entry.

X/Open Curses, Issue 7 43

baudrate() CURSES

NAME
baudrate — get terminal baud rate

SYNOPSIS
#include <curses.h>

int baudrate(void);
DESCRIPTION

Curses Interfaces

The baudrate () function extracts the output speed of the terminal in bits per second.

RETURN VALUE

The baudrate () function returns the output speed of the terminal.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
tcgetattr () (in the XSH specification), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The argument list is explicitly declared as void.

44

Technical Standard 2009

Curses Interfaces CURSES beep()

NAME
beep — audible signal

SYNOPSIS
#include <curses.h>

int beep(void);

DESCRIPTION
The beep () function alerts the user. It sounds the audible alarm on the terminal, or if that is not
possible, it flashes the screen (visible bell). If neither signal is possible, nothing happens.

RETURN VALUE
The beep () function always returns OK.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Nearly all terminals have an audible alarm, but only some can flash the screen.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
flash(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The argument list is explicitly declared as void. The RETURN VALUE section is changed to
indicate that the function always returns OK. The flash () function is moved to its own entry.

X/Open Curses, Issue 7 45

bkgd() ENHANCED CURSES Curses Interfaces

NAME
bkgd, bkgdset, getbkgd, wbkgd, wbkgdset — turn off the previous background attributes,
logical OR the requested attributes into the window rendition, and set or get background
character and rendition using a single-byte character

SYNOPSIS
EC #include <curses.h>
int bkgd(chtype ch);
void bkgdset(chtype ch);

chtype getbkgd(WINDOW * wi n);
int wokgd(WINDOW * wi n, ¢ htype ch);
void wbkgdset(WINDOW * w n, c htype ch);

DESCRIPTION
The bkgdset () and wbkgdset () functions turn off the previous background attributes, logical OR
the requested attributes into the window rendition, and set the background property of the
current or specified window based on the information in ch. If ch refers to a multi-column
character, the results are undefined.

The bkgd() and wbkgd() functions turn off the previous background attributes, logical OR the
requested attributes into the window rendition, and set the background property of the current
or specified window and then apply this setting to every character position in that window:

¢ The rendition of every character on the screen is changed to the new window rendition.

¢ Wherever the former background character appears, it is changed to the new background
character.

The getbkgd () function extracts the specified window’s background character and rendition.

RETURN VALUE
Upon successful completion, the bkgd() and wbkgd() functions return OK. Otherwise, they
return ERR.

The bkgdset () and wbkgdset () functions do not return a value.

Upon successful completion, the getbkgd() function returns the specified window’s background
character and rendition. Otherwise, it returns (chtype)ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.3.4 (on page 16), <curses.h>

46 Technical Standard 2009

Curses Interfaces

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Rewritten for clarity.

X/Open Curses, Issue 7

ENHANCED CURSES

bkgd()

a7

bkgrnd() ENHANCED CURSES Curses Interfaces

NAME
bkgrnd, bkgrndset, getbkgrnd, wbkgrnd, wbkgrndset, wgetbkgrnd — turn off the previous
background attributes, OR the requested attributes into the window rendition, and set or get
background character and rendition using a complex character

SYNOPSIS

EC #include <curses.h>
int bkgrnd(const cchar_t * weh);
void bkgrndset(const cchar_t * weh);
int getbkgrnd(cchar_t * weh);

int wbkgrnd(WINDOW * wi n, c onst cchar_t* wch);
void wbkgrndset(WINDOW * wi n, ¢ onstcchar t* wch);
int wgetbkgrnd(WINDOW * Wi n, c char_ t* wch);

DESCRIPTION
The bkgrndset () and wbkgrndset () functions turn off the previous background attributes, OR the
requested attributes into the window rendition, and set the background property of the current
or specified window based on the information in wch.

The bkgrnd() and wbkgrnd() functions turn off the previous background attributes, OR the
requested attributes into the window rendition, and set the background property of the current
or specified window and then apply this setting to every character position in that window:

¢ The rendition of every character on the screen is changed to the new window rendition.

¢ Wherever the former background character appears, it is changed to the new background
character.

If wch refers to a non-spacing complex character for bkgrnd(), bkgrndset(), wbkgrnd(), and
wbkgrndset (), then wch is added to the existing spacing complex character that is the background
character. If wch refers to a multi-column character, the results are unspecified.

The getbkgrnd() and wgetbkgrnd () functions store, into the area pointed to by wch, the value of
the window’s background character and rendition.

RETURN VALUE
The bkgrndset () and wbkgrndset () functions do not return a value.

Upon successful completion, the other functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.3.4 (on page 16), <curses.h>

48 Technical Standard 2009

Curses Interfaces

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Corrections applied.

X/Open Curses, Issue 7

ENHANCED CURSES

bkgrnd()

49

border() ENHANCED CURSES Curses Interfaces

NAME
border, wborder — draw borders from single-byte characters and renditions
SYNOPSIS
EC #include <curses.h>
int border(chtype I's, c htype rs, c htype ts, c htype bs, c htype tl,
chtype tr, c htype bl, c htype br);
int wborder(WINDOW * win, c htype |s, c htype rs, c htype ts, c htype bs,
chtype tl, c htype tr, c htype bl, c htype br);
DESCRIPTION

The border () and whorder() functions draw a border around the edges of the current or specified
window. These functions do not advance the cursor position. These functions do not perform
special character processing. These functions do not perform wrapping.

The arguments in the left-hand column of the following table contain single-byte characters with
renditions, which have the following uses in drawing the border:

Argument Default
Name Usage Value
Is Starting-column side ACS_VLINE
s Ending-column side ACS_VLINE
ts First-line side ACS_HLINE
bs Last-line side ACS_HLINE
tl Corner of the first line and the starting column | ACS_ULCORNER
tr Corner of the first line and the ending column ACS_URCORNER
bl Corner of the last line and the starting column | ACS_LLCORNER
br Corner of the last line and the ending column ACS_LRCORNER

If the value of any argument in the left-hand column is 0, then the default value in the right-
hand column is used. If the value of any argument in the left-hand column is a multi-column
character, the results are undefined.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
border_set (), box (), hline(), <curses.h>

50 Technical Standard 2009

Curses Interfaces ENHANCED CURSES border()

CHANGE HISTORY
First released in Issue 4.

Issue 7

Corrigendum U022/2 is applied, changing the ACS_BLCORNER and ACS_BRCORNER macros
to ACS_LLCORNER and ACS_LRCORNER, respectively.

X/Open Curses, Issue 7 51

border_set()

ENHANCED CURSES

Curses Interfaces

NAME
border_set, wborder_set — draw borders from complex characters and renditions
SYNOPSIS
EC #include <curses.h>
int border_set(const cchar_t * I s, c onstcchar_t* rs, c onstcchar_t* ts,
const cchar_t* bs, c onstcchar_t* tl, c onstcchar t* tr,
const cchar_t* bl , c onstcchar_t* br);
int wborder_set(WINDOW * W n, c onstcchar t* I s, c onstcchar_t* rs,
const cchar_t* ts, c onstcchar t* bs,
const cchar_t* tl, c onstcchar t* tr,
const cchar_t* bl , c onstcchar_t* br);
DESCRIPTION

The border_set() and wborder_set() functions draw a border around the edges of the current or
specified window. These functions do not advance the cursor position. These functions do not
perform special character processing. These functions do not perform wrapping.

The arguments in the left-hand column of the following table contain spacing complex
characters with renditions, which have the following uses in drawing the border:

Argument Default
Name Usage Value
Is Starting-column side WACS_VLINE
s Ending-column side WACS_VLINE
ts First-line side WACS_HLINE
bs Last-line side WACS_HLINE
tl Corner of the first line and the starting column | WACS_ULCORNER
tr Corner of the first line and the ending column WACS_URCORNER
bl Corner of the last line and the starting column | WACS_LLCORNER
br Corner of the last line and the ending column WACS_LRCORNER

If the value of any argument in the left-hand column is a null pointer, then the default value in
the right-hand column is used. If the value of any argument in the left-hand column is a multi-
column character, the results are undefined.

RETURN VALUE

Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS

No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

52

Technical Standard 2009

Curses Interfaces ENHANCED CURSES border_set()

SEE ALSO
box_set (), hline_set (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Corrections made to the SYNOPSIS.

Issue 7
Corrigendum UQ22/2 is applied, changing the WACS_BLCORNER and WACS_BRCORNER
macros to WACS_LLCORNER and WACS_LRCORNER, respectively.

X/Open Curses, Issue 7 53

box() CURSES Curses Interfaces

NAME
box — draw borders from single-byte characters and renditions

SYNOPSIS
#include <curses.h>

int box(WINDOW * wi n, ¢ htype verch, c htype horch);

DESCRIPTION
The box() function draws a border around the edges of the specified window. This function
does not advance the cursor position. This function does not perform special character
processing. This function does not perform wrapping.

The function box(win, verch, horch) has an effect equivalent to:
wborder(wi n, verch, verch, horch, horch, 0, 0, 0, 0);

RETURN VALUE
Upon successful completion, the box () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This function is only guaranteed to operate reliably on character sets in which each character fits
into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
border(), box_set (), hline(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The DESCRIPTION is changed to describe this function in terms of a call to the wborder()
function.

54 Technical Standard 2009

Curses Interfaces ENHANCED CURSES box_set()

NAME
box_set — draw borders from complex characters and renditions
SYNOPSIS
EC #include <curses.h>
int box_set(WINDOW * wi n, c onstcchar_t* verch, c onstcchar_t* hor ch);
DESCRIPTION

The box_set () function draws a border around the edges of the specified window. This function
does not advance the cursor position. This function does not perform special character
processing. This function does not perform wrapping.

The function box_set(win, verch, horch) has an effect equivalent to:

wborder_set(w n, verch, verch, horch, horch,
NULL, NULL, NULL, NULL);

RETURN VALUE
Upon successful completion, the box_set () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
border_set (), hline_set (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version
Corrections made to the SYNOPSIS.

X/Open Curses, Issue 7 55

can_change_color() ENHANCED CURSES Curses Interfaces

NAME
can_change_color, color_content, has_colors, init_color, init_pair, pair_content, start_color —
color manipulation functions

SYNOPSIS
EC #include <curses.h>

bool can_change_color(void);

int color_content(short color, short* red, s hort* green, s hort* bl ue);
int COLOR_PAIR(int n);

bool has_colors(void);

int init_color(short color, s hort red, s hort green, s hort bl ue);
int init_pair(short pair, s hort f, s hort b);
int pair_content(short pair, s hort* f, s hort* b);

int PAIR_NUMBER(int val ue);
int start_color(void);

extern int COLOR_PAIRS;

extern int COLORS;

DESCRIPTION
These functions manipulate color on terminals that support color.

Querying Capabilities

The has_colors() function indicates whether the terminal is a color terminal. The
can_change_color () function indicates whether the terminal is a color terminal on which colors
can be redefined.

Initialization

The start_color()) function must be called in order to enable use of colors and before any color
manipulation function is called. The function initializes eight basic colors (black, blue, green,
cyan, red, magenta, yellow, and white) that can be specified by the color macros (such as
COLOR_BLACK) defined in <curses.h> (see Color-Related Macros, on page 309). The initial
appearance of these eight colors is not specified.

The function also initializes two global external variables:

¢ COLORS defines the number of colors that the terminal supports (see Color Identification).
If COLORS is 0, the terminal does not support redefinition of colors (and
can_change_color () will return FALSE).

o COLOR_PAIRS defines the maximum number of color-pairs that the terminal supports (see
User-Defined Color Pairs, on page 57).

The start_color() function also restores the colors on the terminal to terminal-specific initial
values. The initial background color is assumed to be black for all terminals.

Color Identification

The init_color () function redefines color number color, on terminals that support the redefinition
of colors, to have the red, green, and blue intensity components specified by red, green, and blue,
respectively. Calling init_color() also changes all occurrences of the specified color on the screen
to the new definition.

The color_content () function identifies the intensity components of color number color. It stores
the red, green, and blue intensity components of this color in the addresses pointed to by red,
green, and blue, respectively.

56 Technical Standard 2009

Curses Interfaces ENHANCED CURSES can_change_color()

For both functions, the color argument must be in the range from 0 to and including COLORS-1.
Valid intensity values range from 0 (no intensity component) up to and including 1000
(maximum intensity in that component).

User-Defined Color Pairs

Calling init_pair() defines or redefines color-pair number pair to have foreground color f and
background color b. Calling init_pair() changes any characters that were displayed in the color
pair’s old definition to the new definition and refreshes the screen.

After defining the color pair, the macro COLOR_PAIR(n returns the value of color pair n. This
value is the color attribute as it would be extracted from a chtype. Conversely, the macro
PAIR_NUMBER(value) returns the color pair number associated with the color attribute value.

The pair_content () function retrieves the component colors of a color-pair number pair. It stores
the foreground and background color numbers in the variables pointed to by f and b,
respectively.

With init_pair () and pair_content (), the value of pair must be in a range from 0 to and including
COLOR_PAIRS-1. (There may be an implementation-specific upper limit on the valid value of
pair, but any such limit is at least 63.) Valid values for f and b are the range from 0 to and
including COLORS-1.

RETURN VALUE
The has_colors() function returns TRUE if the terminal can manipulate colors. Otherwise, it
returns FALSE.

The can_change_color() function returns TRUE if the terminal supports colors and can change
their definitions. Otherwise, it returns FALSE.

Upon successful completion, the other functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
To use these functions, start_color() must be called, usually right after initscr().

The can_change_color() and has_colors() functions facilitate writing terminal-independent
programs. For example, a programmer can use them to decide whether to use color or some
other video attribute.

On color terminals, a typical value of COLORS is 8 and the macros such as COLOR_BLACK
return a value within the range from 0 to and including 7. However, applications cannot rely on
this to be true.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
attroff(), delscreen (), <curses.h>

X/Open Curses, Issue 7 57

can_change_color() ENHANCED CURSES Curses Interfaces

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version
Corrections made in the NAME and APPLICATION USAGE sections.

58 Technical Standard 2009

Curses Interfaces CURSES cbreak()

NAME
cbreak, nocbreak, noraw, raw — input mode control functions

SYNOPSIS
#include <curses.h>

int cbreak(void);
int nocbreak(void);
int noraw(void);
int raw(void);

DESCRIPTION
The cbreak() function sets the input mode for the current terminal to cbreak mode and overrides a
call to raw ().

The nocbreak() function sets the input mode for the current terminal to Cooked Mode without
changing the state of ISIG and IXON.

The noraw() function sets the input mode for the current terminal to Cooked Mode and sets the
ISIG and IXON flags.

The raw() function sets the input mode for the current terminal to Raw Mode.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If the application is not certain what the input mode of the process was at the time it called
initscr (), it should use these functions to specify the desired input mode.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.5.2 (on page 23), <curses.h>, XBD specification, Chapter 11, General Terminal Interface

CHANGE HISTORY
First released in Issue 2.

Issue 4
The raw() and noraw() functions are merged with this entry.

The entry is rewritten for clarity.

The argument list for all these functions is explicitly declared as void.

X/Open Curses, Issue 7 59

chgat() ENHANCED CURSES Curses Interfaces

NAME
chgat, mvchgat, mvwchgat, wchgat — change renditions of characters in a window
SYNOPSIS
EC #include <curses.h>
int chgat(int n, attrt attr, s hort col or, c onstvoid * opt s);
int mvchgat(int y,int x,int n atrt attr, short color,
const void * opt s);
int mvwchgat(WINDOW * win, i nt y, i nt x, i nt n, attrt attr,
short col or, c onstvoid * opt s);
int wchgat(WINDOW * win, i nt n, attr_t attr, short color,
const void * opt s);
DESCRIPTION
These functions change the renditions of the next n characters in the current or specified window
(or of the remaining characters on the current or specified line, if n is —1), starting at the current
or specified cursor position. The attributes and colors are specified by attr and color as for
setcchar ().
These functions do not update the cursor, except for the initial movement to the specified
position by the functions prefixed with mv. These functions do not perform wrapping.
A value of n that is greater than the remaining characters on a line is not an error.
The opts argument is reserved for definition in a future version. Currently, the application must
provide a null pointer as opts.
RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO
setcchar (), <curses.h>
CHANGE HISTORY

First released in Issue 4.

Issue 4, Version 2

60

Corrections made to the SYNOPSIS.

Technical Standard 2009

Curses Interfaces CURSES clear()

NAME
clear, erase, wclear, werase — clear a window

SYNOPSIS
#include <curses.h>

int clear(void);
int erase(void);
int wclear(WINDOW * wi n);
int werase(WINDOW * wi n);

DESCRIPTION
These functions clear every position in the current or specified window.

The clear() and wclear() functions also achieve the same effect as calling clearok(), so that the
window is cleared completely on the next call to wrefresh() for the window and is redrawn in its
entirety.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearok (), doupdate(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The erase() and werase() functions are merged with this entry.

The entry is rewritten for clarity.

The argument list for the clear() and erase() functions is explicitly declared as void.

X/Open Curses, Issue 7 61

clearok() CURSES Curses Interfaces

NAME

clearok, idlok, leaveok, scrollok, setscrreg, wsetscrreg — terminal output control functions

SYNOPSIS

#include <curses.h>

int clearok(WINDOW * wi n, b ool bf);

int idlok(WINDOW * wi n, b ool bf);

int leaveok(WINDOW * wi n, b ool bf);

int scrollok(WINDOW * wi n, b ool bf);

int setscrreg(int top, i nt bot);

int wsetscrreg(WINDOW * win,int top, i nt bot);

DESCRIPTION

These functions set options that deal with output within Curses.

The clearok() function assigns the value of bf to an internal flag in the specified window that
governs clearing of the screen during a refresh. If, during a refresh operation on the specified
window, the flag in curscr is TRUE or the flag in the specified window is TRUE, then the
implementation clears the screen, redraws it in its entirety, and sets the flag to FALSE in curscr
and in the specified window. The initial state is unspecified.

The idlok() function specifies whether the implementation may use the hardware insert-line,
delete-line, and scroll features of terminals so equipped. If bf is TRUE, use of these features is
enabled. If bf is FALSE, use of these features is disabled and lines are instead redrawn as
required. The initial state is FALSE.

The leaveok () function controls the cursor position after a refresh operation. If bf is TRUE, refresh
operations on the specified window may leave the terminal’s cursor at an arbitrary position. If bf
is FALSE, then at the end of any refresh operation, the terminal’s cursor is positioned at the
cursor position contained in the specified window. The initial state is FALSE.

The scrollok() function controls the use of scrolling. If bf is TRUE, then scrolling is enabled for the
specified window, with the consequences discussed in Truncation, Wrapping, and Scrolling (on
page 19). If bf is FALSE, scrolling is disabled for the specified window. The initial state is FALSE.

The setscrreg() and wsetscrreg() functions define a software scrolling region in the current or
specified window. The top and bot arguments are the line numbers of the first and last line
defining the scrolling region. (Line 0 is the top line of the window.) If this option and scrollok()
are enabled, an attempt to move off the last line of the margin causes all lines in the scrolling
region to scroll one line in the direction of the first line. Only characters in the window are
scrolled. If a software scrolling region is set and scrollok() is not enabled, an attempt to move off
the last line of the margin does not reposition any lines in the scrolling region.

RETURN VALUE

Upon successful completion, the sefscrreg() and wsetscrreg() functions return OK. Otherwise,
they return ERR.

The other functions always return OK.

ERRORS

62

No errors are defined.

Technical Standard 2009

Curses Interfaces CURSES clearok()

EXAMPLES
None.

APPLICATION USAGE
The only reason to enable the idlok() feature is to use scrolling to achieve the visual effect of
motion of a partial window, such as for a screen editor. In other cases, the feature can be visually
annoying.

The leaveok () option provides greater efficiency for applications that do not use the cursor.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clear(), delscreen (), doupdate(), scrl(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The idlok(), leaveok(), scrollok(), setscrreg(), and wsetscrreg() functions are merged with this entry.

The entry is rewritten for clarity. The DESCRIPTION of clearok() is updated to indicate that
clearing of a screen applies if the flag is TRUE in either curscr or the specified window.

The RETURN VALUE section is changed to indicate that the clearok(), leaveok(), and scrollok()
functions always return OK.

X/Open Curses, Issue 7 63

clrtobot() CURSES Curses Interfaces

NAME
clrtobot, wclrtobot — clear from cursor to end of window

SYNOPSIS
#include <curses.h>

int clrtobot(void);
int welrtobot(WINDOW * wi n);

DESCRIPTION
These functions erase all lines following the cursor in the current or specified window, and erase
the current line from the cursor to the end of the line, inclusive. These functions do not update
the cursor.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
doupdate(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list for the clrtobot () function is explicitly declared as void.

64 Technical Standard 2009

Curses Interfaces CURSES clrtoeol()

NAME
clrtoeol, wclrtoeol — clear from cursor to end of line

SYNOPSIS
#include <curses.h>

int clrtoeol(void);
int wclrtoeol(WINDOW * wi n);

DESCRIPTION
These functions erase the current line from the cursor to the end of the line, inclusive, in the
current or specified window. These functions do not update the cursor.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
doupdate(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list for the clrtoeol () function is explicitly declared as void.

X/Open Curses, Issue 7 65

color_content() ENHANCED CURSES Curses Interfaces

NAME
color_content — identify red, green, and blue intensity of a color
SYNOPSIS
EC #include <curses.h>
int color_content(short color, short* red, s hort* green, s hort* bl ue);
DESCRIPTION

Refer to can_change_color ().

66 Technical Standard 2009

Curses Interfaces ENHANCED CURSES color_set()

NAME
color_set — window attribute control functions

SYNOPSIS
EC #include <curses.h>

int color_set(short col or _pai r_nunber, v oid* opts);

DESCRIPTION
Refer to attr_get ().

X/Open Curses, Issue 7 67

copywin() CURSES Curses Interfaces

NAME
copywin — copy a region of a window
SYNOPSIS
EC #include <curses.h>
int copywin(const WINDOW * srcwi n, WINDOW *dstwi n, i nt sm nrow,
int smincol, i nt dminrow, i nt dmncol, i nt dmaxrow,
int dnmaxcol, i nt overl ay);
DESCRIPTION

The copywin () function provides a finer granularity of control over the overlay () and overwrite()
functions. As in the prefresh() function, a rectangle is specified in the destination window
(dminrow, dmincol) and (dmaxrow, dmaxcol), and the upper-left-corner coordinates of the source
window (sminrow, smincol). If overlay is TRUE, then copying is non-destructive, as in overlay(). If
overlay is FALSE, then copying is destructive, as in overwrite().

RETURN VALUE
Upon successful completion, this function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
newpad (), overlay (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Corrections made to the SYNOPSIS.

68 Technical Standard 2009

Curses Interfaces

NAME

cur_term — current terminal information
SYNOPSIS
EC #include <term.h>

extern TERMINAL *cur_term;

DESCRIPTION

ENHANCED CURSES

cur_term

The external variable cur_term identifies the record in the terminfo database associated with the

terminal currently in use.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

del_curterm(), tigetflag (), <term.h>

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7

69

curs_set() ENHANCED CURSES Curses Interfaces

NAME
curs_set — set the cursor mode
SYNOPSIS
EC #include <curses.h>
int curs_set(int visibility);
DESCRIPTION
The curs_set () function sets the appearance of the cursor based on the value of visibility:
Value of visibility Appearance of Cursor
0 Invisible
1 Terminal-specific normal mode
2 Terminal-specific high visibility mode

The terminal does not necessarily support all the above values.

RETURN VALUE
If the terminal supports the cursor mode specified by wvisibility, then the curs_set() function
returns the previous cursor state. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<curses.h>

CHANGE HISTORY
First released in Issue 4.

70 Technical Standard 2009

Curses Interfaces ENHANCED CURSES

NAME

curscr — current window
SYNOPSIS
EC #include <curses.h>

extern WINDOW *curscr;

DESCRIPTION

curscr

The external variable curscr points to an internal data structure. It can be specified as an

argument to certain functions, such as clearok (), where permitted in this specification.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearok(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7

71

def prog_mode() CURSES Curses Interfaces

NAME
def_prog_mode, def_shell _mode, reset_prog_mode, reset_shell mode — save/restore program
or shell terminal modes

SYNOPSIS
#include <curses.h>

int def_prog_mode(void);
int def_shell_mode(void);
int reset_prog_mode(void);
int reset_shell_mode(void);

DESCRIPTION
The def prog_mode() function saves the current terminal modes as the “program” (in Curses)
state for use by reset_prog_mode().

The def_shell_mode() function saves the current terminal modes as the “shell” (not in Curses)
state for use by reset_shell_mode().

The reset_prog_mode () function restores the terminal to the “program” (in Curses) state.
The reset_shell_mode() function restores the terminal to the “shell” (not in Curses) state.
These functions affect the mode of the terminal associated with the current screen.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The initscr() function achieves the effect of calling def shell_mode() to save the prior terminal
settings so they can be restored during the call to endwin(), and of calling def_prog_mode() to
specify an initial definition of the program terminal mode.

Applications normally do not need to refer to the shell terminal mode. Applications may find it
useful to save and restore the program terminal mode.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
doupdate(), endwin (), initscr(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The reset_prog_mode() and reset_shell_mode() functions are merged with this entry.

The entry is rewritten for clarity.

The argument list for all these functions is explicitly declared as void.

72 Technical Standard 2009

Curses Interfaces ENHANCED CURSES del_curterm()

NAME
del_curterm, restartterm, set_curterm, setupterm — interfaces to the terminfo database
SYNOPSIS
EC #include <term.h>
int del_curterm(TERMINAL * ot er m;
int restartterm(char * term i nt fildes, i nt* errret);
TERMINAL *set_curterm(TERMINAL * nt er m;
int setupterm(char * term i nt fildes, i nt* errret);
DESCRIPTION
These functions retrieve information from the terminfo database.
To gain access to the terminfo database, the setupterm() function must be called first. It is
automatically called by initscr() and newterm(). The setupterm() function initializes the other
functions to use the terminfo record for a specified terminal (which depends on whether
use_env() was called). It sets the cur_term external variable to a TERMINAL structure that
contains the record from the terminfo database for the specified terminal.
The terminal type is the character string term; if term is a null pointer, the environment variable
TERM is used. If TERM is not set or if its value is an empty string, then unknown is used as the
terminal type. The application must set fildes to a file descriptor, open for output, to the terminal
device, before calling setupterm(). If errret is not null, the integer it points to is set to one of the
following values to report the function outcome:
-1 The terminfo database was not found (function fails).
0 The entry for the terminal was not found in terminfo (function fails).
1 Success.
If setupterm() detects an error and errret is a null pointer, the setupterm() function writes a
diagnostic message and exits.
A simple call to setupterm () that uses all the defaults and sends the output to stdout is:
setupterm((char *)0, fileno(stdout), (int *)0);
The set_curterm() function sets the variable cur_term to nterm, and makes all of the terminfo
boolean, numeric, and string variables use the values from nterm.
The del_curterm() function frees the space pointed to by oterm and makes it available for further
use. If oterm is the same as cur_term, references to any of the terminfo boolean, numeric, and
string variables thereafter may refer to invalid memory locations until setupterm() is called
again.
The restartterm() function assumes a previous call to setupterm() (perhaps from initscr() or
newterm()). It lets the application specify a different terminal type in ferm and updates the
information returned by baudrate() based on fildes, but does not destroy other information
created by initscr (), newterm(), or setupterm().
RETURN VALUE

Upon successful completion, the set_curterm() function returns the previous value of cur_term.
Otherwise, it returns a null pointer.

Upon successful completion, the other functions return OK. Otherwise, they return ERR.

X/Open Curses, Issue 7 73

del_curterm() ENHANCED CURSES Curses Interfaces

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
An application would call setupterm() if it required access to the terminfo database but did not
otherwise need to use Curses.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section A.3 (on page 377), baudrate(), erasechar(), has_ic(), longname(), termattrs(), termname(),
tigetflag (), use_env(), <term.h>

CHANGE HISTORY
First released in Issue 4.

74 Technical Standard 2009

Curses Interfaces CURSES delay_output()

NAME

delay_output — delay output
SYNOPSIS

#include <curses.h>

int delay_output(int ns);
DESCRIPTION

On terminals that support pad characters, delay_output() pauses the output for at least ms
milliseconds. Otherwise, the length of the delay is unspecified.

RETURN VALUE
Upon successful completion, the delay_output () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Whether or not the terminal supports pad characters, the delay_output () function is not a precise
method of timekeeping.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 7.1.3 (on page 340), napms(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

X/Open Curses, Issue 7 75

delch() CURSES Curses Interfaces

NAME

delch, mvdelch, mvwdelch, wdelch — delete a character from a window
SYNOPSIS

#include <curses.h>

int delch(void);

int mvdelch(int y, i nt Xx);

int mvwdelch(WINDOW * win, i nt vy, i nt Xx);
int wdelch(WINDOW * wi n);

DESCRIPTION
These functions delete the character at the current or specified position in the current or
specified window. These functions do not change the cursor position.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list for the delch() function is explicitly declared as void.

76 Technical Standard 2009

Curses Interfaces CURSES deleteln()

NAME
deleteln, wdeleteln — delete lines in a window

SYNOPSIS
#include <curses.h>

int deleteln(void);
int wdeleteln(WINDOW * wi n);

DESCRIPTION
These functions delete the line containing the cursor in the current or specified window and
move all lines following the current line one line toward the cursor. The last line of the window
is cleared. The cursor position does not change.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
insdelln(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list for the deleteln () function is explicitly declared as void.

X/Open Curses, Issue 7 77

delscreen()

NAME

delscreen — free storage associated with a screen
SYNOPSIS
EC #include <curses.h>

void delscreen(SCREEN *

DESCRIPTION

CURSES

Curses Interfaces

The delscreen () function frees storage associated with the SCREEN pointed to by sp.

RETURN VALUE

This function does not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endwin (), initscr(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

78

Technical Standard 2009

Curses Interfaces

NAME
delwin — delete a window

SYNOPSIS
#include <curses.h>

int delwin(WINDOW * wi n);
DESCRIPTION

CURSES

delwin()

This function deletes win, freeing all memory associated with it. The application must delete

subwindows before deleting the main window.

RETURN VALUE

Upon successful completion, the delwin () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
derwin (), dupwin(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

X/Open Curses, Issue 7

79

derwin() CURSES Curses Interfaces

NAME
derwin, newwin, subwin — window creation functions

SYNOPSIS
#include <curses.h>

EC WINDOW *derwin(WINDOW * orig, i nt nlines, i nt ncols, i nt begin_y,

int begi n_x);
WINDOW *newwin(int nlines, i nt ncols, i nt begin_y, i nt begin_x);
WINDOW *subwin(WINDOW *orig, i nt nlines, i nt ncols, i nt begin_y,
int begi n_x);

DESCRIPTION

EC The derwin () function is the same as subwin (), except that begin_y and begin_x are relative to the
origin of the window orig rather than absolute screen positions.
The newwin () function creates a new window with nlines lines and ncols columns, positioned so
that the origin is (begin_y, begin_x). If nlines is zero, it defaults to LINES - begin_y; if ncols is zero,
it defaults to COLS — begin_x. The size of a window cannot be greater than the physical size of
the screen, or that defined using the environment variables LINES and COLUMNS. The
behavior of a window which extends outside the terminal screen is undefined.
The subwin () function creates a new window with nlines lines and ncols columns, positioned so
that the origin is at (begin_y, begin_x). (This position is an absolute screen position, not a position
relative to the window orig.) If any part of the new window is outside orig, the function fails
and the window is not created.

RETURN VALUE
Upon successful completion, these functions return a pointer to the new window. Otherwise,
they return a null pointer.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Before performing the first refresh of a subwindow, portable applications should call fouchwin ()
or touchline() on the parent window.
Each window maintains internal descriptions of the screen image and status. The screen image is
shared among all windows in the window hierarchy. Refresh operations rely on information on
what has changed within a window, which is private to each window. Refreshing a window,
when updates were made to a different window, may fail to perform needed updates because
the windows do not share this information.
A new full-screen window is created by calling:
newwin(0, 0, 0, 0);
Pads should be used whenever a window larger than the terminal screen is required.

RATIONALE
None.

FUTURE DIRECTIONS
None.

80 Technical Standard 2009

Curses Interfaces CURSES derwin()

SEE ALSO
delwin (), is_linetouched (), doupdate(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 7
Corrigendum U018/4 is applied, adding window size to the description of the newwin()
function, and adding use of pads to the APPLICATION USAGE section.

X/Open Curses, Issue 7 81

doupdate() CURSES Curses Interfaces

NAME
doupdate, refresh, wnoutrefresh, wrefresh — refresh windows and lines

SYNOPSIS
#include <curses.h>

int doupdate(void);

int refresh(void);

int wnoutrefresh(WINDOW * Wi n);
int wrefresh(WINDOW * Wi n);

DESCRIPTION
The refresh() and wrefresh() functions refresh the current or specified window. The functions
position the terminal’s cursor at the cursor position of the window, except that if the leaveok()
mode has been enabled, they may leave the cursor at an arbitrary position.

If the win parameter to wrefresh() is equal to the value of curscr, the screen is immediately
cleared and repainted.

The wnoutrefresh() function determines which parts of the terminal may need updating. The
doupdate() function sends to the terminal the commands to perform any required changes.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Refreshing an entire window is typically more efficient than refreshing several subwindows
separately. An efficient sequence is to call wnoutrefresh() on each subwindow that has changed,
followed by a call to doupdate(), which updates the terminal.

The refresh () or wrefresh() function (or wnoutrefresh() followed by doupdate()) must be called to
send output to the terminal, as other Curses functions merely manipulate data structures.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearok (), curscr, redrawwin (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

This entry is a merge of the Issue 3 entries refresh() and wnoutrefresh(). The DESCRIPTION is
rewritten for clarity and the argument list for the doupdate() and refresh() functions is explicitly
declared as void. Otherwise, the functionality is identical to that defined in Issue 3.

82 Technical Standard 2009

Curses Interfaces ENHANCED CURSES
NAME
dupwin — duplicate a window
SYNOPSIS
EC #include <curses.h>

WINDOW *dupwin(WINDOW *wi n);

DESCRIPTION
This function creates a duplicate of the window win.

RETURN VALUE

dupwin()

Upon successful completion, the dupwin() function returns a pointer to the new window.

Otherwise, it returns a null pointer.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
derwin (), doupdate(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7

83

echo() CURSES Curses Interfaces

NAME
echo, noecho — enable/disable terminal echo

SYNOPSIS
#include <curses.h>

int echo(void);
int noecho(void);

DESCRIPTION
The echo() function enables Echo mode for the current screen. The noecho() function disables
Echo mode for the current screen. Initially, curses software echo mode is enabled and hardware
echo mode of the tty driver is disabled. echo() and noecho() control software echo only.
Hardware echo must remain disabled for the duration of the application, else the behavior is
undefined.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.5 (on page 22), getch(), <curses.h>, XBD specification, Section 11.2, Parameters that
Can be Set

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list for the echo() and noecho() functions is explicitly declared as void.

Issue 4, Version 2
The state of the echo modes is further clarified.

84 Technical Standard 2009

Curses Interfaces ENHANCED CURSES echo_wechar()

NAME
echo_wchar, wecho_wchar — write a complex character and immediately refresh the window
SYNOPSIS
EC #include <curses.h>
int echo_wchar(const cchar _t * weh);
int wecho_wchar(WINDOW * w n, c onstcchar t* weh);
DESCRIPTION

The echo_wchar () function is equivalent to calling add_wch () and then calling refresh ().
The wecho_wchar () function is equivalent to calling wadd_wch () and then calling wrefresh().

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
addch (), add_wch (), doupdate(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Corrections made to the SYNOPSIS.

X/Open Curses, Issue 7 85

echochar() ENHANCED CURSES Curses Interfaces

NAME
echochar, wechochar — echo single-byte character and rendition to a window and refresh
SYNOPSIS
EC #include <curses.h>
int echochar(const chtype ch);
int wechochar(WINDOW * wi n, c¢ onst chtype ch);
DESCRIPTION

The echochar () function is equivalent to a call to addch () followed by a call to refresh().
The wechochar () function is equivalent to a call to waddch () followed by a call to wrefresh().

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
addch (), doupdate(), echo_wchar (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

86 Technical Standard 2009

Curses Interfaces CURSES endwin()

NAME
endwin — suspend Curses session

SYNOPSIS
#include <curses.h>

int endwin(void);

DESCRIPTION
The endwin () function restores the terminal after Curses activity by at least restoring the saved
shell terminal mode, flushing any output to the terminal, and moving the cursor to the first
column of the last line of the screen. Refreshing a window resumes program mode. The
application must call endwin() for each terminal being used before exiting. If newterm() is called
more than once for the same terminal, the first screen created must be the last one for which
endwin() is called.

RETURN VALUE
Upon successful completion, the endwin () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The endwin() function does not free storage associated with a screen, so delscreen() should be
called after endwin () if a particular screen is no longer needed.

To leave Curses mode temporarily, portable applications should call endwin(). Subsequently, to
return to Curses mode, they should call doupdate(), refresh(), or wrefresh().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
delscreen (), doupdate(), initscr(), isendwin (), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list is explicitly declared as void.

X/Open Curses, Issue 7 87

erase() CURSES

NAME
erase, werase — clear a window

SYNOPSIS
#include <curses.h>

int erase(void);
int werase(WINDOW * wi n);

DESCRIPTION
Refer to clear ().

88

Curses Interfaces

Technical Standard 2009

Curses Interfaces CURSES erasechar()

NAME
erasechar, erasewchar, killchar, killwchar — terminal environment query functions

SYNOPSIS
#include <curses.h>

char erasechar(void);

EC int erasewchar(wchar_t * ch);
char killchar(void);
EC int killwchar(wchar_t * ch);
DESCRIPTION
EC The erasechar () function returns the current erase character. The erasewchar () function stores the

current erase character in the object pointed to by ch. If no erase character has been defined, the
function will fail and the object pointed to by ch will not be changed.

EC The killchar () function returns the current line kill character. The killwchar() function stores the
current line kill character in the object pointed to by ch. If no line kill character has been defined,
the function will fail and the object pointed to by ch will not be changed.

RETURN VALUE
The erasechar() function returns the erase character and the killchar() function returns the line
kill character. The return value is unspecified when these characters are multi-byte characters.

EC Upon successful completion, the erasewchar() and killwchar() functions return OK. Otherwise,
they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE

The erasechar () and killchar() functions are only guaranteed to operate reliably on character sets
in which each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix. Moreover, they do not reliably indicate cases in which when the
erase or line kill character, respectively, has not been defined. The erasewchar() and killwchar ()
functions overcome these limitations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.3.3 (on page 16), clearok(), delscreen (), tcgetattr() (in the XSH specification) , <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list for the erasechar() and killchar () functions is explicitly declared as void.

X/Open Curses, Issue 7 89

erasechar() CURSES Curses Interfaces

The erasewchar() and killwchar() functions are added and marked as an X/Open UNIX
Extension.

90 Technical Standard 2009

Curses Interfaces ENHANCED CURSES filter()

NAME

filter — disable use of certain terminal capabilities
SYNOPSIS
EC #include <curses.h>

void filter(void);

DESCRIPTION
The filter () function changes the algorithm for initializing terminal capabilities that assume that
the terminal has more than one line. A subsequent call to initscr() or newterm() performs the
following additional actions:

« Disable use of clear, cud, cudl, cup, cuul, and vpa.
¢ Set the value of the home string to the value of the cr string.
¢ Set lines equal to 1.

Any call to filter() must precede the call to initscr() or newterm().

RETURN VALUE
The filter () function does not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 7.1.3 (on page 340), initscr (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7 91

flash() CURSES Curses Interfaces

NAME
flash — flash the screen

SYNOPSIS
#include <curses.h>

int flash(void);

DESCRIPTION
The flash () function alerts the user. It flashes the screen, or if that is not possible, it sounds the
audible alarm on the terminal. If neither signal is possible, nothing happens.

RETURN VALUE
The flash () function always returns OK.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Nearly all terminals have an audible alarm, but only some can flash the screen.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
beep(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

In previous versions, this function was included in the entry for beep(). It is moved to its own
entry in Issue 4, the argument list is explicitly declared as void, and the RETURN VALUE
section is changed to indicate that the function always returns OK.

92 Technical Standard 2009

Curses Interfaces CURSES flushinp()

NAME
flushinp — discard input

SYNOPSIS
#include <curses.h>

int flushinp(void);

DESCRIPTION
The flushinp () function discards (flushes) any characters in the input buffer associated with the
current screen.

RETURN VALUE
The flushinp () function always returns OK.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list for the flushinp () function is explicitly declared as void.

X/Open Curses, Issue 7 93

get_wch() ENHANCED CURSES Curses Interfaces

NAME
get_wch, mvget_wch, mvwget_wch, wget_wch — get a wide character from a terminal
SYNOPSIS
EC #include <curses.h>
int get_wch(wint_t * ch);
int mvget_wch(int y, i nt x, wint t* ch);
int mvwget wch(WINDOW * win, i nt y, i nt x, wint t* ch);
int wget wch(WINDOW * wi n, wint t* ch);
DESCRIPTION

These functions read a character from the terminal associated with the current or specified
window. If keypad() is enabled, these functions respond to the pressing of a function key by
setting the object pointed to by ch to the corresponding KEY_ value defined in <curses.h> and
returning KEY_CODE_YES.

Processing of terminal input is subject to the general rules described in Section 3.5 (on page 22).

If echoing is enabled, then the character is echoed as though it were provided as an input
argument to add_wch(), except for the following characters:

<backspace>, <left-arrow>, and the current erase character
The input is interpreted as specified in Section 3.4.3 (on page 20) and then the character at
the resulting cursor position is deleted as though delch() were called, except that if the
cursor was originally in the first column of the line, then the user is alerted as though beep()
were called.

Function keys
The user is alerted as though beep () were called. Information concerning the function keys is
not returned to the caller.

If the current or specified window is not a pad, and it has been moved or modified since the last
refresh operation, then it will be refreshed before another character is read.

RETURN VALUE
When these functions successfully report the pressing of a function key, they return
KEY_CODE_YES. When they successfully report a wide character, they return OK. Otherwise,
they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications should not define the escape key by itself as a single-character function.

When using these functions, nocbreak mode (nocbreak()) and echo mode (echo()) should not be
used at the same time. Depending on the state of the terminal when each character is typed, the
application may produce undesirable results.

RATIONALE
None.

94 Technical Standard 2009

Curses Interfaces ENHANCED CURSES get_wch()

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.5 (on page 22), beep (), cbreak(), ins_wch (), Section A.1.8, move(), <curses.h>, <wchar.h>
(in the XBD specification)

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7 95

get_wstr()

NAME

ENHANCED CURSES

Curses Interfaces

get_wstr — get an array of wide characters and function key codes from a terminal

SYNOPSIS
EC #include <curses.h>

int get_wstr(wint_t *

DESCRIPTION

Refer to getn_wstr().

96

wst r);

Technical Standard 2009

Curses Interfaces CURSES getbegyx()

NAME
getbegyx, getmaxyx, getparyx, getyx — get cursor and window coordinates

SYNOPSIS
#include <curses.h>

EC void getbegyx(WINDOW * win, i nt y, i nt Xx);
void getmaxyx(WINDOW * win, i nt y, i nt Xx);
void getparyx(WINDOW * win, i nt y, i nt Xx);
void getyx(WINDOW * win, i nt vy, i nt x);

DESCRIPTION
The getyx() macro stores the cursor position of the specified window in y and x.

EC The getparyx () macro, if the specified window is a subwindow, stores in y and x the coordinates
of the window’s origin relative to its parent window. Otherwise, —1 is stored in y and x.

The getbegyx () macro stores the absolute screen coordinates of the specified window’s origin in y
and x.

The getmaxyx() macro stores the number of rows of the specified window in y and stores the
window’s number of columns in x.

The application shall ensure that the y and x arguments are modifiable Ivalues.

RETURN VALUE
No return values are defined.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Historical implementations often defined the following functions (which may have been
implemented as macros):

int getbegx(WINDOW *win);
int getbegy(WINDOW *win);
int getcurx(WINDOW *win);
int getcury(WINDOW *win);
int getmaxx(WINDOW *win);
int getmaxy(WINDOW *win);
int getparx(WINDOW *win);
int getpary(WINDOW *win);

Although getbegyx (), getyx (), getmaxyx (), and getparyx() provide the required functionality, this
does not preclude applications from defining these functions for their own use. For example, to
implement:

int getbegx(WINDOW *win);
a suitable function would be:

int getbegx(WINDOW *win)

{ .
int x, y;
getbegyx(win, y, X);
return x;

}

X/Open Curses, Issue 7 97

getbegyx() CURSES Curses Interfaces

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Corrections made to the APPLICATION USAGE section.

98 Technical Standard 2009

Curses Interfaces ENHANCED CURSES
NAME
getbkgd — get background character and rendition using a single-byte character
SYNOPSIS
EC #include <curses.h>

chtype getbkgd(WINDOW * wi n);

DESCRIPTION
Refer to bkgd ().

X/Open Curses, Issue 7

getbkgd()

99

getbkgrnd() ENHANCED CURSES Curses Interfaces

NAME
getbkgrnd — get background character and rendition

SYNOPSIS
EC #include <curses.h>

int getbkgrnd(cchar_t * ch);

DESCRIPTION
Refer to bkgrnd().

100 Technical Standard 2009

Curses Interfaces ENHANCED CURSES getcchar()

NAME
getcchar — get a wide-character string and rendition from a cchar_t
SYNOPSIS
EC #include <curses.h>
int getcchar(const cchar_t * weval , wchar t* wch, attr t* attrs,
short* col or_pair, void* opts);
DESCRIPTION

When wch is not a null pointer, the getcchar() function extracts information from a cchar_t
defined by wcwval, stores the character attributes in the object pointed to by attrs, stores the color
pair in the object pointed to by color_pair, and stores the wide-character string referenced by
wcval into the array pointed to by wch.

When wch is a null pointer, getcchar() obtains the number of wide characters in the object
pointed to by wcval and does not change the objects pointed to by attrs or color_pair.

The opts argument is reserved for definition in a future version. Currently, the application must
provide a null pointer as opts.

RETURN VALUE
When wch is a null pointer, the gefcchar() function returns the number of wide characters
referenced by wcwval, including the null terminator.

When wch is not a null pointer, the gefcchar() function returns OK upon successful completion.
Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The wcval argument may be a value generated by a call to setcchar() or by a function that has a
cchar_t output argument. If wcoal is constructed by any other means, the effect is unspecified.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
attroff(), can_change_color (), setcchar (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Corrections made to the SYNOPSIS.

X/Open Curses, Issue 7 101

getch() CURSES Curses Interfaces

NAME

getch, mvgetch, mvwgetch, wgetch — get a single-byte character from the terminal

SYNOPSIS

#include <curses.h>

int getch(void);

int mvgetch(int y, i nt Xx);

int mvwgetch(WINDOW * win, i nt y, i nt Xx);
int wgetch(WINDOW * wi n);

DESCRIPTION

These functions read a single-byte character from the terminal associated with the current or
specified window. The results are unspecified if the input is not a single-byte character. If
keypad() is enabled, these functions respond to the pressing of a function key by returning the
corresponding KEY_ value defined in <curses.h>.

Processing of terminal input is subject to the general rules described in Section 3.5 (on page 22).

If echoing is enabled, then the character is echoed as though it were provided as an input
argument to addch (), except for the following characters:

<backspace>, <left-arrow>, and the current erase character
The input is interpreted as specified in Section 3.4.3 (on page 20) and then the character at
the resulting cursor position is deleted as though delch() were called, except that if the
cursor was originally in the first column of the line, then the user is alerted as though beep()
were called.

Function keys
The user is alerted as though beep () were called. Information concerning the function keys is
not returned to the caller.

If the current or specified window is not a pad, and it has been moved or modified since the last
refresh operation, then it will be refreshed before another character is read.

RETURN VALUE

Upon successful completion, these functions return the single-byte character, KEY_ value, or
ERR. When in the nodelay mode (nodelay()) and no data is available, ERR is returned.

ERRORS

No errors are defined.

EXAMPLES

None.

APPLICATION USAGE

Applications should not define the escape key by itself as a single-character function.

When using these functions, nocbreak mode (nocbreak()) and echo mode (echo()) should not be
used at the same time. Depending on the state of the terminal when each character is typed, the
program may produce undesirable results.

RATIONALE

None.

FUTURE DIRECTIONS

102

None.

Technical Standard 2009

Curses Interfaces CURSES
SEE ALSO

Section 3.5 (on page 22), cbreak(), doupdate(), insch(), <curses.h>
CHANGE HISTORY

First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list for the gefch() function is explicitly declared as void.

Issue 4, Version 2
The RETURN VALUE section is expanded.

X/Open Curses, Issue 7

getch()

103

getmaxyx() ENHANCED CURSES

NAME
getmaxyx — get size of a window
SYNOPSIS
EC #include <curses.h>
void getmaxyx(WINDOW * win, i nt y, i nt Xx);
DESCRIPTION

Refer to getbegyx ().

104

Curses Interfaces

Technical Standard 2009

Curses Interfaces ENHANCED CURSES getn_wstr()

NAME
getn_wstr, get wstr, mvgetn_wstr, mvget_wstr, mvwgetn_wstr, mvwget_wstr, wgetn_wstr,
wget_wstr — get an array of wide characters and function key codes from a terminal

SYNOPSIS

EC #include <curses.h>
int getn_wstr(wint_t * wstr, i nt n);
int get_wstr(wint_t * wst r);
int mvgetn_wstr(int y, i nt X, wint t* wstr, i nt n);
int mvget_wstr(int y, i nt X, wint t* wstr);
int mvwgetn_wstr(WINDOW * win, in y,in x, wintt* wstr, i nt n);
int mvwget_ wstr(WINDOW * win, i nt y, i nt x, wint t* wstr);
int wgetn_wstr(WINDOW * Wi n, wint t* wstr, i nt n);
int wget_wstr(WINDOW * Wi n, wint t* wstr);

DESCRIPTION
The effect of get_wstr() is as though a series of calls to get_wch() were made, until a <newline>
character, end-of-line character, or end-of-file character is processed. An end-of-file character is
represented by WEOF, as defined in <wcharh>. A <newline> or end-of-line is represented as its
wchar_t value. In all instances, the end of the string is terminated by a null wchar_t. The
resulting values are placed in the area pointed to by wstr.
The user’s erase and kill characters are interpreted and affect the sequence of characters
returned.
The effect of wget_wstr() is as though a series of calls to wget_wch() were made.
The effect of mvget_wstr() is as though a call to move() followed by a series of calls to get_wch()
were made. The effect of mvwget_wstr() is as though a call to wmove() followed by a series of
calls to wget_wch() were made. The effect of mvget_nwstr() is as though a call to move() followed
by a series of calls to get_wch() were made. The effect of mvwget_nwstr() is as though a call to
wmove () followed by a series of calls to wget_wch() were made.
The getn_wstr(), mvgetn_wstr(), mvwgetn_wstr(), and wgetn_wstr() functions read at most n
characters, letting the application prevent overflow of the input buffer.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Reading a line that overflows the array pointed to by wstr with get_wstr(), muvget_wstr(),
muwget_wstr(), or wget_wstr() causes undefined results. The use of getn_wstr(), mvgetn_wstr(),
muwgetn_wstr(), or wgetn_wstr(), respectively, is recommended.
These functions cannot return KEY_ values as there is no way to distinguish a KEY_ value from
a valid wchar_t value.

RATIONALE

None.

X/Open Curses, Issue 7 105

getn_wstr() ENHANCED CURSES Curses Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
get_wch(), getnstr(), <curses.h>, <wcharh> (in the XBD specification), XBD specification,
Chapter 11, General Terminal Interface

CHANGE HISTORY
First released in Issue 4.

Issue 7
Corrigendum U018/1 is applied, correcting the getn_wstr() and get_wstr() function prototypes.

106 Technical Standard 2009

Curses Interfaces CURSES getnstr()

NAME
getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetnstr, wgetstr — get a multi-
byte character string from the terminal

SYNOPSIS
#include <curses.h>

EC int getnstr(char * str, i nt n);
int getstr(char * str);

EC int mvgetnstr(int y, i nt x, char* str, i nt n);
int mvgetstr(int y, i nt x, char* str);

EC int mvwgetnstr(WINDOW * win,int y,in x, char* str, i nt n);
int mvwgetstr(WINDOW * win,int y,in x, char* str);

EC int wgetnstr(WINDOW * win, char* str, i nt n);
int wgetstr(WINDOW * Wi n, c har* str);

DESCRIPTION
The effect of getstr() is as though a series of calls to getch() were made, until a <newline>,
<carriage-return>, or end-of-file is received. The resulting value is placed in the area pointed to

EC by str. The string is then terminated with a null byte. The getnstr(), mugetnstr(), mowgetnstr(),
and wgetnstr() functions are equivalent to the getstr(), mugetstr(), mvwgetstr(), and wgetstr()
functions respectively, except that they read at most n-1 bytes, thus preventing a possible
overflow of the input buffer. The user’s erase and kill characters are interpreted, as well as any
special keys (such as function keys, home key, clear key, and so on).
The muvgetstr() function is identical to getstr() except that it is as though it is a call to move()
followed by a series of calls to getch(). The movwgetstr() function is identical to getstr() except it

EC is as though a call to wmove() is made followed by a series of calls to wgetch(). The mvgetnstr()
function is identical to getnstr() except that it is as though it is a call to move() followed by a
series of calls to getch(). The mvwgetnstr() function is identical to getnstr() except it is as though
a call to wmove() is made followed by a series of calls to wgetch().
The getnstr(), wgetnstr(), movgetnstr(), and mowgetnstr() functions will only return the entire
multi-byte sequence associated with a character. If the array is large enough to contain at least
one character, the functions fill the array with complete characters. If the array is not large
enough to contain any complete characters, the function fails.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Reading a line that overflows the array pointed to by str with getstr (), mogetstr(), mowgetstr(), or
wgetstr() causes undefined results. The use of getnstr(), mvgetnstr (), mowgetnstr(), or wgetnstr(),
respectively, is recommended.

RATIONALE
None.

FUTURE DIRECTIONS
None.

X/Open Curses, Issue 7 107

getnstr() CURSES Curses Interfaces

SEE ALSO
Section 3.5 (on page 22), beep (), getch(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

In Issue 3, the getstr(), mugetstr(), mvwgetstr(), and wgetstr() functions were described in the
addstr() entry. In Issue 4, the DESCRIPTION of these functions is rewritten for clarity and is
updated to indicate that they will handle multi-byte sequences correctly.

Issue 4, Version 2
Corrections made to first sentence of the DESCRIPTION.

108 Technical Standard 2009

Curses Interfaces ENHANCED CURSES
NAME

getparyx — get subwindow origin coordinates
SYNOPSIS
EC #include <curses.h>

void getparyx(WINDOW * win, i nt y, i nt Xx);

DESCRIPTION
Refer to getbegyx ().

X/Open Curses, Issue 7

getparyx()

109

getstr() CURSES Curses Interfaces

NAME
getstr — get a multi-byte character string from the terminal

SYNOPSIS
#include <curses.h>

int getstr(char * str);

DESCRIPTION
Refer to getnstr().

110 Technical Standard 2009

Curses Interfaces ENHANCED CURSES getwin()

NAME

getwin, putwin — dump window to, and reload window from, a file
SYNOPSIS
EC #include <curses.h>

WINDOW *getwin(FILE * fi | ep);
int putwin(WINDOW * win, FILE* fil ep);

DESCRIPTION
The getwin() function reads window-related data stored in the file by putwin(). The function
then creates and initializes a new window using that data.

The putwin() function writes all data associated with win into the stdio stream to which filep
points, using an unspecified format. This information can be retrieved later using getwin().

RETURN VALUE
Upon successful completion, the getwin() function returns a pointer to the window it created.
Otherwise, it returns a null pointer.

Upon successful completion, the putwin () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
scr_dump (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7 111

getyx() CURSES

NAME
getyx — get cursor coordinates

SYNOPSIS
#include <curses.h>

void getyx(WINDOW * win, i nt vy, i nt Xx);

DESCRIPTION
Refer to getbegyx ().

112

Curses Interfaces

Technical Standard 2009

Curses Interfaces ENHANCED CURSES halfdelay()

NAME

halfdelay — control input character delay mode
SYNOPSIS
EC #include <curses.h>

int halfdelay(int t ent hs);
DESCRIPTION

The halfdelay() function sets the input mode for the current window to Half-Delay Mode and
specifies tenths tenths of seconds as the half-delay interval. The fenths argument must be in a
range from 1 up to and including 255.

RETURN VALUE
Upon successful completion, the halfdelay () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The application can call nocbreak() to leave Half-Delay mode.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.5.2 (on page 23), cbreak(), <curses.h>, XBD specification, Chapter 11, General Terminal
Interface

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7 113

has_colors() ENHANCED CURSES
NAME

has_colors — indicate whether terminal supports colors
SYNOPSIS
EC #include <curses.h>

bool has_colors(void);

DESCRIPTION
Refer to can_change_color ().

114

Curses Interfaces

Technical Standard 2009

Curses Interfaces CURSES has_ic()

NAME
has_ic, has_il — query functions for terminal insert and delete capability

SYNOPSIS
#include <curses.h>

bool has_ic(void);
bool has_il(void);

DESCRIPTION
The has_ic() function indicates whether the terminal has insert-character and delete-character
capabilities.

The has_il() function indicates whether the terminal has insert-line and delete-line capabilities,
or can simulate them using scrolling regions.

RETURN VALUE
The has_ic() function returns TRUE if the terminal has insert-character and delete-character
capabilities. Otherwise, it returns FALSE.

The has_il() function returns TRUE if the terminal has insert-line and delete-line capabilities.
Otherwise, it returns FALSE.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The has_il() function may be used to determine whether it would be appropriate to turn on
physical scrolling using scrollok().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The has_il() function is merged with this entry.

The entry is rewritten for clarity.

The argument list for the has_ic() and has_il() functions is explicitly declared as void.

X/Open Curses, Issue 7 115

hline() ENHANCED CURSES Curses Interfaces

NAME
hline, mvhline, mvvline, mvwhline, mvwyvline, vline, whline, wvline — draw lines from single-
byte characters and renditions

SYNOPSIS

EC #include <curses.h>
int hline(chtype ch, i nt n);
int mvhline(int y, i nt x, c htype ch, i nt n);
int mvvline(int y, i nt x, c htype ch, i nt n);

int mvwhline(WINDOW * win, i nt y, i nt x, c htype ch, i nt n);
int mvwvline(WINDOW * win, i nt y, i nt x, c htype ch, i nt n);
int vline(chtype ch, i nt n);

int whline(WINDOW * wi n, ¢ htype ch, i nt n);

int wvline(WINDOW * win, c htype ch, i nt n);

DESCRIPTION
These functions draw a line in the current or specified window starting at the current or
specified position, using ch. The line is at most n positions long, or as many as fit into the
window.

These functions do not advance the cursor position. These functions do not perform special
character processing. These functions do not perform wrapping.

The hline (), mohline(), mvwhline(), and whiine() functions draw a line proceeding toward the last
column of the same line.

The vline (), movline(), mowvline(), and woline() functions draw a line proceeding toward the last
line of the window.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
border(), box (), hline_set (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

116 Technical Standard 2009

Curses Interfaces

NAME

EC

hline_set, mvhline_set, mvvline_set,

ENHANCED CURSES

mvwhline_set,

mvwvline_set,

wvline_set — draw lines from complex characters and renditions

SYNOPSIS

#include <curses.h>

int hline_set(const cchar_t *
int mvhline_set(int
int mvvline_set(int
int mvwhline_set(WINDOW *
int mvwvline_set(WINDOW *
int vline_set(const cchar_t *
int whline_set(WINDOW *

int wvline_set(WINDOW *

wch, i nt n);

y, i nt X, c onstcchar_ t*
y, i nt X, c onstcchar_ t*

wch, i nt n);

W n, c onstcchar t*
W n, c onstcchar t*

DESCRIPTION

wech, i nt n);
wch, i nt n);

win, in y,in x, constcchar t*
win, in y,in X, constcchar t*

wch, i nt n);
wch, i nt n);

hline_set()

vline_set, whline_set,

wch, i nt n);
wch, i nt n);

These functions draw a line in the current or specified window starting at the current or
specified position, using ch. The line is at most n positions long, or as many as fit into the

window.

These functions do not advance the cursor position. These functions do not perform special
character processing. These functions do not perform wrapping.

The hline_set (), mohline_set (), mvwhline_set (), and whline_set() functions draw a line proceeding
toward the last column of the same line.

The vline_set (), movline_set (), mvwoline_set (), and woline_set() functions draw a line proceeding
toward the last line of the window.

RETURN VALUE

Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
border_set (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2

Corrections made to the SYNOPSIS.

X/Open Curses, Issue 7

117

idcok() ENHANCED CURSES Curses Interfaces

NAME

idcok — enable or disable use of hardware insert-character and delete-character features
SYNOPSIS
EC #include <curses.h>

void idcok(WINDOW * wi n, b ool bf);

DESCRIPTION
The idcok() function specifies whether the implementation may use hardware insert-character
and delete-character features in win if the terminal is so equipped. If bf is TRUE, use of these

features in win is enabled. If bf is FALSE, use of these features in win is disabled. The initial state
is TRUE.

RETURN VALUE
The idcok() function does not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearok (), doupdate(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

118 Technical Standard 2009

Curses Interfaces CURSES idlok()
NAME
idlok — enable or disable use of terminal insert-character and delete-line features

SYNOPSIS
#include <curses.h>

int idlok(WINDOW * wi n, b ool bf);

DESCRIPTION
Refer to clearok().

X/Open Curses, Issue 7 119

immedok() ENHANCED CURSES Curses Interfaces

NAME

immedok — enable or disable immediate terminal refresh
SYNOPSIS
EC #include <curses.h>

void immedok(WINDOW * wi n, b ool bf);

DESCRIPTION
The immedok() function specifies whether the screen is refreshed whenever the window pointed
to by win is changed. If bf is TRUE, the window is implicitly refreshed on each such change. If bf
is FALSE, the window is not implicitly refreshed. The initial state is FALSE.

RETURN VALUE
The immedok () function does not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The immedok () function is useful for windows that are used as terminal emulators.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearok (), doupdate(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

120 Technical Standard 2009

Curses Interfaces

NAME

ENHANCED CURSES

in_wch()

in_wch, mvin_wch, mvwin_wch, win_wch — extract a complex character and rendition from a

window

SYNOPSIS
EC #include <curses.h>

intin_wch(cchar_t *

int mvin_wch(int y, i nt X, cchar t*
int mvwin_wch(WINDOW *

int win_wch(WINDOW *

DESCRIPTION

win, in y,in x, cchart*
Wi n, c char_t*

These functions extract the complex character and rendition from the current or specified

position in the current or specified window into the object pointed to by wcval.

RETURN VALUE

Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<curses.h>

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7

121

in_wchnstr() ENHANCED CURSES Curses Interfaces

NAME
in_wchnstr, in_wchstr, mvin_wchnstr, mvin_wchstr, mvwin_wchnstr, mvwin_wchstr,
win_wchnstr, win_wchstr — extract an array of complex characters and renditions from a
window
SYNOPSIS
EC #include <curses.h>
int in_wchnstr(cchar_t * wchstr, i nt n);
int in_wchstr(cchar_t * wehstr);
int mvin_wchnstr(int y, i nt x, cchar t* wchstr, i nt n);
int mvin_wchstr(int y, i nt x, cchar t* wchstr);
int mvwin_wchnstr(WINDOW * win, in y,in x, cchart* whstr, i nt n);
int mvwin_wchstr(WINDOW * win,in y,in x, cchar_t* whstr);
int win_wchnstr(WINDOW * Wi n, cchar t* wchstr, i nt n);
int win_wchstr(WINDOW * Wi n, cchar t* wchstr);
DESCRIPTION
These functions extract characters from the current or specified window, starting at the current
or specified position and ending at the end of the line, and place them in the array pointed to by
wchstr.
The in_wchnstr(), mvin_wchnstr (), mowin_wchnstr(), and win_wchnstr() functions fill the array
with at most n cchar_t elements.
RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
Reading a line that overflows the array pointed to by wchstr with in_wchstr(), mvin_wchstr(),
mowin_wchstr(), or win_wchstr() causes undefined results. The use of in_wchnstr(),
muin_wchnstr (), mowin_wchnstr (), or win_wchnstr (), respectively, is recommended.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO
in_wch(), <curses.h>
CHANGE HISTORY

First released in Issue 4.

122 Technical Standard 2009

Curses Interfaces CURSES inch()

NAME
inch, mvinch, mvwinch, winch — input a single-byte character and rendition from a window

SYNOPSIS
#include <curses.h>

chtype inch(void);

chtype mvinch(int y, i nt Xx);

chtype mvwinch(WINDOW * win, i nt vy, i nt Xx);
chtype winch(WINDOW * wi n);

DESCRIPTION
These functions return the character and rendition, of type chtfype, at the current or specified
position in the current or specified window.

RETURN VALUE
Upon successful completion, the functions return the specified character and rendition.
Otherwise, they return (chtype)ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list for the inch () function is explicitly declared as void.

X/Open Curses, Issue 7 123

inchnstr() ENHANCED CURSES Curses Interfaces

NAME
inchnstr, inchstr, mvinchnstr, mvinchstr, mvwinchnstr, mvwinchstr, winchnstr, winchstr — input
an array of single-byte characters and renditions from a window
SYNOPSIS
EC #include <curses.h>
int inchnstr(chtype * chstr, i nt n);
int inchstr(chtype * chstr),
int mvinchnstr(int y, i nt x, c htype* chstr, i nt n);
int mvinchstr(int y, i nt x, c htype* chstr);
int mvwinchnstr(WINDOW * win, inty,int x,chtype* chstr, i nt n);
int mvwinchstr(WINDOW * win, i nt y, i nt x, c htype* chstr),
int winchnstr(WINDOW * W n, c htype* chstr, i nt n);
int winchstr(WINDOW * Wi n, c htype* chstr);
DESCRIPTION
These functions place characters and renditions from the current or specified window into the
array pointed to by chstr, starting at the current or specified position and ending at the end of
the line.
The inchnstr(), mvinchnstr(), mowinchnstr(), and winchnstr() functions store at most n elements
from the current or specified window into the array pointed to by chstr.
RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
Reading a line that overflows the array pointed to by chstr with inchstr(), movinchstr(),
mowinchstr(), or winchstr() causes undefined results. The use of inchnstr(), mvinchnstr(),
muwinchnstr (), or winchnstr (), respectively, is recommended.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO
inch(), <curses.h>
CHANGE HISTORY

First released in Issue 4.

124 Technical Standard 2009

Curses Interfaces ENHANCED CURSES init_color()

NAME
init_color, init_pair — redefine specified color or color pair

SYNOPSIS

EC #include <curses.h>
int init_color(short color, s hort red, s hort green, s hort bl ue);
int init_pair(short pair, short f, s hort b);

DESCRIPTION

Refer to can_change_color ().

X/Open Curses, Issue 7 125

initscr() CURSES Curses Interfaces

NAME
initscr, newterm — screen initialization functions

SYNOPSIS
#include <curses.h>
WINDOW *initscr(void);
SCREEN *newterm(const char * type, FILE* outfile, FILE* infile);

DESCRIPTION
The initscr() function determines the terminal type and initializes all implementation data
structures. The TERM environment variable specifies the terminal type. The initscr() function
also causes the first refresh operation to clear the screen. If errors occur, initscr() writes an
appropriate error message to standard error and exits. The only functions that can be called
before initscr () or newterm() are filter (), ripoffline(), slk_init (), use_env(), and the functions whose
prototypes are defined in <term.h>. Portable applications must not call initscr () twice.
The newterm () function can be called as many times as desired to attach a terminal device. The
type argument points to a string specifying the terminal type, except that if type is a null pointer,
the TERM environment variable is used. The outfile and infile arguments are file pointers for
output to the terminal and input from the terminal, respectively. It is unspecified whether
Curses modifies the buffering mode of these file pointers. The newterm() function should be
called once for each terminal.
The initscr () function is equivalent to:
newterm(getenv("TERM"), stdout, stdin);
return stdscr;
If the current disposition for the signals SIGINT, SIGQUIT, or SIGTSTP is SIGDFL, then initscr()
may also install a handler for the signal, which may remain in effect for the life of the process or
until the process changes the disposition of the signal.
The initscr () and newterm () functions initialize the cur_term external variable.

RETURN VALUE
Upon successful completion, the initscr() function returns a pointer to stdscr. Otherwise, it does
not return.
Upon successful completion, the newterm () function returns a pointer to the specified terminal.
Otherwise, it returns a null pointer.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE

126

A program that outputs to more than one terminal should use newterm() for each terminal
instead of initscr(). A program that needs an indication of error conditions, so it can continue to
run in a line-oriented mode if the terminal cannot support a screen-oriented program, would
also use this function.

Applications should perform any required handling of the SIGINT, SIGQUIT, or SIGTSTP
signals before calling initscr ().

Technical Standard 2009

Curses Interfaces CURSES initscr()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section A.3 (on page 377), delscreen(), doupdate(), del_curterm(), filter(), slk_attroff(), use_env(),
<curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The newterm () function is merged with this entry.

The entry is rewritten for clarity.
The argument list for the initscr() function is explicitly declared as void.

Issue 7
The prototype for the newterm () function is updated.

X/Open Curses, Issue 7 127

innstr() ENHANCED CURSES Curses Interfaces

NAME

innstr, instr, mvinnstr, mvinstr, mvwinnstr, mvwinstr, winnstr, winstr — input a multi-byte
character string from a window

SYNOPSIS

EC

#include <curses.h>

int innstr(char * str, i nt n);

int instr(char * str);

int mvinnstr(int y, i nt x, char* str, i nt n);

int mvinstr(int y, i nt x, char* str);

int mvwinnstr(WINDOW * win,int y,in x, char* str, i nt n);
int mvwinstr(WINDOW * win, int y,in x, char* str);

int winnstr(WINDOW * win, char* str, i nt n);

int winstr(WINDOW * Wi n, char* str);

DESCRIPTION

These functions place a string of characters from the current or specified window into the array
pointed to by str, starting at the current or specified position and ending at the end of the line.

The innstr(), mvinnstr(), mowinnstr (), and winnstr() functions store at most n bytes in the string
pointed to by str.

The innstr(), mvinnstr(), mowinnstr(), and winnstr() functions will only store the entire multi-
byte sequence associated with a character. If the array is large enough to contain at least one
character, the array is filled with complete characters. If the array is not large enough to contain
any complete characters, the function fails.

RETURN VALUE

Upon successful completion, the instr(), mvinstr(), mowinstr(), and winstr() functions return
OK.

Upon successful completion, the innstr(), mvinnstr(), mowinnstr(), and winnstr() functions
return the number of characters actually read into the string.

Otherwise, all these functions return ERR.

ERRORS

No errors are defined.

EXAMPLES

None.

APPLICATION USAGE

Since multi-byte characters may be processed, there might not be a one-to-one correspondence
between the number of column positions on the screen and the number of bytes returned.

These functions do not return rendition information.

Reading a line that overflows the array pointed to by str with instr(), muvinstr(), mvwinstr(), or
winstr() causes undefined results. The use of innstr(), mvinnstr(), mowinnstr(), or winnstr(),
respectively, is recommended.

RATIONALE

128

None.

Technical Standard 2009

Curses Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
<curses.h>

CHANGE HISTORY

First released in Issue 4.

X/Open Curses, Issue 7

ENHANCED CURSES

innstr()

129

innwstr() ENHANCED CURSES Curses Interfaces

NAME
innwstr, inwstr, mvinnwstr, mvinwstr, mvwinnwstr, mvwinwstr, winnwstr, winwstr — input a
string of wide characters from a window

SYNOPSIS

EC #include <curses.h>
int innwstr(wchar_t * wstr, i nt n)
int inwstr(wchar_t * wstr);
int mvinnwstr(int y, i nt x, wchar_t* wstr, i nt n);
int mvinwstr(int y, i nt x, wchar_t* wstr);
int mvwinnwstr(WINDOW * win, i nt y, i nt x, wchar_t* wstr, i nt n);
int mvwinwstr(WINDOW * win, i nt y, i nt x, wchar_t* wstr);
int winnwstr(WINDOW * wi n, wchar_t* wstr, i nt n);
int winwstr(WINDOW * wi n, wchar_t* wstr),

DESCRIPTION
These functions place a string of wchar_t characters from the current or specified window into
the array pointed to by wstr starting at the current or specified cursor position and ending at the
end of the line.
These functions will only store the entire wide-character sequence associated with a spacing
complex character. If the array is large enough to contain at least one complete spacing complex
character, the array is filled with complete characters. If the array is not large enough to contain
any complete characters, this is an error.
The innwstr(), mvinnwstr (), mowinnwstr(), and winnwstr() functions store at most n characters
in the array pointed to by wstr.

RETURN VALUE
Upon successful completion, the inwstr(), mvinwstr(), mowinwstr(), and winwstr() functions
return OK.
Upon successful completion, the innwstr(), movinnwstr(), movwinnwstr(), and winnwstr()
functions return the number of characters actually read into the string.
Otherwise, all these functions return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Reading a line that overflows the array pointed to by wstr with inwstr(), mvinwstr(),
mowinwstr(), or winwstr() causes undefined results. The use of innwstr(), mvinnwstr(),
mowinnwstr (), or winnwstr (), respectively, is recommended.
These functions do not return rendition information.

RATIONALE
None.

FUTURE DIRECTIONS
None.

130 Technical Standard 2009

Curses Interfaces

SEE ALSO
<curses.h>

CHANGE HISTORY

First released in Issue 4.

X/Open Curses, Issue 7

ENHANCED CURSES

innwstr()

131

ins_nwstr() ENHANCED CURSES Curses Interfaces

NAME
ins_nwstr, ins_wstr, mvins_nwstr, mvins_wstr, mvwins_nwstr, mvwins_wstr, wins_nwstr,
wins_wstr — insert a wide-character string into a window
SYNOPSIS
EC #include <curses.h>
int ins_nwstr(const wchar_t * wstr, i nt n);
int ins_wstr(const wchar_t * wst r);
int mvins_nwstr(int y, i nt X, c onstwchar t* wstr, i nt n);
int mvins_wstr(int y, i nt X, c onstwchar t* wst r);
int mvwins_nwstr(WINDOW * win, in y,in X, constwchar t* wstr,
int n);
int mvwins_wstr(WINDOW * win, i nt y, i nt X, constwchar_t* wstr);
int wins_nwstr(WINDOW * Wi n, constwchar_t* wstr, i nt n);
int wins_wstr(WINDOW * wi n, c onstwchar_t* wstr);
DESCRIPTION
These functions insert a wchar_t character string (as many wchar_t characters as will fit on the
line) in the current or specified window immediately before the current or specified position.
Any non-spacing characters in the string are associated with the first spacing character in the
string that precedes the non-spacing characters. If the first character in the string is a non-
spacing character, these functions will fail.
These functions do not advance the cursor position. These functions perform special character
processing. These functions do not perform wrapping.
The ins_nwstr(), mvins_nwstr(), mowins_nwstr(), and wins_nwstr() functions insert at most n
wchar_t characters. If # is less than 0, then the entire string is inserted.
RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO
<curses.h>
CHANGE HISTORY

First released in Issue 4.

Issue 4, Version 2

132

Corrections made to the SYNOPSIS.

Technical Standard 2009

Curses Interfaces ENHANCED CURSES ins_wch()

NAME
ins_wch, mvins_wch, mvwins_wch, wins_wch — insert a complex character and rendition into
a window
SYNOPSIS
EC #include <curses.h>
int ins_wch(const cchar_t * weh);
int mvins_wch(int y, i nt x, constcchar_t* weh);
int mvwins wch(WINDOW * win, i nt y, i nt x, c onstcchar t* weh);
int wins_wch(WINDOW * wi n, ¢ onstcchar t* weh);
DESCRIPTION
These functions insert the complex character wch with its rendition in the current or specified
window at the current or specified cursor position.
These functions do not advance the cursor position. These functions perform special-character
processing, with the exception that if a <newline> is inserted into the last line of a window and
scrolling is not enabled, the behavior is unspecified. These functions do not perform wrapping.
RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
For non-spacing characters, add_wch() can be used to add the non-spacing characters to a
spacing complex character already in the window.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO
add_wch(), <curses.h>
CHANGE HISTORY

First released in Issue 4.

Issue 4, Version 2
Corrections made to the SYNOPSIS.

X/Open Curses, Issue 7 133

insch() CURSES Curses Interfaces

NAME
insch, mvinsch, mvwinsch, winsch — insert a single-byte character and rendition into a window

SYNOPSIS
#include <curses.h>

int insch(chtype ch);

int mvinsch(int y, i nt x, c htype ch);

int mvwinsch(WINDOW * win, i nt y, i nt X, c htype ch);
int winsch(WINDOW * wi n, ¢ htype ch);

DESCRIPTION
These functions insert the character and rendition from ch into the current or specified window
at the current or specified position.

These functions do not advance the cursor position. These functions perform special character
processing, with the exception that if a <newline> is inserted into the last line of a window and
scrolling is not enabled, the behavior is unspecified. These functions do not perform wrapping.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ins_wch (), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

Issue 4, Version 2
The DESCRIPTION is further clarified.

134 Technical Standard 2009

Curses Interfaces ENHANCED CURSES
NAME

insdelln, winsdelln — delete or insert lines into a window
SYNOPSIS
EC #include <curses.h>

int insdelin(int n);

int winsdelln(WINDOW * win,int n)

DESCRIPTION
These functions perform the following actions:

insdelin()

o If n is positive, these functions insert # lines into the current or specified window before

the current line. The # last lines are no longer displayed.

« If nis negative, these functions delete 7 lines from the current or specified window starting
with the current line, and move the remaining lines toward the cursor. The last # lines are

cleared.
The current cursor position remains the same.

RETURN VALUE

Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
deleteln (), insertin(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7

135

insertin() CURSES Curses Interfaces

NAME
insertln, winsertln — insert lines into a window

SYNOPSIS
#include <curses.h>

int insertin(void);
int winsertin(WINDOW * wi n);

DESCRIPTION
These functions insert a blank line before the current line in the current or specified window. The
bottom line is no longer displayed. The cursor position does not change.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
insdelln(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list for the insertln () function is explicitly declared as void.

136 Technical Standard 2009

Curses Interfaces ENHANCED CURSES insnstr()

NAME
insnstr, insstr, mvinsnstr, mvinsstr, mvwinsnstr, mvwinsstr, winsnstr, winsstr — insert a multi-
byte character string into a window
SYNOPSIS
EC #include <curses.h>
int insnstr(const char * str, i nt n);
int insstr(const char * str);
int mvinsnstr(int y, i nt x, constchar* str, i nt n);
int mvinsstr(int y, i nt x, constchar* str);
int mvwinsnstr(WINDOW * ~ win, i nt y, i nt x, constchar* str, i nt n),
int mvwinsstr(WINDOW * win, i nt y, i nt x, constchar* str);
int winsnstr(WINDOW * Wi n, constchar* str, i nt n);
int winsstr(WINDOW * Wi n, constchar* str),
DESCRIPTION
These functions insert a character string (as many characters as will fit on the line) before the
current or specified position in the current or specified window.
These functions do not advance the cursor position. These functions perform special character
processing. These functions do not perform wrapping.
The insnstr(), mvinsnstr(), mowinsnstr(), and winsnstr() functions insert at most n bytes. If n is
less than 1, the entire string is inserted.
RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
Since the string may contain multi-byte characters, there might not be a one-to-one
correspondence between the number of column positions occupied by the characters and the
number of bytes in the string.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO
<curses.h>
CHANGE HISTORY

First released in Issue 4.

Issue 4, Version 2
Corrections made to the SYNOPSIS.

X/Open Curses, Issue 7 137

instr() ENHANCED CURSES Curses Interfaces
NAME
instr — input a multi-byte character string from the current window

SYNOPSIS
EC #include <curses.h>

int instr(char * str);

DESCRIPTION
Refer to innstr().

138 Technical Standard 2009

Curses Interfaces CURSES intrflush()

NAME

intrflush — enable or disable flush on interrupt
SYNOPSIS

#include <curses.h>

int intrflush(WINDOW * wi n, b ool bf);
DESCRIPTION

The intrflush () function specifies whether pressing an interrupt key (interrupt, suspend, or quit)
will flush the input buffer associated with the current screen. If the value of bf is TRUE, then
flushing of the output buffer associated with the current screen will occur when an interrupt key
(interrupt, suspend, or quit) is pressed. If the value of bf is FALSE, then no flushing of the buffer
will occur when an interrupt key is pressed. The default for the option is inherited from the
display driver settings. The win argument is ignored.

RETURN VALUE
Upon successful completion, the intrflush() function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The same effect is achieved outside Curses using the NOFLSH local mode flag specified in the
XBD specification (General Terminal Interface).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.5 (on page 22), <curses.h>, XBD specification, Section 11.2, Parameters that Can be Set

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

Issue 4, Version 2
The description of the bf argument has been changed to align with Issue 3 and preserve
compatibility.

X/Open Curses, Issue 7 139

inwstr() ENHANCED CURSES Curses Interfaces

NAME
inwstr — input a string of wide characters from the current window
SYNOPSIS
EC #include <curses.h>
int inwstr(wchar_t * wst r);
DESCRIPTION

Refer to innwstr().

140 Technical Standard 2009

Curses Interfaces CURSES Is_linetouched()

NAME
is_linetouched, is_wintouched, touchline, touchwin, untouchwin, wtouchln — window refresh
control functions

SYNOPSIS
#include <curses.h>
EC bool is_linetouched(WINDOW * win,int |ine)

bool is_wintouched(WINDOW * Wi n);
int touchline(WINDOW * win, i nt start, i nt count);
int touchwin(WINDOW * Wi n);
EC int untouchwin(WINDOW * Wi n);
int wtouchin(WINDOW * win,int y,in n,int changed);

DESCRIPTION
The touchwin() function touches the specified window (that is, marks it as having changed more
EC recently than the last refresh operation). The touchline() function only touches count lines,

beginning with line start.

The untouchwin() function marks all lines in the window as unchanged since the last refresh
operation.

Calling wtouchln(), if changed is 1, touches 7 lines in the specified window, starting at line y. If
changed is 0, wtouchln () marks such lines as unchanged since the last refresh operation.

The is_wintouched() function determines whether the specified window is touched. The
is_linetouched () function determines whether line /ine of the specified window is touched.

RETURN VALUE

EC The is_linetouched() and is_wintouched() functions return TRUE if any of the specified lines, or
the specified window, respectively, has been touched since the last refresh operation. Otherwise,
they return FALSE.

Upon successful completion, the other functions return OK. Otherwise, they return ERR.
Exceptions to this are noted in the preceding function descriptions.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Calling touchwin() or touchline() is sometimes necessary when using overlapping windows,
since a change to one window affects the other window, but the records of which lines have been
changed in the other window do not reflect the change.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.2 (on page 14), doupdate(), <curses.h>

X/Open Curses, Issue 7 141

is_linetouched() CURSES Curses Interfaces

CHANGE HISTORY
First released in Issue 4.

142 Technical Standard 2009

Curses Interfaces

NAME

isendwin — determine whether a screen has been refreshed

SYNOPSIS
EC #include <curses.h>

bool isendwin(void);

DESCRIPTION

ENHANCED CURSES

isendwin()

The isendwin() function indicates whether the screen has been refreshed since the last call to

endwin ().

RETURN VALUE

The isendwin() function returns TRUE if endwin() has been called without any subsequent

refresh. Otherwise, it returns FALSE.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endwin (), <curses.h>

CHANGE HISTORY

First released in Issue 4.

X/Open Curses, Issue 7

143

keyname() ENHANCED CURSES Curses Interfaces

NAME

keyname, key_name — get name of key
SYNOPSIS
EC #include <curses.h>

char *keyname(int c);

char *key_name(wchar_t c);
DESCRIPTION

These functions generate a character string whose value describes the key c¢. The ¢ argument of
keyname () can be an 8-bit character or a key code. The ¢ argument of key_name() must be a wide
character.

The string has a format according to the first applicable row in the following table:

Input Format of Returned String
Visible character The same character
Control character X
Meta-character (keyname() only) -X
Key value defined in <curses.h> | KEY_name
(keyname() only)
None of the above UNKNOWN KEY

The meta-character notation shown above is used only if meta-characters are enabled.

RETURN VALUE
Upon successful completion, these functions return a pointer to a string as described above.
Otherwise, they return a null pointer.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The return value of keyname() and key_name() may point to a static area which is overwritten by
a subsequent call to either of these functions.

Applications normally process meta-characters without storing them into a window. If an
application stores meta-characters in a window and tries to retrieve them as wide characters,
keyname () cannot detect meta-characters, since wide characters do not support meta-characters.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
meta(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

144 Technical Standard 2009

Curses Interfaces CURSES keypad()

NAME
keypad — enable/disable abbreviation of function keys

SYNOPSIS
#include <curses.h>

int keypad(WINDOW * wi n, b ool bf);

DESCRIPTION
The keypad () function controls keypad translation. If bf is TRUE, keypad translation is turned on.
If bf is FALSE, keypad translation is turned off. The initial state is FALSE.

This function affects the behavior of any function that provides keyboard input.

If the terminal in use requires a command to enable it to transmit distinctive codes when a
function key is pressed, then after keypad translation is first enabled, the implementation
transmits this command to the terminal before an affected input function tries to read any
characters from that terminal.

RETURN VALUE
Upon successful completion, the keypad () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.5.1 (on page 22), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

X/Open Curses, Issue 7 145

killchar() CURSES Curses Interfaces

NAME
killchar, killwchar — terminal environment query functions

SYNOPSIS
#include <curses.h>

char killchar(void);
EC int killwchar(wchar_t * ch);

DESCRIPTION
Refer to erasechar ().

146 Technical Standard 2009

Curses Interfaces CURSES leaveok()

NAME
leaveok — control cursor position resulting from refresh operations

SYNOPSIS
#include <curses.h>

int leaveok(WINDOW * wi n, b ool bf);

DESCRIPTION
Refer to clearok().

X/Open Curses, Issue 7 147

leavok() CURSES Curses Interfaces
NAME
leaveok — terminal output control functions

SYNOPSIS
#include <curses.h>

int leaveok(WINDOW * wi n, b ool bf);

DESCRIPTION
Refer to clearok().

148 Technical Standard 2009

Curses Interfaces CURSES longname()

NAME
longname — get verbose description of current terminal

SYNOPSIS
#include <curses.h>

char *longname(void);

DESCRIPTION
The longname() function generates a verbose description of the current terminal. The maximum
length of a verbose description is 128 bytes. It is defined only after the call to initscr() or
newterm().

RETURN VALUE
Upon successful completion, the longname() function returns a pointer to the description
specified above. Otherwise, it returns a null pointer on error.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The return value of longname() may point to a static area which is overwritten by a subsequent
call to newterm().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
initscr(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list for the longname() function is explicitly declared as void.

X/Open Curses, Issue 7 149

meta() ENHANCED CURSES Curses Interfaces

NAME

meta — enable/disable meta-keys
SYNOPSIS
EC #include <curses.h>

int meta(WINDOW * wi n, b ool bf);
DESCRIPTION

Initially, whether the terminal returns seven or eight significant bits on input depends on the
control mode of the display driver (see the XBD specification, General Terminal Interface). To
force eight bits to be returned, invoke meta(win, TRUE). To force seven bits to be returned, invoke
meta(win, FALSE). The win argument is always ignored. If the terminfo capabilities smm
(meta_on) and rmm (meta_off) are defined for the terminal, smm is sent to the terminal when
meta(win, TRUE) is called and rmm is sent when meta(win, FALSE) is called.

RETURN VALUE
Upon successful completion, the meta() function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The same effect is achieved outside Curses using the CS7 or CS8 control mode flag specified in
the XBD specification (General Terminal Interface).

The meta() function was designed for use with terminals with 7-bit character sets and a “meta”
key that could be used to set the eighth bit.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.5 (on page 22), getch(), <curses.h>, XBD specification, Section 11.2, Parameters that
Can be Set (ISTRIP flag)

CHANGE HISTORY
First released in Issue 4.

150 Technical Standard 2009

Curses Interfaces

NAME

move, wmove — window cursor location functions

SYNOPSIS
#include <curses.h>

int move(int y, i nt Xx);

int wmove(WINDOW * win, i nt y, i nt

DESCRIPTION

CURSES

move()

These functions move the cursor associated with the current or specified window to (y, x)
relative to the window’s origin. This function does not move the terminal’s cursor until the next

refresh operation.

RETURN VALUE

Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
doupdate(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

X/Open Curses, Issue 7

151

mv CURSES Curses Interfaces

NAME
mv — pointer page for functions with mv prefix

DESCRIPTION
Most cases in which a Curses function has the mv prefix indicate that the function takes y and x
arguments and moves the cursor to that address as though move() were first called.(The
corresponding functions without the mv prefix operate at the cursor position.)

Note: The mocur (), moderwin(), and mvwin() functions are exceptions to this rule, in that mv is not a
prefix with the usual meaning and there are no corresponding functions without the mv prefix.
These functions have entries under their own names.

In the moprintw() and movscanw() functions, mv is a prefix with the usual meaning, but the
functions have entries under their own names because the mv() function is the first function in
the family of functions in alphabetical order.

The mv prefix is combined with a w prefix to produce Curses functions beginning with mvw.

The mv*() and movw*() functions are discussed together with the corresponding functions that
do not have these prefixes. They are found on the following entries:

Function Refer to
moaddch (), mowaddch() addch ()
moaddchnstr (), mvwaddchnstr () addchstr()
moaddchstr (), mowaddchstr() addchstr()
moaddnstr (), mowaddnstr() addnstr()
moaddstr (), mowaddstr() addnstr()
moaddnwstr (), mowaddnwstr() addnwstr()
moaddwstr (), mowaddwstr() addnwstr()
moadd_wch (), mvwadd_wch() add_wch ()
moadd_wchnstr (), mvwadd_wchnstr() add_wchnstr()
moadd_wchstr (), mowadd_wchstr() add_wchnstr()
muchgat (), mowchgat () chgat ()
muodelch (), movwdelch() delch()
mugetch (), mvwgetch() getch()
mugetnstr (), mvwgetnstr () getnstr()
mugetstr (), mvwgetstr () getnstr()
mugetn_wstr(), mvwgetn_wstr() getn_wstr()
muget_wch(), mvwget_wch () get_wch()
muget_wstr (), mowget_wstr() getn_wstr()
mohline(), mowhline() hline()
mohline_set (), mvwhline_set () hline_set ()
moinch(), mowinch() inch()
muoinchnstr (), mowinchnstr() inchnstr()
moinchstr (), mowinchstr() inchnstr()
moinnstr (), mowinnstr() innstr()
moinnwstr (), mowinnwstr() innwstr()
muoinsch(), mvwinsch() insch()
moinsnstr (), mowinsnstr() insnstr()
moinsstr (), mowinsstr() insnstr()
moinstr (), mowinstr() innstr()
moins_nwstr (), mowins_nwstr() ins_nwstr()
moins_wch(), mowins_wch() ins_wch()
moins_wstr (), mowins_wstr() ins_nwstr()
moinwstr (), mowinwstr() innwstr()

152 Technical Standard 2009

Curses Interfaces

X/Open Curses, Issue 7

CURSES
Function Refer to
moin_wch (), mowin_wch() in_wch()

moin_wchnstr (), mowin_wchnstr()
moin_wchstr (), mowin_wchstr()
moprintw (), mowprintw()
mouscanw (), mowscanw ()
movline(), mowoline()
movline_set (), mvwvline_set ()

in_wchnstr()
in_wchnstr()
muprintw()
muscanw ()
hline()
hline_set ()

mv

153

mvadd_wch() ENHANCED CURSES Curses Interfaces

NAME

mvadd_wch, mvwadd_wch — add a complex character and rendition to a window
SYNOPSIS
EC #include <curses.h>

int mvadd_wch(int y, i nt X, c onstcchar_ t* weh);

int mvwadd_wch(WINDOW * win, i nt y, i nt x, c onstcchar t* weh);

DESCRIPTION
Refer to add_wch().

154 Technical Standard 2009

Curses Interfaces ENHANCED CURSES mvadd_wechnstr()

NAME

mvadd_wchnstr, mvadd_wchstr, mvwadd_wchnstr, mvwadd_wchstr — add an array of

complex characters and renditions to a window

SYNOPSIS
EC #include <curses.h>
int mvadd_wchnstr(int y, i nt X, c onstcchar_ t* wchstr, i nt
int mvadd_wchstr(int y, i nt X, c onstcchar_ t* wehstr);
int mvwadd_wchnstr(WINDOW * win, i nt y, i nt X, c onstcchar_t*
int n);

int mvwadd_wchstr(WINDOW * win, i nt y, i nt X, c onstcchar t*

DESCRIPTION

Refer to add_wchnstr().

X/Open Curses, Issue 7

n);
wehstr,

wehstr);

155

mvaddch() CURSES Curses Interfaces

NAME
mvaddch, mvwaddch — add a single-byte character and rendition to a window and advance the

cursor

SYNOPSIS
#include <curses.h>

int mvaddch(int y, i nt X, c onstchtype ch);
int mvwaddch(WINDOW * win, i nt y, i nt X, c onstchtype ch);

DESCRIPTION
Refer to addch ().

156 Technical Standard 2009

Curses Interfaces CURSES mvaddchstr()

NAME
mvaddchstr, mvaddchnstr, mvwaddchstr, mvwaddchnstr — add string of single-byte characters
and renditions to a window

SYNOPSIS
#include <curses.h>

int mvaddchstr(int y, i nt X, c onstchtype* chstr);
EC int mvaddchnstr(int y, i nt X, c onstchtype * chstr, i nt n);
int mvwaddchstr(WINDOW * win, i nt y, i nt X, c onstchtype* chstr);
EC int mvwaddchnstr(WINDOW * win, i nt y, i nt x, c onstchtype* chstr,
int n);
DESCRIPTION
Refer to addchstr().

X/Open Curses, Issue 7 157

mvaddnstr() ENHANCED CURSES Curses Interfaces

NAME
mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr — add a string of multi-byte characters without
rendition to a window and advance cursor

SYNOPSIS

EC #include <curses.h>
int mvaddnstr(int y, i nt X, constchar* str, i nt n);
int mvaddstr(int y, i nt X, constchar* str);

int mvwaddnstr(WINDOW * win, i nt y, i nt x, constchar* str, i nt n);
int mvwaddstr(WINDOW * win, i nt y, i nt x, constchar* str);

DESCRIPTION
Refer to addnstr().

158 Technical Standard 2009

Curses Interfaces ENHANCED CURSES mvaddnwstr()

NAME
mvaddnwstr, mvaddwstr, mvwaddnwstr, mvwaddwstr — add a wide-character string to a
window and advance the cursor
SYNOPSIS
EC #include <curses.h>
int mvaddnwstr(int y, i nt X, c onstwchar t* wstr, i nt n);
int mvaddwstr(int y, i nt X, c onstwchar t* wst r);
int mvwaddnwstr(WINDOW * win, i nt y, i nt x, c onstwchar t* wstr, i nt n);
int mvwaddwstr(WINDOW * win, i nt y, i nt X, c onstwchar_t* wst r);
DESCRIPTION

Refer to addnwstr().

X/Open Curses, Issue 7 159

mvchgat() ENHANCED CURSES Curses Interfaces

NAME
mvchgat, mvwchgat — change renditions of characters in a window
SYNOPSIS
EC #include <curses.h>
int mvchgat(int y,int x,int n, attr_t attr, s hort col or,
const void * opt s);
int mvwchgat(WINDOW * win, i nt y, i nt x, i nt n, attrt attr,
short col or, c onstvoid * opt s);
DESCRIPTION
Refer to chgat ().

160 Technical Standard 2009

Curses Interfaces ENHANCED CURSES mvcur()

NAME
mvcur — output cursor movement commands to the terminal

SYNOPSIS

EC #include <curses.h>
int mvceur(int oldrow, i nt oldcol, i nt newow, i nt newcol);

DESCRIPTION
The muvcur() function outputs one or more commands to the terminal that moves the terminal’s
cursor to (newrow, newcol), an absolute position on the terminal screen. The (oldrow, oldcol)
arguments specify the former cursor position. Specifying the former position is necessary on
terminals that do not provide coordinate-based movement commands. On terminals that
provide these commands, Curses may select a more efficient way to move the cursor based on
the former position. If (newrow, newcol) is not a valid address for the terminal in use, movcur()
fails. If (oldrow, oldcol) is the same as (newrow, newcol), then mocur () succeeds without taking any
action. If mocur() outputs a cursor movement command, it updates its information concerning
the location of the cursor on the terminal.

RETURN VALUE
Upon successful completion, the mocur () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
After use of mucur(), the model Curses maintains of the state of the terminal might not match
the actual state of the terminal. The application should touch and refresh the window before
resuming conventional use of Curses.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
doupdate(), is_linetouched (), <curses.h>

CHANGE HISTORY

First released in Issue 4.

X/Open Curses, Issue 7 161

mvdelch() CURSES Curses Interfaces
NAME
mvdelch, mvwdelch — delete a character from a window

SYNOPSIS
#include <curses.h>

int mvdelch(int y, i nt Xx);
int mvwdelch(WINDOW * win, i nt vy, i nt Xx);

DESCRIPTION
Refer to delch ().

162 Technical Standard 2009

Curses Interfaces ENHANCED CURSES mvderwin()

NAME

mvderwin — define window coordinate transformation
SYNOPSIS
EC #include <curses.h>

int mvderwin(WINDOW * wi n, i nt par_y, i nt par_Xx);
DESCRIPTION

The muderwin() function specifies a mapping of characters. The function identifies a mapped
area of the parent of the specified window, whose size is the same as the size of the specified
window and whose origin is at (par_y, par_x) of the parent window.

¢ During any refresh of the specified window, the characters displayed in that window’s
display area of the terminal are taken from the mapped area.

+ Any references to characters in the specified window obtain or modify characters in the
mapped area.

That is, mvderwin() defines a coordinate transformation from each position in the mapped area
to a corresponding position (same y, x offset from the origin) in the specified window.

RETURN VALUE
Upon successful completion, the movderwin () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
derwin (), doupdate(), dupwin (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7 163

mvget_wch() ENHANCED CURSES
NAME

mvget_wch, mvwget_wch — get a wide character from a terminal
SYNOPSIS
EC #include <curses.h>

int mvget_wch(int y, i nt x, wint t* ch);

int mvwget wch(WINDOW * win, i nt y, i nt x, wint t* ch);

DESCRIPTION
Refer to get_wch ().

164

Curses Interfaces

Technical Standard 2009

Curses Interfaces CURSES mvgetch()

NAME
mvgetch, mvwgetch — get a single-byte character from the terminal

SYNOPSIS
#include <curses.h>

int mvgetch(int y, i nt Xx);
int mvwgetch(WINDOW * win, i nt y, i nt Xx);

DESCRIPTION
Refer to getch().

X/Open Curses, Issue 7 165

mvgetn_wstr() ENHANCED CURSES Curses Interfaces

NAME
mvgetn_wstr, mvget_wstr, mvwgetn_wstr, mvwget_wstr — get an array of wide characters and
function key codes from a terminal
SYNOPSIS
EC #include <curses.h>
int mvgetn_wstr(int y, i nt x, wint t* wstr, i nt n);
int mvget_wstr(int y, i nt X, wint t* wstr);
int mvwgetn_wstr(WINDOW * win, in y,in x, wintt* wstr, i nt n);
int mvwget_ wstr(WINDOW * win, i nt y, i nt x, wint t* wstr);
DESCRIPTION
Refer to getn_wstr().
166 Technical Standard 2009

Curses Interfaces CURSES mvgetnstr()

NAME
mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr — get a multi-byte character string from the
terminal
SYNOPSIS
#include <curses.h>
EC int mvgetnstr(int y, i nt x, char* str, i nt n);
int mvgetstr(int y, i nt x, char* str);
EC int mvwgetnstr(WINDOW * win,int y,in x, char* str, i nt n);
int mvwgetstr(WINDOW * win, int y,in x, char* str);
DESCRIPTION
Refer to getnstr().

X/Open Curses, Issue 7 167

mvhline() ENHANCED CURSES Curses Interfaces

NAME
mvhline, mvvline, mvwhline, mvwvline — draw lines from single-byte characters and
renditions
SYNOPSIS
EC #include <curses.h>
int mvhline(int y, i nt x, c htype ch, i nt n);
int mvvline(int y, i nt x, c htype ch, i nt n);

int mvwhline(WINDOW * win, i nt y, i nt x, c htype ch, i nt n);
int mvwvline(WINDOW * win, i nt y, i nt x, c htype ch, i nt n);

DESCRIPTION

168

Refer to hline().

Technical Standard 2009

Curses Interfaces ENHANCED CURSES mvhline_set()

NAME
mvhline_set, mvvline_set, mvwhline_set, mvwvline_set — draw lines from complex characters
and renditions
SYNOPSIS
EC #include <curses.h>
int mvhline_set(int y, i nt X, c onstcchar_ t* wech, i nt n);
int mvvline_set(int y, i nt X, c onstcchar t* wch, i nt n);
int mvwhline_set(WINDOW * win, in y,in x, constcchar t* wch, i nt n);
int mvwvline_set(WINDOW * win,in y,in X, constcchar t* wch, i nt n);
DESCRIPTION

Refer to hline_set ().

X/Open Curses, Issue 7 169

mvin_wech() ENHANCED CURSES Curses Interfaces

NAME

mvin_wch, mvwin_wch — extract a complex character and rendition from a window
SYNOPSIS
EC #include <curses.h>

int mvin_wch(int y, i nt X, cchar t* wcval);

int mvwin_wch(WINDOW * win, i nt y, i nt x, cchar t* wcval);

DESCRIPTION
Refer to in_wch ().

170 Technical Standard 2009

Curses Interfaces ENHANCED CURSES mvin_wechnstr()

NAME

mvin_wchnstr, mvin_wchstr, mvwin_wchnstr, mvwin_wchstr — extract an array of complex
characters and renditions from a window

SYNOPSIS

EC #include <curses.h>
int mvin_wchnstr(int y, i nt x, cchar t* wchstr, i nt n);
int mvin_wchstr(int y, i nt x, cchar t* wchstr);

int mvwin_wchnstr(WINDOW * win,in y,in x, cchar t* whstr, i nt n);
int mvwin_wchstr(WINDOW * win,int y,in x, cchar_t* whstr);

DESCRIPTION
Refer to in_wchnstr().

X/Open Curses, Issue 7 171

mvinch() CURSES Curses Interfaces
NAME
mvinch, mvwinch — input a single-byte character and rendition from a window

SYNOPSIS
#include <curses.h>

chtype mvinch(int y, i nt Xx);
chtype mvwinch(WINDOW * win, i nt vy, i nt Xx);

DESCRIPTION
Refer to inch().

172 Technical Standard 2009

Curses Interfaces ENHANCED CURSES mvinchnstr()

NAME
mvinchnstr, mvinchstr, mvwinchnstr, mvwinchstr — input an array of single-byte characters
and renditions from a window

SYNOPSIS

EC #include <curses.h>
int mvinchnstr(int y, i nt x, c htype* chstr, i nt n);
int mvinchstr(int y, i nt x, c htype* chstr);

int mvwinchnstr(WINDOW * win, i nt y,in x,chtype* chstr, i nt n);
int mvwinchstr(WINDOW * win, i nt y,int x,chtype* chstr);

DESCRIPTION
Refer to inchnstr().

X/Open Curses, Issue 7 173

mvinnstr() ENHANCED CURSES Curses Interfaces

NAME
mvinnstr, mvinstr, mvwinnstr, mvwinstr — input a multi-byte character string from a window
SYNOPSIS
EC #include <curses.h>
int mvinnstr(int y, i nt x, char* str, i nt n);
int mvinstr(int y, i nt x, char* str);
int mvwinnstr(WINDOW * win,in y,in x, char* str, i nt n);
int mvwinstr(WINDOW * win, int y,in x, char* str);
DESCRIPTION

Refer to innstr().

174 Technical Standard 2009

Curses Interfaces ENHANCED CURSES mvinnwstr()

NAME
mvinnwstr, mvinwstr, mvwinnwstr, mvwinwstr — input a string of wide characters from a
window
SYNOPSIS
EC #include <curses.h>
int mvinnwstr(int y, i nt x, wchar t* wstr, i nt n);
int mvinwstr(int y, i nt x, wchar t* wstr);

int mvwinnwstr(WINDOW * win, i nt y, i nt x, wchar t* wstr, i nt n);
int mvwinwstr(WINDOW * win, i nt y, i nt x, wchar t* wstr);

DESCRIPTION
Refer to innwstr().

X/Open Curses, Issue 7 175

mvins_nwstr() ENHANCED CURSES Curses Interfaces

NAME

mvins_nwstr, mvins_wstr, mvwins_nwstr, mvwins_wstr — insert a wide-character string into a
window

SYNOPSIS
EC #include <curses.h>
int mvins_nwstr(int y, i nt X, c onstwchar t* wstr, i nt n);
int mvins_wstr(int y, i nt X, c onstwchar t* wst r);
int mvwins_nwstr(WINDOW * win, in y,in X, constwchar t* wstr,
int n);
int mvwins_wstr(WINDOW * win, in y,in X, constwchar t* wst r);
DESCRIPTION
Refer to ins_nwstr().
176

Technical Standard 2009

Curses Interfaces ENHANCED CURSES mvins_wch()

NAME

mvins_wch, mvwins_wch — insert a complex character and rendition into a window
SYNOPSIS
EC #include <curses.h>

int mvins_wch(int y, i nt X, c onstcchar_ t* weh);

int mvwins_ wch(WINDOW * win, i nt y, i nt x, c onstcchar t* weh);
DESCRIPTION

Refer to ins_wch ().

X/Open Curses, Issue 7 177

mvinsch() CURSES Curses Interfaces

NAME

mvinsch, mvwinsch — insert a single-byte character and rendition into a window
SYNOPSIS

#include <curses.h>

int mvinsch(int y, i nt x, c htype ch);

int mvwinsch(WINDOW * win, i nt y, i nt X, c htype ch);
DESCRIPTION

Refer to insch().

178 Technical Standard 2009

Curses Interfaces ENHANCED CURSES mvinsnstr()

NAME
mvinsnstr, mvinsstr, mvwinsnstr, mvwinsstr — insert a multi-byte character string into a
window
SYNOPSIS
EC #include <curses.h>
int mvinsnstr(int y, i nt X, constchar* str, i nt n);
int mvinsstr(int y, i nt X, constchar* str);

int mvwinsnstr(WINDOW * win,in y,in x, constchar* str, i nt n);
int mvwinsstr(WINDOW * win,int y,in x, constchar* str);

DESCRIPTION
Refer to insnstr().

X/Open Curses, Issue 7 179

mvprintw() CURSES Curses Interfaces

NAME
mvprintw, mvwprintw, printw, wprintw — print formatted output in window
SYNOPSIS
#include <curses.h>
int mvprintw(int y, i nt x, constchar* fnt, . .);
int mvwprintw(WINDOW * win, i nt y, i nt x, constchar* fm, . .);
int printw(const char * fnt, . .)
int wprintw(WINDOW * Wi n, constchar* fnt, . .);
DESCRIPTION

These functions are analogous to printf(). The effect of these functions is as though sprintf()
were used to format the string, and then waddstr () were used to add that multi-byte string to the
current or specified window at the current or specified cursor position.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
addnstr (), fprintf() (in the XSH specification), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity and its name is changed from printw() to moprintw().

180 Technical Standard 2009

Curses Interfaces CURSES mvscanw()

NAME
mvscanw, mvwscanw, scanw, wscanw — convert formatted input from a window

SYNOPSIS
#include <curses.h>

int mvscanw(int y, i nt x, constchar* fnt, . .);
int mvwscanw(WINDOW * win, i nt y, i nt x, constchar* fnt, . .);
int scanw(const char * fnt, . .)
int wscanw(WINDOW * wi n, c onstchar* fnt, . .);
DESCRIPTION

These functions are similar to scanf(). Their effect is as though mvwgetstr() were called to get a
multi-byte character string from the current or specified window at the current or specified
cursor position, and then sscanf() were used to interpret and convert that string.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf() (in the XSH specification), getnstr(), moprintw(), westombs() (in the XSH specification),
<curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity and its name is changed from scanw) to movscanw().

Issue 7
The prototypes for the mvscanw (), mvwscanw (), scanw(), and wscanw() functions are updated.

X/Open Curses, Issue 7 181

mvwin() CURSES Curses Interfaces

NAME
mvwin — move window

SYNOPSIS
#include <curses.h>

intmvwin(WINDOW * win, i nt y, i nt x);

DESCRIPTION
The mowin() function moves the specified window so that its origin is at position (y, x). If the
move would cause any portion of the window to extend past any edge of the screen, the
function fails and the window is not moved.

RETURN VALUE
Upon successful completion, the mowin () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The application should not move subwindows by calling movwin(). Moving subwindows may
cause processing in other subwindows in the parent window to become confused if the new
location of the subwindow overlays or reveals part of another subwindow.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
derwin(), doupdate(), is_linetouched (), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

182 Technical Standard 2009

Curses Interfaces ENHANCED CURSES napms()

NAME
napms — suspend the calling process

SYNOPSIS
EC #include <curses.h>

int napms(int ns);

DESCRIPTION
The napms () function takes at least ms milliseconds to return.

RETURN VALUE
The napms () function returns OK.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
A more reliable method of achieving a timed delay is the nanosleep () function.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
delay_output (), nanosleep () (in the XSH specification), <curses.h>

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7 183

newpad() CURSES Curses Interfaces

NAME

newpad, pnoutrefresh, prefresh, subpad — pad management functions

SYNOPSIS

EC

#include <curses.h>

WINDOW *newpad(int nlines, i nt ncols);

int pnoutrefresh(WINDOW * pad, i nt pminrow, i nt pmncol, i nt smnrow,
int smincol, i nt snaxrow, i nt snmaxcol);

int prefresh(WINDOW * pad, i nt pminrow, i nt pmncol, i nt smnrow,
int smincol, i nt snaxrow, i nt snmaxcol);

WINDOW *subpad(WINDOW *ori g, i nt nlines, i nt ncols, i nt begin_y,
int begi n_x);

DESCRIPTION

EC

The newpad() function creates a specialized window called a pad with nlines lines and ncols
columns. A pad is like a window, except that it is not restricted by the screen size and is not
necessarily associated with a particular part of the screen. Automatic refreshes of pads (e.g.,
from scrolling or echoing of input) do not occur.

The subpad () function creates a specialized window within a pad (called the parent pad) called a
subpad with nlines lines and ncols columns. Unlike subwin (), which uses screen coordinates, the
subpad is created at position (begin_y, begin_x) within the parent pad. Changes made to either
the parent or the subpad affect the other. The subpad must fit totally within the parent pad.

The prefresh() and pnoutrefresh() functions are analogous to wrefresh() and wnoutrefresh() except
that they relate to pads instead of windows. The additional arguments indicate what part of the
pad and screen are involved. The pminrow and pmincol arguments specify the origin of the
rectangle to be displayed in the pad. The sminrow, smincol, smaxrow, and smaxcol arguments
specify the edges of the rectangle to be displayed on the screen. The lower right-hand corner of
the rectangle to be displayed in the pad is calculated from the screen coordinates, since the
rectangles must be the same size. Both rectangles must be entirely contained within their
respective structures. Negative values of pminrow, pmincol, sminrow, or smincol are treated as if
they were zero.

RETURN VALUE

EC

Upon successful completion, the newpad() and subpad() functions return a pointer to the pad
data structure. Otherwise, they return a null pointer.

Upon successful completion, the pnoutrefresh() and prefresh() functions return OK. Otherwise,
they return ERR.

ERRORS

No errors are defined.

EXAMPLES

None.

APPLICATION USAGE

184

To refresh a pad, call prefresh() or pnoutrefresh(), not wrefresh().

Although a subwindow and its parent pad may share memory representing characters in the
pad, they need not share status information about what has changed in the pad. Therefore, after
modifying a subwindow within a pad, it may be necessary to call touchwin() or touchline() on
the pad before calling prefresh().

Pads should be used whenever a window larger then the terminal screen is required.

Technical Standard 2009

Curses Interfaces CURSES newpad()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
derwin (), doupdate(), is_linetouched (), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The pnoutrefresh() and prefresh () functions are merged with this entry.

The subpad () function is new in Issue 4.

Issue 7
Corrigendum U018/4 is applied, updating the DESCRIPTION of the newpad() and subpad()
functions and adding use of pads to the APPLICATION USAGE section.

X/Open Curses, Issue 7 185

newterm() CURSES Curses Interfaces

NAME
newterm — screen initialization function

SYNOPSIS
#include <curses.h>

SCREEN *newterm(const char * type, FILE* outfile, FILE* infile);

DESCRIPTION
Refer to initscr().

186 Technical Standard 2009

Curses Interfaces CURSES newwin()

NAME
newwin — create a new window

SYNOPSIS
#include <curses.h>

WINDOW *newwin(int nlines, i nt ncols, i nt begin_y, i nt begin_x);

DESCRIPTION
Refer to derwin ().

X/Open Curses, Issue 7 187

ni() CURSES Curses Interfaces

NAME
nl, nonl — enable/disable newline translation

SYNOPSIS
#include <curses.h>

int nl(void);
int nonl(void);
DESCRIPTION
The nl() function enables a mode in which <carriage-return> is translated to <newline> on

input. The nonl() function disables the above translation. Initially, the above translation is
enabled.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The default translation adapts the terminal to environments in which <newline> is the line
termination character. However, by disabling the translation with nonl(), the application can
sense the pressing of the <carriage-return> key.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
<curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list for the nl() and nonl() functions is explicitly declared as void.

188 Technical Standard 2009

Curses Interfaces CURSES

NAME
no — pointer page for functions with no prefix

DESCRIPTION

no

The no prefix indicates that a Curses function disables a mode. (The corresponding functions

without the no prefix enable the same mode.)

The no()* functions are discussed together with the corresponding functions that do not have

these prefixes.

Note: The nodelay() function has an entry under its own name because there is no corresponding

delay () function.

The nogiflush() and notimeout() functions have an entry under their own names because they

precede the corresponding function without the no prefix in alphabetical order.

They are found in the following entries:

Function | Refer to
nocbreak() | cbreak()
noecho() echo()
nonl() nl()
noraw() cbreak ()

X/Open Curses, Issue 7

189

nocbreak() CURSES

NAME
nocbreak, noraw — input mode control functions

SYNOPSIS
#include <curses.h>

int nocbreak(void);
int noraw(void);

DESCRIPTION
Refer to cbreak().

190

Curses Interfaces

Technical Standard 2009

Curses Interfaces CURSES nodelay()

NAME
nodelay — enable or disable block during read

SYNOPSIS
#include <curses.h>

int nodelay(WINDOW * wi n, b ool bf);

DESCRIPTION
The nodelay() function specifies whether Delay Mode or No Delay Mode is in effect for the
screen associated with the specified window. If bf is TRUE, this screen is set to No Delay Mode.
If bf is FALSE, this screen is set to Delay Mode. The initial state is FALSE.

RETURN VALUE
Upon successful completion, the nodelay () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.5 (on page 22), getch(), halfdelay(), <curses.h>, XBD specification, Section 11.2,
Parameters that Can be Set

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

X/Open Curses, Issue 7 191

noecho() CURSES
NAME

noecho — enable/disable terminal echo
SYNOPSIS

#include <curses.h>
int noecho(void);

DESCRIPTION
Refer to echo().

192

Curses Interfaces

Technical Standard 2009

Curses Interfaces CURSES
NAME

nonl — enable/disable newline translation
SYNOPSIS

#include <curses.h>
int nonl(void);

DESCRIPTION
Refer to nl().

X/Open Curses, Issue 7

nonl()

193

nogiflush() ENHANCED CURSES Curses Interfaces

NAME
nogqiflush, giflush — enable/disable queue flushing

SYNOPSIS
EC #include <curses.h>

void nogiflush(void);
void qgiflush(void);

DESCRIPTION
The giflush() function causes all output in the display driver queue to be flushed whenever an
interrupt key (interrupt, suspend, or quit) is pressed. The nogiflush() function causes no such
flushing to occur. The default for the option is inherited from the display driver settings.

RETURN VALUE
These functions do not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Calling giflush() provides faster response to interrupts, but causes Curses to have the wrong idea
of what is on the screen. The same effect is achieved outside Curses using the NOFLSH local
mode flag specified in the XBD specification (General Terminal Interface).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.5 (on page 22), intrflush(), <curses.h>, XBD specification, Section 11.2, Parameters that
Can be Set (NOFLSH flag)

CHANGE HISTORY
First released in Issue 4.

194 Technical Standard 2009

Curses Interfaces ENHANCED CURSES notimeout()

NAME

notimeout, timeout, wtimeout — control blocking on input
SYNOPSIS
EC #include <curses.h>

int notimeout(WINDOW * wi n, b ool bf);

void timeout(int del ay);

void wtimeout(WINDOW * wi n, i nt del ay);

DESCRIPTION
The notimeout () function specifies whether Timeout Mode or No Timeout Mode is in effect for
the screen associated with the specified window. If bf is TRUE, this screen is set to No Timeout
Mode. If bf is FALSE, this screen is set to Timeout Mode. The initial state is FALSE.

The timeout() and wtimeout() functions set blocking or non-blocking read for the current or
specified window based on the value of delay:

delay < 0 One or more blocking reads (indefinite waits for input) are used.

delay = 0 One or more non-blocking reads are used. Any Curses input function will fail if
every character of the requested string is not immediately available.

delay > 0 Any Curses input function blocks for delay milliseconds and fails if there is still no
input.

RETURN VALUE
Upon successful completion, the notimeout () function returns OK. Otherwise, it returns ERR.

The timeout () and wtimeout () functions do not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.5 (on page 22), getch(), halfdelay(), nodelay(), <curses.h>, XBD specification, Section
11.2, Parameters that Can be Set

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7 195

ovelay() CURSES Curses Interfaces

NAME
overlay, overwrite — copy overlapped windows

SYNOPSIS
#include <curses.h>
int overlay(const WINDOW * srcwi n, WINDOW *dst wi n);
int overwrite(const WINDOW * srcwi n, WINDOW *dst wi n);

DESCRIPTION
These functions overlay srcwin on top of dstwin. The scrwin and dstwin arguments need not be
the same size; only text where the two windows overlap is copied.
The overwrite() function copies characters as though a sequence of win_wch() and wadd_wch()
were performed with the destination window’s attributes and background attributes cleared.
The overlay () function does the same thing, except that whenever a character to be copied is the
background character of the source window, overlay() does not copy the character but merely
moves the destination cursor the width of the source background character.
If any portion of the overlaying window border is not the first column of a multi-column
character, then all the column positions will be replaced with the background character and
rendition before the overlay is done. If the default background character is a multi-column
character when this occurs, then these functions fail.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
copywin (), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4

The entry is rewritten for clarity.
The type of argument srcwin () is changed from WINDOW * to WINDOW *CONST.

Issue 4, Version 2
Corrections made to the SYNOPSIS.

196 Technical Standard 2009

Curses Interfaces ENHANCED CURSES
NAME

pair_content, PAIR_NUMBER — get information on a color pair
SYNOPSIS
EC #include <curses.h>

int pair_content(short pair, s hort* f, s hort* b);

int PAIR_NUMBER(int val ue);

DESCRIPTION
Refer to can_change_color ().

X/Open Curses, Issue 7

pair_content()

197

pechochar() ENHANCED CURSES Curses Interfaces

NAME
pechochar, pecho_wchar — write a character and rendition and immediately refresh the pad
SYNOPSIS
EC #include <curses.h>
int pechochar(WINDOW * pad, c htype ch);
int pecho_wchar(WINDOW * pad, c onstcchar_t* wch);
DESCRIPTION

The pechochar() and pecho_wchar() functions output one character to a pad and immediately
refresh the pad. They are equivalent to a call to waddch() or wadd_wch(), respectively, followed
by a call to prefresh(). The last location of the pad on the screen is reused for the arguments to

prefresh().
RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The pechochar() function is only guaranteed to operate reliably on character sets in which each
character fits into a single byte, whose attributes can be expressed using only constants with the
A_ prefix.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
echochar (), newpad (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
The second argument of pechochar () is changed to type chtype from chtype *.

198 Technical Standard 2009

Curses Interfaces CURSES pnoutrefresh()

NAME
pnoutrefresh, prefresh — refresh pads
SYNOPSIS
#include <curses.h>
int pnoutrefresh(WINDOW * pad, i nt pminrow, i nt pmncol, i nt smnrow,
int smincol, i nt snmaxrow, i nt snmaxcol);
int prefresh(WINDOW * pad, i nt pminrow, i nt pmncol, i nt smnrow,
int smincol, i nt snaxrow, i nt snmaxcol);
DESCRIPTION
Refer to newpad ().

X/Open Curses, Issue 7 199

printw() CURSES
NAME

printw — print formatted output in the current window
SYNOPSIS

#include <curses.h>

int printw(const char * fnt, . .);
DESCRIPTION

Refer to muprintw().

200

Curses Interfaces

Technical Standard 2009

Curses Interfaces ENHANCED CURSES putp()

NAME
putp, tputs — output commands to the terminal
SYNOPSIS
EC #include <term.h>
int putp(const char * str);
int tputs(const char * str, i nt affcnt, i nt(* putfunc)(int));
DESCRIPTION

These functions output commands contained in the terminfo database to the terminal.

The putp() function is equivalent to tputs(str, 1, putchar). The output of putp() always goes to
stdout, not to the fildes specified in setupterm/().

The tputs() function outputs str to the terminal. The str argument must be a terminfo string

OB variable or the return value from tiparm () or tparm(). The affcnt argument is the number of lines
affected, or 1 if not applicable. If the terminfo database indicates that the terminal in use
requires padding after any command in the generated string, tputs() inserts pad characters into
the string that is sent to the terminal, at positions indicated by the terminfo database. The
tputs() function outputs each character of the generated string by calling the user-supplied
function putfunc (see below).

The user-supplied function putfunc (specified as an argument to tputs()) is either putchar() or
some other function with the same prototype. The tputs() function ignores the return value of
putfunc.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Changing the terminal attributes using these functions may cause the renditions of characters
within a curses window to be altered on some terminals.

After use of any of these functions, the model Curses maintains of the state of the terminal might
not match the actual state of the terminal. The application should touch and refresh the window
before resuming conventional use of Curses.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
doupdate(), is_linetouched (), putchar () (in the XSH specification), tigetflag (), <term.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Corrections made to the SYNOPSIS.

X/Open Curses, Issue 7 201

putwin() ENHANCED CURSES Curses Interfaces

NAME

putwin — dump window to a file
SYNOPSIS
EC #include <curses.h>

int putwin(WINDOW * win, FILE* fil ep);

DESCRIPTION
Refer to getwin ().

202 Technical Standard 2009

Curses Interfaces ENHANCED CURSES giflush()
NAME
qiflush — enable queue flushing

SYNOPSIS
EC #include <curses.h>

void qgiflush(void);

DESCRIPTION
Refer to nogiflush ().

X/Open Curses, Issue 7 203

raw() CURSES

NAME
raw — set Raw Mode

SYNOPSIS
#include <curses.h>

int raw(void);

DESCRIPTION
Refer to cbreak().

204

Curses Interfaces

Technical Standard 2009

Curses Interfaces ENHANCED CURSES redrawwin()

NAME
redrawwin, wredrawln — line update status functions
SYNOPSIS
EC #include <curses.h>
int redrawwin(WINDOW * Wi n);
int wredrawIn(WINDOW * win, i nt beg line, i nt numlines);
DESCRIPTION

The redrawwin () and wredrawln() functions inform the implementation that some or all of the
information physically displayed for the specified window may have been corrupted. The
redrawwin () function marks the entire window; wredrawln () marks only num_lines lines starting
at line number beg_line. The functions prevent the next refresh operation on that window from
performing any optimization based on assumptions about what is physically displayed there.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The redrawwin() and wredrawln() functions could be used in a text editor to implement a
command that redraws some or all of the screen.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clearok (), doupdate(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7 205

refresh() CURSES

NAME
refresh — refresh current window

SYNOPSIS
#include <curses.h>

int refresh(void);

DESCRIPTION
Refer to doupdate().

206

Curses Interfaces

Technical Standard 2009

Curses Interfaces CURSES reset_prog_mode()

NAME
reset_prog_mode, reset_shell_mode — restore program or shell terminal modes

SYNOPSIS
#include <curses.h>

int reset_prog_mode(void);
int reset_shell_mode(void);

DESCRIPTION
Refer to def_prog_mode().

X/Open Curses, Issue 7 207

resetty() CURSES

NAME
resetty, savetty — save/restore terminal mode

SYNOPSIS
#include <curses.h>

int resetty(void);
int savetty(void);

DESCRIPTION

Curses Interfaces

The resetty () function restores the program mode as of the most recent call to savetty().

The savetty () function saves the state that would be put in place by a call to reset_prog_mode().

RETURN VALUE

Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
def_prog_mode(), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The argument list for the resetty () and savetty() functions is explicitly declared as void.

208

Technical Standard 2009

Curses Interfaces ENHANCED CURSES restartterm()

NAME
restartterm — change terminal type
SYNOPSIS
EC #include <term.h>
int restartterm(char * term i nt fildes, i nt* errret);
DESCRIPTION

Refer to del_curterm().

X/Open Curses, Issue 7 209

ripoffline() ENHANCED CURSES Curses Interfaces

NAME
ripoffline — reserve a line for a dedicated purpose
SYNOPSIS
EC #include <curses.h>
int ripoffline(int line, i nt(* init)(WINDOW *wi n, i ntcolumns));
DESCRIPTION

The ripoffline() function reserves a screen line for use by the application.

Any call to ripoffline() must precede the call to initscr() or newterm(). If line is positive, one line
is removed from the beginning of stdscr; if line is negative, one line is removed from the end.
Removal occurs during the subsequent call to initscr() or newterm (). When the subsequent call
is made, the function pointed to by init is called with two arguments: a WINDOW pointer to the
one-line window that has been allocated and an integer with the number of columns in the
window. The initialization function cannot use the LINES and COLS external variables and
cannot call wrefresh () or doupdate(), but may call wnoutrefresh().

Up to five lines can be ripped off. Calls to ripoffline() above this limit have no effect but report
success.

RETURN VALUE

The ripoffline() function returns OK.

ERRORS

No errors are defined.

EXAMPLES

None.

APPLICATION USAGE

Calling slk_init () reduces the size of the screen by one line if initscr() eventually uses a line from
stdscr to emulate the soft labels. If slk_init() rips off a line, it thereby reduces by one the number
of lines an application can reserve by subsequent calls to ripoffline(). Thus, portable applications
that use soft label functions should not call ripoffline() more than four times.

When initscr() or mnewterm() calls the initialization function pointed to by init, the
implementation may pass NULL for the WINDOW pointer argument win. This indicates
inability to allocate a one-line window for the line that the call to ripoffline() ripped off. Portable
applications should verify that win is not NULL before performing any operation on the
window it represents.

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

doupdate(), initscr (), slk_attroff(), <curses.h>

CHANGE HISTORY

First released in Issue 4.

Issue 4, Version 2

210

Corrections made to the SYNOPSIS.

Technical Standard 2009

Curses Interfaces CURSES
NAME
savetty — save terminal mode

SYNOPSIS
#include <curses.h>

int savetty(void);

DESCRIPTION
Refer to resetty().

X/Open Curses, Issue 7

savetty()

211

scanw() CURSES

NAME

scanw — convert formatted input from the current window
SYNOPSIS

#include <curses.h>

int scanw(const char * fnt, . .);
DESCRIPTION

Refer to muscanw ().

212

Curses Interfaces

Technical Standard 2009

Curses Interfaces ENHANCED CURSES scr_dump()

NAME
scr_dump, scr_init, scr_restore, scr_set — screen file input/output functions
SYNOPSIS
EC #include <curses.h>
int scr_dump(const char * fil enane);
int scr_init(const char * fil enane);
int scr_restore(const char * fil enane);
int scr_set(const char * fil enane);
DESCRIPTION

The scr_dump() function writes the current contents of the virtual screen to the file named by
filename in an unspecified format.

The scr_restore() function sets the virtual screen to the contents of the file named by filename,
which must have been written using scr_dump(). The next refresh operation restores the screen
to the way it looked in the dump file.

The scr_init() function reads the contents of the file named by filename and uses them to initialize
the Curses data structures to what the terminal currently has on its screen. The next refresh
operation bases any updates on this information, unless either of the following conditions is
true:

¢ The terminal has been written to since the virtual screen was dumped to filename.
¢ The terminfo capabilities rmcup and nrrmc are defined for the current terminal.

The scr_set() function is a combination of scr_restore() and scr_init(). It tells the program that
the information in the file named by filename is what is currently on the screen, and also what the
program wants on the screen. This can be thought of as a screen inheritance function.

RETURN VALUE
On successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The scr_init() function is called after initscr() or a system() call to share the screen with another
process that has done a scr_dump () after its endwin () call.

To read a window from a file, call getwin (); to write a window to a file, call putwin().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
delscreen (), doupdate(), endwin(), getwin(), open() (in the XSH specification), read() (in the XSH
specification), write() (in the XSH specification), <curses.h>

X/Open Curses, Issue 7 213

scr_dump() ENHANCED CURSES Curses Interfaces

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Corrections made to the SYNOPSIS.

214 Technical Standard 2009

Curses Interfaces CURSES scrl()

NAME
scrl, scroll, wscrl — scroll a Curses window

SYNOPSIS
#include <curses.h>

EC int scri(int n);
int scroll(WINDOW * Wi n);

EC int wscrlWINDOW * win, i nt n);

DESCRIPTION
The scroll () function scrolls win one line in the direction of the first line.

EC The scrl() and wscrl() functions scroll the current or specified window. If n is positive, the
window scrolls 7 lines toward the first line. Otherwise, the window scrolls —# lines toward the
last line.

These functions do not change the cursor position. If scrolling is disabled for the current or
specified window, these functions have no effect. The interaction of these functions with
setsccreg () is currently unspecified.

RETURN VALUE
On successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
In a future version, the interaction of these functions with setsccreg () will be defined.

SEE ALSO
<curses.h>

CHANGE HISTORY
First released in Issue 4.

In previous versions, the scroll() function was described in an entry of its own. It has been
merged with this entry in Issue 4. Its description has been rewritten for clarity, but otherwise its
functionality is identical.

X/Open Curses, Issue 7 215

scrollok() CURSES

NAME
scrollok — enable or disable scrolling on a window

SYNOPSIS
#include <curses.h>

int scrollok(WINDOW * wi n, b ool bf);

DESCRIPTION
Refer to clearok().

216

Curses Interfaces

Technical Standard 2009

Curses Interfaces ENHANCED CURSES
NAME
set_curterm — set current terminal
SYNOPSIS
EC #include <term.h>

TERMINAL *set_curterm(TERMINAL * nt er m;

DESCRIPTION
Refer to del_curterm().

X/Open Curses, Issue 7

set_curterm()

217

set_term() CURSES Curses Interfaces

NAME
set_term — switch between screens

SYNOPSIS
#include <curses.h>

SCREEN *set_term(SCREEN * new);

DESCRIPTION
The set_term () function switches between different screens. The new argument specifies the new
current screen.

RETURN VALUE
Upon successful completion, the set_term() function returns a pointer to the previous screen.
Otherwise, it returns a null pointer.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
This is the only function that manipulates SCREEN pointers; all other functions affect only the
current screen.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.2 (on page 14), initscr (), <curses.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

218 Technical Standard 2009

Curses Interfaces ENHANCED CURSES setcchar()

NAME
setcchar — set cchar_t from a wide-character string and rendition

SYNOPSIS
EC #include <curses.h>

int setcchar(cchar_t * wecval , ¢ onst wchar t* wch, c onst attr_t attrs,
short col or _pair, c onstvoid * opt s);

DESCRIPTION
The setcchar() function initializes the object pointed to by wcval according to the character
attributes in attrs, the color pair in color_pair, and the wide-character string pointed to by wch.

The opts argument is reserved for definition in a future version. Currently, the application must
provide a null pointer as opts.

RETURN VALUE
Upon successful completion, the setcchar () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.3 (on page 15), attroff(), can_change_color (), getcchar (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Corrections made to the SYNOPSIS.

X/Open Curses, Issue 7 219

setscrreg() CURSES

NAME

setscrreg — define software scrolling region
SYNOPSIS

#include <curses.h>

int setscrreg(int top, i nt bot);
DESCRIPTION

Refer to clearok().

220

Curses Interfaces

Technical Standard 2009

Curses Interfaces ENHANCED CURSES setupterm()

NAME
setupterm — access the terminfo database
SYNOPSIS
EC #include <term.h>
int setupterm(char * term i nt fildes, i nt* errret);
DESCRIPTION

Refer to del_curterm().

X/Open Curses, Issue 7 221

slk_attroff() ENHANCED CURSES Curses Interfaces

NAME

slk_attroff, slk_attr_off, slk_attron, slk_attr _on, slk_attrset, slk_attr_set, slk_clear, slk_color,
slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore, slk_set, slk_touch, slk_wset — soft
label functions

SYNOPSIS
EC #include <curses.h>
int slk_attroff(const chtype attrs);
int slk_attr_off(const attr_t attrs, void *opts);
int slk_attron(const chtype attrs);
int slk_attr_on(const attr_t attrs, void *opts);
int slk_attrset(const chtype attrs);
int slk_attr_set(const attr_t attrs, s hort col or_pair_nunber,

void *opts);
int slk_clear(void);

int slk_color(short col or _pai r _nunber);
int slk_init(int ft);
char *slk_label(int | abnun);

int slk_noutrefresh(void);
int slk_refresh(void);
int slk_restore(void);

int slk_set(int | abnum c onst char *| abel, i nt justify);

int slk_touch(void);

int slk_wset(int | abnum c onst wchar_t *| abel, i nt justify);
DESCRIPTION

222

The Curses interface manipulates the set of soft function-key labels that exist on many terminals.
For those terminals that do not have soft labels, Curses takes over the bottom line of stdscr,
reducing the size of stdscr and the value of the LINES external variable. There can be up to eight
labels of up to eight display columns each.

To use soft labels, slk_init() must be called before initscr(), newterm(), or ripoffline() is called. If
initscr () eventually uses a line from stdscr to emulate the soft labels, then fimt determines how the
labels are arranged on the screen. Setting fmt to 0 indicates a 3-2-3 arrangement of the labels; 1
indicates a 4-4 arrangement. Other values for fmt are unspecified.

The slk_init() function has the effect of calling ripoffline() to reserve one screen line to
accommodate the requested format.

The slk_set() and slk_wset() functions specify the text of soft label number labnum, within the
range from 1 to and including 8. The label argument is the string to be put on the label. With
slk_set () and slk_wset (), the width of the label is limited to eight column positions. A null string
or a null pointer specifies a blank label. The justify argument can have the following values to
indicate how to justify label within the space reserved for it:

0 Align the start of label with the start of the space.
1 Center label within the space.
2 Align the end of label with the end of the space.

The slk_refresh() and slk_noutrefresh() functions correspond to the wrefresh() and wnoutrefresh()
functions.

The slk_label () function obtains soft label number labnum.

The slk_clear () function immediately clears the soft labels from the screen.

Technical Standard 2009

Curses Interfaces ENHANCED CURSES slk_attroff()

The slk_restore() function immediately restores the soft labels to the screen after a call to
slk_clear ().

The slk_touch() function forces all the soft labels to be output the next time slk_noutrefresh() or
slk_refresh () is called.

The slk_attron(), slk_attrset(), and slk_attroff() functions correspond to attron(), attrset(), and
attroff(). They have an effect only if soft labels are simulated on the bottom line of the screen.

The slk_attr_off(), slk_attr_on(), slk_attr_set(), and slk_color() functions correspond to
slk_attroff(), slk_attrond(), slk_attrset(), and color_set() and thus support the attribute constants
with the WA_ prefix and color.

The opts argument is reserved for definition in a future version. Currently, the application must
provide a null pointer as opts.

RETURN VALUE
Upon successful completion, the slk_label () function returns the requested label with leading and
trailing <blank>s stripped. Otherwise, it returns a null pointer.

Upon successful completion, the other functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
When using multi-byte character sets, applications should check the width of the string by
calling mbstowes() and then wceswidth() before calling slk_set(). When using wide characters,
applications should check the width of the string by calling wcswidth () before calling slk_set ().

Since the number of columns that a wide-character string will occupy is codeset-specific, call
wewidth() and weswidth() to check the number of column positions in the string before calling
slk_wset ().

Most applications would use slk_noutrefresh () because a wrefresh() is likely to follow soon.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
attr_get (), attroff(), delscreen(), mbstowcs() (in the XSH specification), ripoffline(), weswidth() (in
the XSH specification), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
This entry is rewritten to include the color handling functions.

X/Open Curses, Issue 7 223

standend()

NAME

CURSES

Curses Interfaces

standend, standout, wstandend, wstandout — set and clear window attributes

SYNOPSIS
#include <curses.h>

int standend(void);
int standout(void);

int wstandend(WINDOW * wi n);
int wstandout(WINDOW * wi n);

DESCRIPTION

The standend() and wstandend() functions turn

window.

off all attributes of the current or specified

The standout() and wstandout() functions turn on the standout attribute of the current or

specified window.

RETURN VALUE

These functions always return 1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
attroff(), attr_get (), <curses.h>

CHANGE HISTORY

Derived from the attroff() entry in Issue 3. The entry is reworded for clarity, but otherwise the

functionality is identical to previous version.

224

Technical Standard 2009

Curses Interfaces ENHANCED CURSES
NAME

start_color — initialize use of colors on terminal
SYNOPSIS
EC #include <curses.h>

int start_color(void);

DESCRIPTION
Refer to can_change_color ().

X/Open Curses, Issue 7

start_color()

225

stdscr

NAME

stdscr — default window
SYNOPSIS
EC #include <curses.h>

extern WINDOW *stdscr;

DESCRIPTION

ENHANCED CURSES

Curses Interfaces

The external variable stdscr specifies the default window used by functions that do not specify a

window using an argument of type WINDOW *.

newwin ().

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
derwin(), <curses.h>

CHANGE HISTORY

First released in Issue 4.

226

Other windows may be created using

Technical Standard 2009

Curses Interfaces ENHANCED CURSES subpad()

NAME

subpad — create a subwindow in a pad
SYNOPSIS
EC #include <curses.h>

WINDOW *subpad(WINDOW *ori g, i nt nlines, i nt ncols, i nt begin_y,
int begi n_x);

DESCRIPTION
Refer to newpad ().

X/Open Curses, Issue 7 227

subwin() CURSES Curses Interfaces

NAME
subwin — create a subwindow

SYNOPSIS
#include <curses.h>

WINDOW *subwin(WINDOW *orig, i nt nlines, i nt ncols, i nt begin_y,
int begi n_x);

DESCRIPTION
Refer to derwin ().

228 Technical Standard 2009

Curses Interfaces ENHANCED CURSES syncok()

NAME

syncok, wcursyncup, wsyncdown, wsyncup — synchronize a window with its parents or
children

SYNOPSIS

EC

#include <curses.h>

int syncok(WINDOW * wi n, b ool bf);
void weursyncup(WINDOW * wi n);

void wsyncdown(WINDOW * wi n);

void wsyncup(WINDOW * wi n);

DESCRIPTION

The syncok() function determines whether all ancestors of the specified window are implicitly
touched whenever there is a change in the window. If bf is TRUE, such implicit touching occurs.
If bf is FALSE, such implicit touching does not occur. The initial state is FALSE.

The wecursyncup () function updates the current cursor position of the ancestors of win to reflect
the current cursor position of win.

The wsyncdown () function touches win if any ancestor window has been touched.

The wsyncup () function unconditionally touches all ancestors of win.

RETURN VALUE

Upon successful completion, the syncok() function returns OK. Otherwise, it returns ERR.

The other functions do not return a value.

ERRORS

No errors are defined.

EXAMPLES

None.

APPLICATION USAGE

Applications seldom call wsyncdown () because it is called by all refresh operations.

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

doupdate(), is_linetouched (), <curses.h>

CHANGE HISTORY

First released in Issue 4.

Issue 4, Version 2

Corrections made to the SYNOPSIS.

X/Open Curses, Issue 7 229

termattrs() ENHANCED CURSES

NAME

termattrs — get supported terminal video attributes
SYNOPSIS
EC #include <curses.h>

chtype termattrs(void);
attr_t term_attrs(void);

DESCRIPTION

Curses Interfaces

The termattrs() function extracts the video attributes of the current terminal which is supported

by the chtype data type.

The term_attrs() function extracts information for the video attributes of the current terminal

which is supported for a cchar_t.
RETURN VALUE

The termattrs() function returns a logical OR of A_ values of all video attributes supported by

the terminal.

The term_attrs() function returns a logical OR of WA_ values of all video attributes supported by

the terminal.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
attroff(), attr_get (), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Corrections made to the SYNOPSIS; rewritten for clarity.

230

Technical Standard 2009

Curses Interfaces ENHANCED CURSES termname()

NAME

termname — get terminal name
SYNOPSIS
EC #include <curses.h>

char *termname(void);

DESCRIPTION
The termname() function obtains the terminal name as recorded by setupterm().

RETURN VALUE
The termname () function returns a pointer to the terminal name.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 7.1.1 (on page 338), del_curterm(), getenv() (in the XSH specification), initscr(),
<curses.h>

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7 231

tigetflag() ENHANCED CURSES Curses Interfaces

NAME

tigetflag, tigetnum, tigetstr, tiparm, tparm — retrieve or process capabilities from the terminfo
database

SYNOPSIS

EC

EC OB

#include <term.h>

int tigetflag(const char * capnane);

int tigetnum(const char * capnane);

char *tigetstr(const char * capnane);

char *tiparm(const char * cap, . ..);

char *tparm(const char * cap, | ong pl, | ong p2, | ong p3, | ong p4,
long p5, | ong p6, | ong p7, | ong p8, | ong p9);

DESCRIPTION

OB

OB

The tigetflag(), tigetnum(), and tigetstr() functions obtain boolean, numeric, and string
capabilities, respectively, from the selected record of the terminfo database. For each capability,
the value to use as capname appears in the Capname column in the table in Section 7.1.3 (on page
340).

The tiparm() and tparm() functions take as cap a string capability. If cap is parameterized (as
described in Section A.1.2, on page 354), these functions resolve the parameterization as
described below.

If the parameterized string refers to one or more of the parameters %p1l through %p9 then
tiparm () fetches one argument for each %pN parameter, in order of N (that is, the first argument
after cap is fetched for %pl, the second for %p2 and so on), and uses the corresponding
argument value when pushing the %pN parameter on to the stack. The results are undefined if
there are insufficient arguments for the parameterized string. If a %N parameter is used in a
string context (for example, if it is popped using %l or %9, the corresponding argument is
fetched as type char *; otherwise, the argument is fetched as type int. If a %N parameter is used
more than once, at least one of the uses is in a string context, and the uses are not all in a string
context, then the behavior is undefined. If parameter %N is used and any of the lower
numbered parameters, from %plto %p(N-1), are not used, the arguments corresponding to
the unused parameters are fetched as type int.

If the parameterized string refers to one or more of the parameters %pl through %p9 then
tparm() uses the values of pl through p9, respectively, when pushing the parameter on to the
stack. If any of the parameters %p1through %p9is used in a string context (for example, if it is
popped using %l or %s), the behavior is implementation-defined.

RETURN VALUE

OB

OB

232

Upon successful completion, the tigetflag(), tigetnum(), and tigetstr() functions return the
specified capability. The tigetflag() function returns -1 if capname is not a boolean capability. The
tigetnum () function returns -2 if capname is not a numeric capability. The tigetstr() function
returns (char *)-1 if capname is not a string capability.

Upon successful completion, the tiparm() and tparm() functions return the capability pointed to
by cap with parameterization resolved. Otherwise, they return a null pointer.

The return value from tiparm() and tparm() may point to static data which may be overwritten
by a subsequent call to either function.

Technical Standard 2009

Curses Interfaces ENHANCED CURSES tigetflag()

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
For parameterized string capabilities, the application should pass the return value from tigetstr()
to tiparm(), as described above. The tiparm() function is a replacement for the obsolescent
tparm () function which cannot support string parameters on implementations where converting
char * pointers to long int and back does not preserve their values.

Note that when converting old code to use tiparm() instead of tparm(), it is important to ensure
that numeric argument values are passed to tiparm() as type int, or a type that promotes to int.
With tparm (), numeric arguments could have any integer type and they would be converted to
the correct type (long int) courtesy of the function prototype. However, tiparm () has a prototype
that ends with an ellipsis, and therefore no such conversion is performed.

Applications intending to send terminal capabilities directly to the terminal (which should only
be done using tputs() or putp()) instead of using Curses, normally should obey the following
rules:

o Call reset_shell_mode() to restore the display modes before exiting.

« If using cursor addressing, output enter_ca_mode upon startup and output exit_ca_mode
before exiting.

o If using shell escapes, output exit_ca_mode and call reset_shell_mode() before calling the
shell; call reset_prog_mode() and output enter_ca_mode after returning from the shell.

All parameterized terminal capabilities defined in this document can be passed to tiparm (). All
parameterized terminal capabilities defined in this document except pkey_key, pkey_local,
pkey_plab, pkey_xmit, and plab_norm can be passed to tparm(). Some implementations (those
where char * can be converted to long int and back without loss) might also allow pkey_key,
pkey_local, pkey_plab, pkey_xmit, and plab_norm to be passed to tparm().

Some implementations create their own capabilities, create capabilities for non-terminal devices,
and redefine the capabilities in this document. These practices are non-conforming because it
may be that tiparm () and tparm() cannot parse these user-defined strings.

Applications should use the tigetflag(), tigetnum(), tigetstr(), and tiparm() functions instead of
the withdrawn fgetent(), tgetflag(), tgetnum(), tgetstr(), and tgoto() functions. Note that these
replacement functions are only required to be supported on implementations supporting
X/Open Enhanced Curses.

RATIONALE
The tiparm () function does not require that if parameter %N is used in the parameterized string,
%p1through %p(N-1) must also be used. This is because some capabilities may have no use
for some arguments in the definition for a specific terminal. An example is given in Section A.1.7
(on page 358) for sgr where the terminal has altcharset but does not have protect mode, and so
the parameterized string would use %p9but would not need to use %p8

The arguments corresponding to unused parameters are fetched as type int, because numeric
parameters are far more common than string parameters. If the need should arise for a string
parameter to be (effectively) unused for a specific terminal, this can be handled by making the
parameterized string push the parameter, pop it with %l, and then not use the length that was
pushed by %l. This is sufficient for tiparm() to see the parameter being used in a string context,
so that it will still expect the corresponding argument to have type char *.

X/Open Curses, Issue 7 233

tigetflag() ENHANCED CURSES Curses Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO
def_prog_mode(), putp(), <term.h>

CHANGE HISTORY
First released in Issue 4.

Issue 7
The prototypes for the tigetflag(), tigetnum (), and tigetstr() functions are updated.

234 Technical Standard 2009

Curses Interfaces ENHANCED CURSES
NAME
timeout — control blocking on input

SYNOPSIS
EC #include <curses.h>

void timeout(int del ay);

DESCRIPTION
Refer to notimeout ().

X/Open Curses, Issue 7

timeout()

235

tiparm() ENHANCED CURSES Curses Interfaces

NAME
tiparm — format terminfo string capability

SYNOPSIS
EC #include <term.h>

char *tiparm(const char * cap, . ..);

DESCRIPTION
Refer to tigetflag ().

236 Technical Standard 2009

Curses Interfaces CURSES

NAME
touchline, touchwin — window refresh control functions

SYNOPSIS
#include <curses.h>

EC int touchline(WINDOW * win, i nt start, i nt count);
int touchwin(WINDOW * Wi n);

DESCRIPTION
Refer to is_linetouched ().

X/Open Curses, Issue 7

touchline()

237

tparm() ENHANCED CURSES Curses Interfaces
NAME
tparm — format terminfo string capability

SYNOPSIS
ECc oB #include <term.h>

char *tparm(const char * cap, | ong pl, | ong p2, | ong p3, | ong p4,
long p5, | ong p6, | ong p7, | ong p8, | ong p9);

DESCRIPTION
Refer to tigetflag ().

238 Technical Standard 2009

Curses Interfaces ENHANCED CURSES
NAME
tputs — output commands to the terminal

SYNOPSIS
EC #include <curses.h>

int tputs(const char * str, i nt affcnt, i nt(*

DESCRIPTION
Refer to putp().

X/Open Curses, Issue 7

put f unc)(int));

tputs()

239

typeahead() CURSES Curses Interfaces

NAME
typeahead — control checking for typeahead
SYNOPSIS
#include <curses.h>
int typeahead(int fildes);
DESCRIPTION
The typeahead () function controls the detection of typeahead during a refresh, based on the value
of fildes:

o If fildes is a valid file descriptor, typeahead is enabled during refresh; Curses periodically
checks fildes for input and aborts the refresh if any character is available. (This is the initial
setting, and the typeahead file descriptor corresponds to the input file associated with the
screen created by initscr() or newterm().) The value of fildes need not be the file descriptor
on which the refresh is occurring.

o If fildes is —1, Curses does not check for typeahead during refresh.

RETURN VALUE
Upon successful completion, the typeahead () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.5 (on page 22), doupdate(), getch(), initscr(), <curses.h>, XBD specification, Section
11.2, Parameters that Can be Set

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The RETURN VALUE section now states that the function returns OK on success and ERR on
failure. No return values were defined in previous versions.

240 Technical Standard 2009

Curses Interfaces CURSES unctrl()

NAME
unctrl — generate printable representation of a character

SYNOPSIS
#include <unctrl.h>

char *unctrl(chtype Cc);

DESCRIPTION
The unctrl() function generates a character string that is a printable representation of c. If ¢ is a
control character, it is converted to the "X notation. If ¢ contains rendition information, the effect
is undefined.

RETURN VALUE
Upon successful completion, the unctrl() function returns the generated string. Otherwise, it
returns a null pointer.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
keyname (), wunctrl(), <unctrl.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

The RETURN VALUE section now states that the function may return a null pointer. This
condition was not specified in previous versions.

X/Open Curses, Issue 7 241

ungetch() ENHANCED CURSES Curses Interfaces

NAME
ungetch, unget_wch — push a character onto the input queue
SYNOPSIS
EC #include <curses.h>
int ungetch(int ch);
int unget_wch(const wchar_t wch);
DESCRIPTION

The ungetch() function pushes the single-byte character ch onto the head of the input queue.
The unget_wch () function pushes the wide character wch onto the head of the input queue.

One character of push-back is guaranteed. The result of successive calls without an intervening
call to getch() or get_wch() are unspecified.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Section 3.5 (on page 22), getch(), get_wch(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

242 Technical Standard 2009

Curses Interfaces ENHANCED CURSES
NAME

untouchwin — window refresh control function
SYNOPSIS
EC #include <curses.h>

int untouchwin(WINDOW * Wi n);

DESCRIPTION
Refer to is_linetouched ().

X/Open Curses, Issue 7

untouchwin()

243

use_en() ENHANCED CURSES Curses Interfaces

NAME

use_env — specify source of screen size information
SYNOPSIS
EC #include <curses.h>

void use_env(bool bool val);
DESCRIPTION

The use_env() function specifies the technique by which the implementation determines the size
of the screen. If boolval is FALSE, the implementation uses the values of lines and columns
specified in the terminfo database. If boolval is TRUE, the implementation uses the LINES and
COLUMNS environment variables. The initial value is TRUE.

Any call to use_env() must precede calls to initscr (), newterm(), or setupterm().

RETURN VALUE
The function does not return a value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
del_curterm(), initscr(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
The first argument is changed from char bool to bool boolval.

244 Technical Standard 2009

Curses Interfaces ENHANCED CURSES vidattr()

NAME
vidattr, vid_attr, vidputs, vid_puts — output attributes to the terminal

SYNOPSIS

EC #include <curses.h>
int vidattr(chtype attr);
int vid_attr(attr_t attr, s hort col or_pair_nunber, v oid *opt);
int vidputs(chtype attr, i nt(* putfunc)(int));
int vid_puts(attr_t attr, s hort col or_pair_nunber, v oid *opt, i nt

(* put f unc)(int));

DESCRIPTION
These functions output commands to the terminal that change the terminal’s attributes.
If the terminfo database indicates that the terminal in use can display characters in the rendition
specified by attr, then vidattr() outputs one or more commands to request that the terminal
display subsequent characters in that rendition. The function outputs by calling putchar(). The
vidattr() function neither relies on nor updates the model which Curses maintains of the prior
rendition mode.
The vidputs() function computes the same terminal output string that vidattr() does, based on
attr, but vidputs() outputs by calling the user-supplied function putfunc. The vid_attr() and
vid_puts() functions correspond to vidattr() and vidputs() respectively, but take a set of
arguments, one of type attr_t for theattributes, short for the color pair number and a void *, and
thus support the attribute constants with the WA_ prefix.
The opts argument is reserved for definition in a future version. Currently, the application must
provide a null pointer as opts.
The user-supplied function putfunc (which can be specified as an argument to either vidputs() or
vid_puts()) is either putchar() or some other function with the same prototype. Both the vidputs()
and the vid_puts() function ignore the return value of putfunc.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
After use of any of these functions, the model Curses maintains of the state of the terminal might
not match the actual state of the terminal. The application should touch and refresh the window
before resuming conventional use of Curses.
Use of these functions requires that the application contain so much information about a
particular class of terminal that it defeats the purpose of using Curses.
On some terminals, a command to change rendition conceptually occupies space in the screen
buffer (with or without width). Thus, a command to set the terminal to a new rendition would
change the rendition of some characters already displayed.

RATIONALE

None.

X/Open Curses, Issue 7 245

vidattr() ENHANCED CURSES Curses Interfaces

FUTURE DIRECTIONS
None.

SEE ALSO

doupdate(), is_linetouched(), putchar() (in the XSH specification), putwchar() (in the XSH
specification), tigetflag(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
This entry is rewritten to include the color handling functions.

246 Technical Standard 2009

Curses Interfaces ENHANCED CURSES vline()
NAME
vline — draw vertical line

SYNOPSIS
EC #include <curses.h>

int vline(chtype ch, i nt n);

DESCRIPTION
Refer to hline().

X/Open Curses, Issue 7 247

vline_set() ENHANCED CURSES Curses Interfaces

NAME

vline_set — draw vertical line from complex character and rendition
SYNOPSIS
EC #include <curses.h>

int vline_set(const cchar_t * ch, i nt n);
DESCRIPTION

Refer to hline_set ().

248 Technical Standard 2009

Curses Interfaces ENHANCED CURSES vw_printw()

NAME
vw_printw — print formatted output in window

SYNOPSIS
EC #include <stdarg.h>
#include <curses.h>

int vw_printw(WINDOW *, const char *, va_list vargli st);

DESCRIPTION
The vw_printw() function achieves the same effect as wprintw() using a variable argument list.
The third argument is a va_list, as defined in <stdarg.h>.

RETURN VALUE
Upon successful completion, the vw_printw() function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications should use the vw_printw() function instead of the withdrawn vwprintw()
function. Note that this replacement function is only required to be supported on
implementations supporting X/Open Enhanced Curses.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
moprintw(), fprintf() (in the XSH specification), <curses.h>, <stdarg.h> (in the XBD
specification)

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Corrections made to the SYNOPSIS.

Issue 7
The prototype for the vw_printw() function is updated.

X/Open Curses, Issue 7 249

vw_scanw() ENHANCED CURSES Curses Interfaces

NAME
vw_scanw — convert formatted input from a window

SYNOPSIS
EC #include <stdarg.h>
#include <curses.h>

int vw_scanw(WINDOW *, const char *, va_list vargli st);

DESCRIPTION
The vw_scanw() function achieves the same effect as wscanw() using a variable argument list.
The third argument is a va_list, as defined in <stdarg.h>.

RETURN VALUE
Upon successful completion, the vw_scanw () function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Applications should use the vw_scanw() function instead of the withdrawn vwscanw() function.
Note that this replacement function is only required to be supported on implementations
supporting X/Open Enhanced Curses.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fscanf() (in the XSH specification), mvscanw(), <curses.h>, <stdarg.h> (in the XBD specification)

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Corrections made to the SYNOPSIS and APPLICATION USAGE.

Issue 7
The prototype for the vw_scanw () function is updated.

250 Technical Standard 2009

Curses Interfaces

NAME

CURSES

w — pointer page for functions with w prefix

DESCRIPTION

Most uses of the w prefix indicate that a Curses function takes a win argument that specifies the

affected window.

Note:

(The corresponding functions without the w prefix operate on the current window.)

The wunctrl() function is an exception to this rule and has an entry under its own name.

The w functions are discussed together with the corresponding functions without the w prefix.

They are as follows.

Note:

X/Open Curses, Issue 7

The asterisk (*) denotes that there is no corresponding function without the w prefix.

Function Refer to
waddch () addch()
waddchnstr () addchstr()
waddchstr () addchstr()
waddnstr() addnstr ()
waddstr () addnstr()
waddnwstr () addnwstr()
waddwstr () addnwstr()
wadd_wch() add_wch ()

wadd_wchnstr()
wadd_wchstr ()
wattroff()
wattron ()
wattrset ()
wattr_get()
wattr_off()
wattr_on()
wattr_set()
wbhkgd ()
wbkgdset ()
wbkgrnd ()
wbkgrndset ()
whborder ()
whborder_set ()
wchgat ()
wclear ()
wclrtobot ()
wclrtoeol ()
weursyncup ()*
wdelch()
wdeleteln ()
wechochar ()
wecho_wchar ()
werase()
wgetbkgrnd ()
wgetch()
wgetnstr()
wgetn_wstr ()
wgetstr()

add_wchnstr()
add_wchnstr()

attroff()
attroff()
attroff()
attr_get()
attr_get()
attr_get()
attr_get()
bkgd ()
bkgd ()
bkgrnd ()
bkgrnd ()
border()
border_set ()
chgat()
clear()
clrtobot ()
clrtoeol ()
syncok ()
delch()
deleteln ()
echochar()
echo_wchar ()
clear()
bkgrnd ()
getch()
getnstr()
getn_wstr()
getnstr()

251

252

CURSES

Function Refer to
wget_wch () get_wch()
wget_wstr() getn_wstr()
whline() hline()
whline_set () hline_set ()
winch() inch()
winchnstr() inchnstr()
winchstr() inchnstr()
winnstr() innstr()
winnwstr() innwstr()
winsch() insch()
winsdelln () insdelln()
winsertln() insertln()
winsnstr() insnstr()
winsstr() insnstr()
winstr() innstr()
wins_nwstr() ins_nwstr()
wins_wch () ins_wch()
wins_wstr() ins_nwstr()
winwstr() innwstr()
win_wch() in_wch()

win_wchnstr()
win_wchstr()
wmove()
wnoutrefresh ()*
wprintw()
wredrawln ()
wrefresh ()
wscanw ()
wscrl()
wsetscrreg ()
wstandend ()
wstandout ()
wsyncdown ()*
wsyncup ()*
wtimeout ()
wtouchln()*
woline()
woline_set()

in_wchnstr()
in_wchnstr()
move()
doupdate()
muprintw()
redrawwin ()
doupdate()
mouscanw ()
scrl()
clearok ()
standend ()
standend ()
syncok ()
syncok ()
notimeout ()
is_linetouched ()
hline()
hline_set ()

Curses Interfaces

Technical Standard 2009

Curses Interfaces ENHANCED CURSES wadd_wech()

NAME

wadd_wch — add a complex character and rendition to a window
SYNOPSIS
EC #include <curses.h>

int wadd_wch(WINDOW * wi n, ¢ onstcchar t* wech);

DESCRIPTION
Refer to add_wch().

X/Open Curses, Issue 7 253

wadd_wechnstr() ENHANCED CURSES Curses Interfaces

NAME
wadd_wchnstr, wadd_wchstr — add an array of complex characters and renditions to a window
SYNOPSIS
EC #include <curses.h>
int wadd_wchnstr(WINDOW * W n, c onstcchar t* wchstr, i nt n);
int wadd_wchstr(WINDOW * wi n, ¢ onstcchar t* wechstr);
DESCRIPTION

Refer to add_wchnstr().

254 Technical Standard 2009

Curses Interfaces CURSES waddch()
NAME
waddch — add a single-byte character and rendition to a window and advance the cursor

SYNOPSIS
#include <curses.h>

int waddch(WINDOW * wi n, ¢ onst chtype ch);

DESCRIPTION
Refer to addch ().

X/Open Curses, Issue 7 255

waddchstr() CURSES Curses Interfaces

NAME
waddchstr, waddchnstr — add string of single-byte characters and renditions to a window

SYNOPSIS
#include <curses.h>

int waddchstr(WINDOW * W n, c onstchtype * chstr);

EC int waddchnstr(WINDOW * Wi n, c onst chtype * chstr, i nt n);
DESCRIPTION
Refer to addchstr().

256 Technical Standard 2009

Curses Interfaces ENHANCED CURSES waddnstr()

NAME
waddnstr, waddstr — add a string of multi-byte characters without rendition to a window and
advance cursor

SYNOPSIS
EC #include <curses.h>

int waddnstr(WINDOW * win, c onstchar* str, i nt n);
int waddstr(WINDOW * wi n, c onstchar* str);

DESCRIPTION
Refer to addnstr().

X/Open Curses, Issue 7 257

waddnwstr() ENHANCED CURSES Curses Interfaces

NAME
waddnwstr, waddwstr — add a wide-character string to a window and advance the cursor
SYNOPSIS
EC #include <curses.h>
int waddnwstr(WINDOW * wi n, ¢ onstwchar_t* wstr, i nt n);
int waddwstr(WINDOW * wi n, ¢ onstwchar_t* wst r);
DESCRIPTION

Refer to addnwstr().

258 Technical Standard 2009

Curses Interfaces ENHANCED CURSES walttr_get()

NAME
wattr_get, wattr_off, wattr_on, wattr_set — window attribute control functions
SYNOPSIS
EC #include <curses.h>
int wattr_get(WINDOW *Win, attr t *attrs, s hort *col or_pai r_nunber,
void *opts);
int wattr_off(WINDOW *Win, attr t attrs, void *opts);
int wattr_on(WINDOW *Win, attr t attrs, void *opts);
int wattr_set(WINDOW *Win, attr t attrs, s hort col or_pair_nunber,
void *opts);
DESCRIPTION

Refer to attr_get ().

X/Open Curses, Issue 7 259

wattr off() CURSES Curses Interfaces

NAME
wattroff, wattron, wattrset — restricted window attribute control functions

SYNOPSIS
#include <curses.h>

int wattroff(WINDOW * win,int attrs);
int wattron(WINDOW * win,int attrs);
int wattrset(WINDOW * win,int attrs);

DESCRIPTION
Refer to attroff().

260 Technical Standard 2009

Curses Interfaces ENHANCED CURSES whbkgd()

NAME
wbkgd, wbkgdset — turn off the previous background attributes, logical OR the requested
attributes into the window rendition, and set or get background character and rendition using a
single-byte character

SYNOPSIS
EC #include <curses.h>

int wokgd(WINDOW * wi n, ¢ htype ch);
void wbkgdset(WINDOW * w n, c htype ch);

DESCRIPTION
Refer to bkgd ().

X/Open Curses, Issue 7 261

wbkgrnd() ENHANCED CURSES Curses Interfaces

NAME
wbkgrnd, wbkgrndset, wgetbkgrnd — turn off the previous background attributes, OR the
requested attributes into the window rendition, and set or get background character and
rendition using a complex character

SYNOPSIS

EC #include <curses.h>
int wbkgrnd(WINDOW * wi n, c onst cchar_t* weh);
void wbkgrndset(WINDOW * wi n, ¢ onstcchar t* wch);
int wgetbkgrnd(WINDOW * Wi n, c char_ t* wch);

DESCRIPTION

Refer to bkgrnd().

262 Technical Standard 2009

Curses Interfaces ENHANCED CURSES wborder()

NAME
wborder — draw borders from single-byte characters and renditions

SYNOPSIS
EC #include <curses.h>

int wborder(WINDOW * win, c htype |s, c htype rs, c htype ts, c htype bs,
chtype tl, c htype tr, c htype bl, c htype br);

DESCRIPTION
Refer to border ().

X/Open Curses, Issue 7 263

wborder_set()

ENHANCED CURSES

Curses Interfaces

I s, c onstcchar_t* rs,

NAME
wborder_set — draw borders from complex characters and renditions
SYNOPSIS
EC #include <curses.h>
int wborder_set(WINDOW * W n, c onstcchar t*
const cchar_t* ts, c onstcchar t* bs,
const cchar_t* tl, c onstcchar t* tr,
const cchar_t* bl , c onstcchar_t* br);
DESCRIPTION
Refer to border_set ().
264

Technical Standard 2009

Curses Interfaces ENHANCED CURSES wchgat()

NAME
wchgat — change renditions of characters in a window
SYNOPSIS
EC #include <curses.h>
int chgat(int n, attrt attr, s hort col or, c onstvoid * opt s);
DESCRIPTION
Refer to chgat ().

X/Open Curses, Issue 7 265

wclear() CURSES Curses Interfaces

NAME
wclear, werase — clear a window

SYNOPSIS
#include <curses.h>

int wclear(WINDOW * wi n);
int werase(WINDOW * wi n);

DESCRIPTION
Refer to clear ().

266 Technical Standard 2009

Curses Interfaces CURSES
NAME

wclrtobot — clear from cursor to end of window
SYNOPSIS

#include <curses.h>
int wclrtobot(WINDOW * Wi n);

DESCRIPTION
Refer to clrtobot().

X/Open Curses, Issue 7

wclrtobot()

267

wclrtoeol() CURSES Curses Interfaces

NAME
wclrtoeol — clear from cursor to end of line

SYNOPSIS
#include <curses.h>

int wclrtoeol(WINDOW * wi n);

DESCRIPTION
Refer to clrtoeol ().

268 Technical Standard 2009

Curses Interfaces ENHANCED CURSES wcoclor_set()

NAME
wcolor_set — window attribute control functions

SYNOPSIS
EC #include <curses.h>

int wcolor_set(WINDOW *Win, s hort col or_pair_nunber, v oid *opts);

DESCRIPTION
Refer to attr_get ().

X/Open Curses, Issue 7 269

wceursyncup() ENHANCED CURSES Curses Interfaces

NAME

wcursyncup — synchronize a window with its parents or children
SYNOPSIS
EC #include <curses.h>

void weursyncup(WINDOW * wi n);

DESCRIPTION
Refer to syncok().

270 Technical Standard 2009

Curses Interfaces CURSES
NAME

wdelch — delete a character from a window
SYNOPSIS

#include <curses.h>
int wdelch(WINDOW * wi n);

DESCRIPTION
Refer to delch ().

X/Open Curses, Issue 7

wdelch()

271

wdeleteln() CURSES Curses Interfaces

NAME
wdeleteln — delete lines in a window

SYNOPSIS
#include <curses.h>

int wdeleteln(WINDOW * wi n);

DESCRIPTION
Refer to deleteln ().

272 Technical Standard 2009

Curses Interfaces ENHANCED CURSES wecho_wchar()

NAME

wecho_wchar — write a complex character and immediately refresh the window
SYNOPSIS
EC #include <curses.h>

int wecho_wchar(WINDOW * w n, c onstcchar t* weh);

DESCRIPTION
Refer to echo_wchar ().

X/Open Curses, Issue 7 273

wechochar() ENHANCED CURSES Curses Interfaces

NAME
wechochar — echo single-byte character and rendition to a window and refresh

SYNOPSIS
EC #include <curses.h>

int wechochar(WINDOW * wi n, ¢ onst chtype ch);

DESCRIPTION
Refer to echochar().

274 Technical Standard 2009

Curses Interfaces ENHANCED CURSES
NAME

wget_wch — get a wide character from a terminal
SYNOPSIS
EC #include <curses.h>

int wget wch(WINDOW * wi n, wint t* ch);

DESCRIPTION
Refer to get_wch ().

X/Open Curses, Issue 7

wget_wch()

275

wgetch() CURSES Curses Interfaces

NAME
wgetch — get a single-byte character from the terminal

SYNOPSIS
#include <curses.h>

int wgetch(WINDOW * wi n);

DESCRIPTION
Refer to getch().

276 Technical Standard 2009

Curses Interfaces ENHANCED CURSES wgetn_wstr()

NAME
wgetn_wstr, wget_wstr — get an array of wide characters and function key codes from a
terminal
SYNOPSIS
EC #include <curses.h>
int wgetn_wstr(WINDOW * Wi n, wintt* wstr, i nt n);
int wget_wstr(WINDOW * Win, wint t* wstr);
DESCRIPTION

Refer to getn_wstr().

X/Open Curses, Issue 7 277

wgetnstr() CURSES Curses Interfaces

NAME
wgetnstr, wgetstr — get a multi-byte character string from the terminal

SYNOPSIS
#include <curses.h>

EC int wgetnstr(WINDOW * win, char* str, i nt n);
int wgetstr(WINDOW * Wi n, c har* str);
DESCRIPTION
Refer to getnstr().

278 Technical Standard 2009

Curses Interfaces ENHANCED CURSES whline()

NAME

whline, wvline — draw lines from single-byte characters and renditions
SYNOPSIS
EC #include <curses.h>

int whline(WINDOW * wi n, ¢ htype ch, i nt n);
int wvline(WINDOW * win, c htype ch, i nt n);

DESCRIPTION
Refer to hline().

X/Open Curses, Issue 7 279

whhline_set() ENHANCED CURSES Curses Interfaces

NAME

whline_set, wvline_set — draw lines from complex characters and renditions
SYNOPSIS
EC #include <curses.h>

int whline_set(WINDOW * W n, c onstcchar t* wch, i nt n);

int wvline_set(WINDOW * W n, c onstcchar t* wch, i nt n);
DESCRIPTION

Refer to hline_set ().

280 Technical Standard 2009

Curses Interfaces ENHANCED CURSES win_wch()

NAME

win_wch — extract a complex character and rendition from a window
SYNOPSIS
EC #include <curses.h>

int win_wch(WINDOW * wi n, c char_ t* wcval);
DESCRIPTION

Refer to in_wch ().

X/Open Curses, Issue 7 281

win_wchnstr() ENHANCED CURSES Curses Interfaces

NAME
win_wchnstr, win_wchstr — extract an array of complex characters and renditions from a
window
SYNOPSIS
EC #include <curses.h>
int win_wchnstr(WINDOW * Wi n, cchar t* wchstr, i nt n);
int win_wchstr(WINDOW * Wi n, cchar t* wchstr);
DESCRIPTION

Refer to in_wchnstr().

282 Technical Standard 2009

Curses Interfaces CURSES winch()

NAME
winch — input a single-byte character and rendition from a window

SYNOPSIS
#include <curses.h>

chtype winch(WINDOW * wi n);

DESCRIPTION
Refer to inch().

X/Open Curses, Issue 7 283

winchnstr() ENHANCED CURSES Curses Interfaces

NAME
winchnstr, winchstr — input an array of single-byte characters and renditions from a window
SYNOPSIS
EC #include <curses.h>
int winchnstr(WINDOW * win, c htype* chstr, i nt n);
int winchstr(WINDOW * Wi n, ¢ htype* chstr);
DESCRIPTION

Refer to inchnstr().

284 Technical Standard 2009

Curses Interfaces ENHANCED CURSES winnstr()

NAME
winnstr, winstr — input a multi-byte character string from a window
SYNOPSIS
EC #include <curses.h>
int winnstr(WINDOW * wWin, char* str, i nt n);
int winstr(WINDOW * Wi n, char* str);
DESCRIPTION

Refer to innstr().

X/Open Curses, Issue 7 285

winnwstr() ENHANCED CURSES Curses Interfaces

NAME
winnwstr, winwstr — input a string of wide characters from a window
SYNOPSIS
EC #include <curses.h>
int winnwstr(WINDOW * Wi n, wchar t* wstr, i nt n);
int winwstr(WINDOW * W n, wchar t* wstr);
DESCRIPTION

Refer to innwstr().

286 Technical Standard 2009

Curses Interfaces ENHANCED CURSES
NAME
wins_nwstr, wins_wstr — insert a wide-character string into a window
SYNOPSIS
EC #include <curses.h>

int wins_nwstr(WINDOW * W n, c onstwchar t* wstr, i nt n);
int wins_wstr(WINDOW * W n, c onstwchar t* wst r);

DESCRIPTION
Refer to ins_nwstr().

X/Open Curses, Issue 7

wins_nwstr()

287

wins_wch() ENHANCED CURSES Curses Interfaces

NAME

wins_wch — insert a complex character and rendition into a window
SYNOPSIS
EC #include <curses.h>

int wins_wch(WINDOW * wi n, ¢ onstcchar t* wech);
DESCRIPTION

Refer to ins_wch ().

288 Technical Standard 2009

Curses Interfaces CURSES winsch()

NAME
winsch — insert a single-byte character and rendition into a window

SYNOPSIS
#include <curses.h>

int winsch(WINDOW * wi n, ¢ htype ch);

DESCRIPTION
Refer to insch().

X/Open Curses, Issue 7 289

winsdelln() ENHANCED CURSES Curses Interfaces
NAME
winsdelln — delete or insert lines into a window

SYNOPSIS
EC #include <curses.h>

int winsdelln(WINDOW * win,int n)

DESCRIPTION
Refer to insdelln ().

290 Technical Standard 2009

Curses Interfaces CURSES
NAME
winsertln — insert lines into a window

SYNOPSIS
#include <curses.h>

int winsertin(WINDOW * wi n);

DESCRIPTION
Refer to insertin().

X/Open Curses, Issue 7

winsertin()

291

winsnstr() ENHANCED CURSES Curses Interfaces

NAME

winsnstr, winsstr — insert a multi-byte character string into a window
SYNOPSIS
EC #include <curses.h>

int winsnstr(WINDOW * Wi n, constchar* str, i nt n);

int winsstr(WINDOW * W n, constchar* str);
DESCRIPTION

Refer to insnstr().

292 Technical Standard 2009

Curses Interfaces CURSES
NAME

wmove — window cursor location functions
SYNOPSIS

#include <curses.h>
int wmove(WINDOW * win, i nt y, i nt x);

DESCRIPTION
Refer to move().

X/Open Curses, Issue 7

wmove()

293

wnoutrefresh() CURSES

NAME
wnoutrefresh, wrefresh — refresh windows and lines

SYNOPSIS
#include <curses.h>

int wnoutrefresh(WINDOW * Wi n);
int wrefresh(WINDOW * Wi n);

DESCRIPTION
Refer to doupdate().

294

Curses Interfaces

Technical Standard 2009

Curses Interfaces CURSES
NAME

wprintw — print formatted output in window
SYNOPSIS

#include <curses.h>

int wprintw(WINDOW * Wi n, constchar* fnt, . .);

DESCRIPTION
Refer to muprintw().

X/Open Curses, Issue 7

wprintw()

295

wredrawin() ENHANCED CURSES Curses Interfaces

NAME
wredrawln — line update status functions
SYNOPSIS
EC #include <curses.h>
int wredrawIn(WINDOW * win, i nt beg line, i nt numlines);
DESCRIPTION

Refer to redrawwin ().

296 Technical Standard 2009

Curses Interfaces CURSES
NAME

wscanw — convert formatted input from a window
SYNOPSIS

#include <curses.h>

int wscanw(WINDOW * wi n, c onstchar* fnt, . .);

DESCRIPTION
Refer to muscanw ().

X/Open Curses, Issue 7

wscanw()

297

wscrl() CURSES Curses Interfaces

NAME
wscrl — scroll a Curses window

SYNOPSIS
EC #include <curses.h>

int wscrlWINDOW * win, i nt n);

DESCRIPTION
Refer to scrl().

298 Technical Standard 2009

Curses Interfaces CURSES wsetscrreg()

NAME
wsetscrreg — terminal output control functions

SYNOPSIS
#include <curses.h>

int wsetscrreg(WINDOW * win,int top, i nt bot);

DESCRIPTION
Refer to clearok().

X/Open Curses, Issue 7 299

wstandend() CURSES Curses Interfaces

NAME

wstandend, wstandout — set and clear window attributes
SYNOPSIS

#include <curses.h>

int wstandend(WINDOW * wi n);
int wstandout(WINDOW * wi n);

DESCRIPTION
Refer to standend ().

300 Technical Standard 2009

Curses Interfaces ENHANCED CURSES wsyncdown()

NAME
wsyncdown, wsyncup — synchronize a window with its parents or children

SYNOPSIS
EC #include <curses.h>

void wsyncdown(WINDOW * wi n);
void wsyncup(WINDOW * wi n);

DESCRIPTION
Refer to syncok().

X/Open Curses, Issue 7 301

wtimeout() ENHANCED CURSES Curses Interfaces

NAME

wtimeout — control blocking on input
SYNOPSIS
EC #include <curses.h>

void wtimeout(WINDOW * wi n, i nt del ay);

DESCRIPTION
Refer to notimeout ().

302 Technical Standard 2009

Curses Interfaces CURSES wtouchin()

NAME
wtouchln — window refresh control functions
SYNOPSIS
EC #include <curses.h>
int wtouchin(WINDOW * win,in y,in n,int changed);
DESCRIPTION

Refer to is_linetouched ().

X/Open Curses, Issue 7 303

wunctrl() ENHANCED CURSES Curses Interfaces

NAME
wunctrl — generate printable representation of a wide character
SYNOPSIS
EC #include <curses.h>
wchar_t *wunctrl(cchar_t * we);
DESCRIPTION

The wunctrl() function generates a wide-character string that is a printable representation of the
wide character wc.

This function also performs the following processing on the input argument:
 Control characters are converted to the ’X’ notation.
¢ Any rendition information is removed.

RETURN VALUE
Upon successful completion, the wunctrl() function returns the generated string. Otherwise, it
returns a null pointer.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
keyname (), unctrl(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

304 Technical Standard 2009

Chapter 5

Headers

This chapter describes the contents of headers used by the Curses functions, macros, and
external variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros,
and defined types. Each function in Chapter 4 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

X/Open Curses, Issue 7 305

<curses.h> CURSES Headers

NAME
curses.h — definitions for screen handling and optimization functions
SYNOPSIS
#include <curses.h>
DESCRIPTION
Objects
EC The <curses.h> header provides a declaration for COLOR_PAIRS, COLORS, COLS, curscr,

EC

EC

EC

EC

EC

EC

EC

306

LINES, and stdscr.

Macros

The following macros are defined:

EOF Function return value for end-of-file, as described in <stdio.h>.

ERR Function return value for failure.

FALSE Boolean false value.

KEY_CODE_YES Function return value indicating that a wint_t variable contains a key
code.

OK Function return value for success.

TRUE Boolean true value.

WEOF Wide-character function return value for end-of-file, as described in
<wchar.h>.

The following macro is defined:

_XOPEN_CURSES X/Open Enhanced Curses test macro.

Data Types

The following data type is defined as a macro:

bool As described in <stdbool.h>.

The following data types are defined through typedef:

attr_t An OR’ed set of attributes.

chtype A character, attributes, and a color-pair.
SCREEN An opaque terminal representation.
wchar_t As described in <stddef.h>.

wint_t As described in <wchar.h>.

cchar_t References a string of wide characters.
WINDOW An opaque window representation.

These data types are described in more detail in Section 2.3 (on page 12).

The inclusion of <curses.h> may make visible all symbols from the headers <stdio.h>,
<term.h>, <termios.h>, and <wchar.h>.

Technical Standard 2009

Headers CURSES <curses.h>

EC

EC

EC

EC

EC

Attribute Bits
The following macros are used to manipulate objects of type attr_t:

WA_ALTCHARSET Alternate character set

WA_BLINK Blinking

WA_BOLD Extra bright or bold
WA_DIM Half bright
WA_HORIZONTAL Horizontal highlight
WA_INVIS Invisible

WA_LEFT Left highlight
WA_LOW Low highlight

WA _PROTECT Protected
WA _REVERSE Reverse video

WA_RIGHT Right highlight
WA_STANDOUT Best highlighting mode of the terminal
WA_TOP Top highlight

WA_UNDERLINE Underlining
WA_VERTICAL Vertical highlight

These attribute flags shall be distinct.
The following macros are used to manipulate attribute bits in objects of type chtype:

A _ALTCHARSET Alternate character set

A BLINK Blinking

A_BOLD Extra bright or bold
A_DIM Half bright

A _INVIS Invisible

A PROTECT Protected
A_REVERSE Reverse video

A_STANDOUT Best highlighting mode of the terminal
A_UNDERLINE Underlining

These attribute flags need not be distinct except when ' XOPEN_CURSES is defined.
The following macros can be used as bit-masks to extract the components of a chtype:

A_ATTRIBUTES Bit-mask to extract attributes
A_CHARTEXT Bit-mask to extract a character
A_COLOR Bit-mask to extract color-pair information

X/Open Curses, Issue 7 307

<curses.h> CURSES Headers
Line-Drawing Macros
EC The <curses.h> header defines the macros shown in the leftmost two columns of the following

table for use in drawing lines. The macros that begin with ACS_ are char constants. The macros
that begin with WACS_ are cchar_t constants used with the wide-character interfaces that take a
pointer to a cchar._t.

In the POSIX locale, the characters shown in the POSIX Locale Default column are used when
the terminal database does not specify a value using the acsc capability as described in Section
A.1.12 (on page 361).

POSIX Locale

char Constant cchar_t Constant Default Glyph Description
ACS_ULCORNER WACS_ULCORNER + upper left-hand corner
ACS LLCORNER WACS LLCORNER 4 lower left-hand corner
ACS_URCORNER WACS_URCORNER + upper right-hand corner
ACS LRCORNER WACS LRCORNER 4 lower right-hand corner
ACS_RTEE WACS_RTEE + right tee ()
ACS_LTEE WACS_LTEE + left tee (|-)
ACS_BTEE WACS_BTEE 4 bottom tee (|)
ACS_TTEE WACS_TTEE + top tee ()
ACS_HLINE WACS_HLINE = horizontal line
ACS_VLINE WACS_VLINE vertical line
ACS_PLUS WACS_PLUS + plus
ACS S1 WACS_S1 - scan line 1
ACS S9 WACS_S9 _ scan line 9
ACS_DIAMOND | WACS_DIAMOND + diamond
ACS CKBOARD | WACS_CKBOARD : checker board (stipple)
ACS_DEGREE WACS_DEGREE ' degree symbol
ACS_PLMINUS | WACS_PLMINUS # plus/minus
ACS_BULLET WACS_BULLET o] bullet
ACS_LARROW WACS_LARROW < arrow pointing left
ACS_RARROW WACS_RARROW > arrow pointing right
ACS_DARROW WACS_DARROW \% arrow pointing down
ACS_UARROW WACS_UARROW - arrow pointing up
ACS BOARD WACS BOARD # board of squares
ACS LANTERN | WACS LANTERN # lantern symbol
ACS BLOCK WACS BLOCK # solid square block

308 Technical Standard 2009

Headers CURSES

EC

EC

EC

EC

EC

EC

Color-Related Macros
The following color-related macros are defined:

COLOR_BLACK
COLOR_BLUE
COLOR_GREEN
COLOR_CYAN
COLOR_RED
COLOR_MAGENTA
COLOR_YELLOW
COLOR_WHITE

<curses.h>

The following color-related macros are defined, and may also be declared as functions:

int COLOR_PAIR(int);
int PAIR_NUMBER(int);

Coordinate-Related Macros
The following coordinate-related macros are defined:

void getbegyx(WINDOW *win, i nt y, i nt x);
void getmaxyx(WINDOW *win, i nt y, i nt x);
void getparyx(WINDOW *win, i nt y,int x);
void getyx(WINDOW *win, i nt y, i nt Xx);

Key Codes

The following macros representing function key values are defined and have distinct values

where each value is less than {CHAR_MIN} or greater then {UCHAR_MAX].

Key Code Description
KEY_Al Upper left of keypad
KEY_A3 Upper right of keypad
KEY_B2 Center of keypad
KEY_BACKSPACE Backspace
KEY_BEG Beginning key
KEY_BREAK Break key
KEY_BTAB Back tab key
KEY_C1 Lower left of keypad
KEY_C3 Lower right of keypad
KEY_CANCEL Cancel key
KEY_CATAB Clear all tabs
KEY_CLEAR Clear screen
KEY_CLOSE Close key
KEY_COMMAND | Cmd (command) key
KEY_COPY Copy key
KEY_CREATE Create key
KEY_CTAB Clear tab

X/Open Curses, Issue 7

309

<curses.h>

EC

EC

EC

EC

EC

EC

EC

EC

EC

310

CURSES

Headers

Key Code Description
KEY_DC Delete character
KEY_DL Delete line
KEY_DOWN Down arrow key
KEY_EIC Exit insert char mode
KEY_END End key
KEY_ENTER Enter or send
KEY_EOL Clear to end of line
KEY_EOS Clear to end of screen
KEY_EXIT Exit key
KEY_FO Function keys; space for 64 keys is reserved
KEY_F(n) For0<sn<63
KEY_FIND Find key
KEY_HELP Help key
KEY_HOME Home key
KEY_IC Insert char or enter insert mode
KEY_IL Insert line
KEY_LEFT Left arrow key
KEY_LL Home down or bottom
KEY_MARK Mark key
KEY_MESSAGE | Message key
KEY_MOVE Move key
KEY_NEXT Next object key
KEY_NPAGE Next page
KEY_OPEN Open key
KEY_OPTIONS Options key
KEY_PPAGE Previous page
KEY_PREVIOUS | Previous object key
KEY_PRINT Print or copy
KEY_REDO Redo key
KEY_REFERENCE Reference key
KEY_REFRESH Refresh key
KEY_REPLACE Replace key
KEY_RESET Reset or hard reset
KEY_RESTART Restart key
KEY_RESUME Resume key
KEY_RIGHT Right arrow key
KEY_SAVE Save key
KEY_SBEG Shifted beginning key
KEY_SCANCEL Shifted cancel key
KEY_SCOMMAND| Shifted command key
KEY_SCOPY Shifted copy key
KEY_SCREATE Shifted create key
KEY_SDC Shifted delete char key
KEY_SDL Shifted delete line key
KEY_SELECT Select key
KEY_SEND Shifted end key
KEY_SEOL Shifted clear line key
KEY_SEXIT Shifted exit key
KEY_SF Scroll 1 line forward

Technical Standard 2009

Headers CURSES <curses.h>
Key Code Description
EC KEY_SFIND Shifted find key
KEY_SHELP Shifted help key
KEY_SHOME Shifted home key
KEY_SIC Shifted input key
KEY_SLEFT Shifted left arrow key
KEY_SMESSAGE | Shifted message key
KEY_SMOVE Shifted move key
KEY_SNEXT Shifted next key
KEY_SOPTIONS | Shifted options key
KEY_SPREVIOUS| Shifted prev key
KEY_SPRINT Shifted print key
KEY_SR Scroll 1 line backward (reverse)
EC KEY_SREDO Shifted redo key
KEY_SREPLACE | Shifted replace key
KEY_SRESET Soft (partial) reset
EC KEY_SRIGHT Shifted right arrow
KEY_SRSUME Shifted resume key
KEY_SSAVE Shifted save key
KEY_SSUSPEND | Shifted suspend key
KEY_STAB Set tab
EC KEY_SUNDO Shifted undo key
KEY_SUSPEND | Suspend key
KEY_UNDO Undo key
KEY_UP Up arrow key

EC

EC

The virtual keypad is a 3-by-3 keypad arranged as follows:

Al ur A3
LEFT B2 RIGHT
C1 DOWN C3

Each legend, such as A1, corresponds to a macro for a key code from the preceding table, such as

KEY_A1l.

Function Prototypes

The following are declared as functions, and may also be defined as macros:

int addch(const chtype);

int addchnstr(const chtype *, int);
int addchstr(const chtype *);

int addnstr(const char *, int);

int addnwstr(const wchar_t *, int);
int addstr(const char *);

int add_wch(const cchar_t*);

int add_wchnstr(const cchar_t*, int);
int add_wchstr(const cchar_t*);
int addwstr(const wchar_t *);

int attroff(int);

int attron(int);

int attrset(int);

X/Open Curses, Issue 7

311

<curses.h>

EC

EC

EC

EC

EC

EC

EC

EC

EC

EC

EC

312

int
int
int
int
int
int
int
void
int
void
int

int

int
int
bool
int
int
int
int
int
int
int
int
int

int

int

int

int

int

int
void
int
WINDOW
int
WINDOW
int

int

int

int
char
int

int
void
int

int
chtype
int

int

attr_get(attr_t
attr_off(attr_t,
attr_on(attr_t,
attr_set(attr _t,
baudrate(void);

beep(void);

bkgd(chtype);

bkgdset(chtype);

bkgrnd(const cchar_t*);

bkgrndset(const cchar_t*);

border(chtype, chtype, chtype, chtype, chtype, chtype,

CURSES

* short *, void *);
void *);
void *);
short, void *);

chtype, chtype);

border_set(const

cchar_t *, const cchar_t *

const cchar_t *, const cchar_t *, const cchar_t *,
const cchar_t *, const cchar_t *, const cchar_t *);
box(WINDOW *, chtype, chtype);

box_set(WINDOW

* const cchar_t *, const cchar_t *);

can_change_color(void);

cbreak(void);

chgat(int, attr_t, short, const void *);

clearok(WINDOW
clear(void);
clrtobot(void);
clrtoeol(void);
color_content(short,
color_set(short,void
copywin(const

int, int);
curs_set(int);

def_prog_mode(void);
def_shell_mode(void);

delay_output(int);
delch(void);
deleteln(void);
delscreen(SCREEN
delwin(WINDOW

*, bool);

short *, short *, short *);

*),

*),

*)’

*derwin(WINDOW *, int, int, int, int);

doupdate(void);

*dupwin(WINDOW *);

echo(void);
echochar(const
echo_wchar(const
endwin(void);
erasechar(void);
erase(void);
erasewchar(wchar_t
filter(void);
flash(void);
flushinp(void);
getbkgd(WINDOW
getbkgrnd(cchar_t
getcchar(const

chtype);
cchar_t*);

*),

*),
*),

cchar_t* wchar_t*, attr_t *, short *,

Headers

WINDOW *, WINDOW *, int, int, int, int, int,

Technical Standard 2009

Headers CURSES <curses.h>

void *);
int getch(void);

EC int getnstr(char *,int);
int getn_wstr(wint_t * . int);
int getstr(char *);

EC int get_wch(wint_t *);

WINDOW *getwin(FILE ~ *);

int get_wstr(wint_t *);
int halfdelay(int);

bool has_colors(void);

bool has_ic(void);

bool has_il(void);

EC int hline(chtype, int);
int hline_set(const cchar_t *, int);
void idcok(WINDOW *, bool);
int idlok(WINDOW * bool);

EC void immedok(WINDOW *, bool);
chtype inch(void);

EC int inchnstr(chtype *,int);
int inchstr(chtype *);

WINDOW *initscr(void);

EC int init_color(short, short, short, short);
int init_pair(short, short, short);
int innstr(char *,int);
int innwstr(wchar_t * . int);
int insch(chtype);

EC int insdelin(int);
int insertin(void);

EC int insnstr(const char *, int);
int ins_nwstr(const wchar_t *, int);
int insstr(const char *);
int instr(char *);
int ins_wch(const cchar_t*);
int ins_wstr(const wchar_t *);
int intrflush(WINDOW *, bool);

EC int in_wch(cchar_t *);
int in_wchnstr(cchar_t *,int);
int in_wchstr(cchar_t *);
int inwstr(wchar_t *);
bool isendwin(void);
bool is_linetouched(WINDOW *,int);
bool is_wintouched(WINDOW *);
char *keyname(int);
char *key_name(wchar_t);
int keypad(WINDOW *, bool);
char killchar(void);

EC int killwchar(wchar_t *);
int leaveok(WINDOW * bool);
char *longname(void);

EC int meta(WINDOW *, bool);
int move(int, int);
int mvaddch(int, int, const chtype);

X/Open Curses, Issue 7 313

<curses.h> CURSES Headers

EC int mvaddchnstr(int, int, const chtype *, int);
int mvaddchstr(int, int, const chtype *);
EC int mvaddnstr(int, int, const char *, int);
int mvaddnwstr(int, int, const wchar_t *, int);
int mvaddstr(int, int, const char *);
int mvadd_wch(int, int, const cchar_t *);
int mvadd_wchnstr(int, int, const cchar_t *, int);
int mvadd_wchstr(int, int, const cchar_t *);
int mvaddwstr(int, int, const wchar_t *);
int mvchgat(int, int, int, attr_t, short, const void *);
int mvcur(int, int, int, int);
int mvdelch(int, int);
EC int mvderwin(WINDOW *, int, int);
int mvgetch(int, int);
EC int mvgetnstr(int, int, char *, int);
int mvgetn_wstr(int, int, wint_t *, int);
int mvgetstr(int, int, char *);
EC int mvget_wch(int, int, wint_t *);
int mvget_wstr(int, int, wint_t *);
int mvhline(int, int, chtype, int);
int mvhline_set(int, int, const cchar_t *, int);
chtype mvinch(int, int);
EC int mvinchnstr(int, int, chtype *, int);
int mvinchstr(int, int, chtype *);
int mvinnstr(int, int, char *, int);
int mvinnwstr(int, int, wchar_t *, int);
int mvinsch(int, int, chtype);
EC int mvinsnstr(int, int, const char *, int);
int mvins_nwstr(int, int, const wchar_t *, int);
int mvinsstr(int, int, const char *);
int mvinstr(int, int, char *);
int mvins_wch(int, int, const cchar_t *);
int mvins_wstr(int, int, const wchar_t *);
int mvin_wch(int, int, cchar_t *);
int mvin_wchnstr(int, int, cchar_t *, int);
int mvin_wchstr(int, int, cchar_t *);
int mvinwstr(int, int, wchar_t *);
int mvprintw(int, int, const char *, ..);
int mvscanw(int, int, const char *, ...);
EC int mwvline(int, int, chtype, int);
int mwvline_set(int, int, const cchar_t *, int);
int mvwaddch(WINDOW *, int, int, const chtype);
EC int mvwaddchnstr(WINDOW *,int, int, const chtype *, int);
int mvwaddchstr(WINDOW * int, int, const chtype *);
EC int mvwaddnstr(WINDOW *, int, int, const char *, int);
int mvwaddnwstr(WINDOW %, int, int, const wchar_t *, int);
int mvwaddstr(WINDOW *, int, int, const char *);
int mvwadd_wch(WINDOW *, int, int, const cchar_t *);
int mvwadd_wchnstr(WINDOW *, int, int, const cchar_t *, int);
int mvwadd_wchstr(WINDOW *, int, int, const cchar_t *);
int mvwaddwstr(WINDOW *, int, int, const wchar_t *);
int mvwchgat(WINDOW *, int, int, int, attr_t, short,

314 Technical Standard 2009

Headers

EC

EC

EC

EC

EC

EC

EC

EC

X/Open Curses, Issue 7

int
int
int
int
int
int
int
int
int
int
chtype
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
WINDOW
SCREEN
WINDOW
int
int
int
int
int
void
int
int
int
int
int
int
int
int
int
int

CURSES

const void *);
mvwdelch(WINDOW *, int, int);
mvwgetch(WINDOW *, int, int);
mvwgetnstr(WINDOW *.int, int, char *, int);
mvwgetn_wstr(WINDOW *.int, int, wint_t *, int);
mvwgetstr(WINDOW *,int, int, char *);
mvwget_ wch(WINDOW *, int, int, wint_t *);
mvwget_wstr(WINDOW *,int, int, wint_t *);
mvwhline(WINDOW *, int, int, chtype, int);
mvwhline_set(WINDOW *.int, int, const cchar_t *, int);
mvwin(WINDOW *, int, int);
mvwinch(WINDOW *, int, int);
mvwinchnstr(WINDOW *,int, int, chtype *, int);
mvwinchstr(WINDOW *, int, int, chtype *);
mvwinnstr(WINDOW *.int, int, char *, int);
mvwinnwstr(WINDOW *.int, int, wchar_t *, int);
mvwinsch(WINDOW *, int, int, chtype);
mvwinsnstr(WINDOW *,int, int, const char *, int);
mvwins_nwstr(WINDOW *,int, int, const wchar_t *, int);
mvwinsstr(WINDOW *,int, int, const char *);
mvwinstr(WINDOW *.int, int, char *);
mvwins_ wch(WINDOW *, int, int, const cchar_t *);
mvwins_wstr(WINDOW *int, int, const wchar_t *);
mvwin_wch(WINDOW *, int, int, cchar_t *);
mvwin_wchnstr(WINDOW * int, int, cchar_t *, int);
mvwin_wchstr(WINDOW *.int, int, cchar_t *);
mvwinwstr(WINDOW *.int, int, wchar_t *);
mvwprintw(WINDOW *, int, int, const char *, ...);
mvwscanw(WINDOW *, int, int, const char *, ...);
mvwvline(WINDOW *, int, int, chtype, int);

mvwvline_set(WINDOW *int, int, const cchar_t *, int);
napms(int);

*newpad(int, int);

*newterm(const char *, FILE *, FILE *);

*newwin(int, int, int, int);
nl(void);

nocbreak(void);
nodelay(WINDOW *, bool);
noecho(void);

nonl(void);

nogiflush(void);

noraw(void);
notimeout(WINDOW *, bool);

overlay(const WINDOW *, WINDOW *);
overwrite(const WINDOW *, WINDOW *);
pair_content(short, short *, short *);

pechochar(WINDOW *, chtype);
pecho_wchar(WINDOW *, const cchar_t*);

pnoutrefresh(WINDOW *,int, int, int, int, int, int);
prefresh(WINDOW *,int, int, int, int, int, int);
printw(const char *, ...);

<curses.h>

315

<curses.h> CURSES Headers

EC int putp(const char *);
int putwin(WINDOW *, FILE *);
void giflush(void);
int raw(void);
EC int redrawwin(WINDOW *);
int refresh(void);
int reset_prog_mode(void);
int reset_shell_mode(void);
int resetty(void);
EC int ripoffline(int, int (*)(WINDOW *, int));
int savetty(void);
int scanw(const char *, ...);
EC int scr_dump(const char *);
int scr_init(const char *);
int scrl(int);
int scroll(WINDOW *);
int scrollok(WINDOW * bool);
EC int scr_restore(const char *);
int scr_set(const char *);
int setcchar(cchar_t*, const wchar_t*, const attr_t, short,
const void®);
int setscrreg(int, int);
SCREEN *set_term(SCREEN *);
int setupterm(char *int, int *);
EC int slk_attr_off(const attr_t, void *);
int slk_attroff(const chtype);
int slk_attr_on(const attr_t, void *);
int slk_attron(const chtype);
int slk_attr_set(const attr_t, short, void *);
int slk_attrset(const chtype);
int slk_clear(void);
int slk_color(short);
int slk_init(int);
char *slk_label(int);
int slk_noutrefresh(void);
int slk_refresh(void);
int slk_restore(void);
int slk_set(int, const char *, int);
int slk_touch(void);
int slk_wset(int, const wchar_t *, int);
int standend(void);
int standout(void);
EC int start_color(void);

WINDOW *subpad(WINDOW*, int, int, int, int);
WINDOW *subwin(WINDOW *, int, int, int, int);

EC int syncok(WINDOW *, bool);
chtype termattrs(void);
attr_t term_attrs(void);
char *termname(void);
int tigetflag(const char *);
int tigetnum(const char *);
char *tigetstr(const char *);

316 Technical Standard 2009

Headers CURSES
void timeout(int);
int touchline(WINDOW *,int, int);
int touchwin(WINDOW *);
EC char *tiparm(const char *, ...);
EC OB char *tparm(const char *, long, long, long, long, long, long,
long, long, long);
int typeahead(int);
EC int ungetch(int);
int unget_wch(const wchar_t);
int untouchwin(WINDOW *);
void use_env(bool);
int vid_attr(attr_t, short, void *);
int vidattr(chtype);
int vid_puts(attr_t, short, void *, int (*)(int));
int vidputs(chtype, int (*)(int));
int vline(chtype, int);
int vline_set(const cchar_t *, int);
int vw_printw(WINDOW * const char *, va_list);
int vw_scanw(WINDOW * const char *, va_list);
int waddch(WINDOW *, const chtype);
EC int waddchnstr(WINDOW *, const chtype *, int);
int waddchstr(WINDOW *, const chtype *);
EC int waddnstr(WINDOW * const char *, int);
int waddnwstr(WINDOW *, const wchar_t *, int);
int waddstr(WINDOW *, const char *);
int wadd_wch(WINDOW *, const cchar_t *);
int wadd_wchnstr(WINDOW * const cchar_t *, int);
int wadd_wchstr(WINDOW * const cchar_t *);
int waddwstr(WINDOW *, const wchar_t *);
int wattroff(WINDOW *,int);
int wattron(WINDOW *,int);
int wattrset(WINDOW *,int);
EC int wattr_get(WINDOW * attr_t *, short *, void *);
int wattr_off(WINDOW * attr_t, void *);
int wattr_on(WINDOW * attr_t, void *);
int wattr_set(WINDOW *, attr_t, short, void *);
int wbkgd(WINDOW *, chtype);
void wbkgdset(WINDOW *, chtype);
int wbkgrnd(WINDOW *, const cchar_t *);
void wbkgrndset(WINDOW *, const cchar_t *);
int wborder(WINDOW *, chtype, chtype, chtype, chtype, chtype,
chtype, chtype, chtype);
int wborder_set(WINDOW *, const cchar_t *, const cchar_t *,

EC

const cchar_t *, const cchar_t *, const cchar_t *,
const cchar_t *, const cchar_t *, const cchar_t *);

int wchgat(WINDOW *, int, attr_t, short, const void *);
int wclear(WINDOW %);

int wclrtobot(WINDOW *);

int wclrtoeol(WINDOW *);

void weursyncup(WINDOW ~ *);

int wcolor_set(WINDOW *, short, void *);

int wdelch(WINDOW %);

X/Open Curses, Issue 7

<curses.h>

317

<curses.h> CURSES

EC

EC

EC

EC

EC

EC

EC

EC

EC

EC

318

int wdeleteln(WINDOW *);

int wechochar(WINDOW *, const chtype);
int wecho_wchar(WINDOW *, const cchar_t *);
int werase(WINDOW %);

int wgetbkgrnd(WINDOW * cchar_t*);

int wgetch(WINDOW %);

int wgetnstr(WINDOW * char *, int);

int wgetn_wstr(WINDOW * wint_t *, int);
int wgetstr(WINDOW * char *);

int wget wch(WINDOW *, wint_t *);

int wget_wstr(WINDOW * wint_t *);

int whline(WINDOW *, chtype, int);

int whline_set(WINDOW * const cchar_t *, int);
chtype winch(WINDOW *);

int winchnstr(WINDOW *, chtype *, int);

int winchstr(WINDOW *, chtype *);

int winnstr(WINDOW *, char *, int);

int winnwstr(WINDOW * wchar_t *, int);

int winsch(WINDOW *, chtype);

int winsdelln(WINDOW * . int);

int winsertin(WINDOW *);

int winsnstr(WINDOW * const char *, int);
int wins_nwstr(WINDOW * const wchar_t *, int);
int winsstr(WINDOW * const char *);

int winstr(WINDOW * char *);

int wins_wch(WINDOW *, const cchar_t *);
int wins_wstr(WINDOW * const wchar_t *);
int win_wch(WINDOW *, cchar_t *);

int win_wchnstr(WINDOW * cchar_t*, int);
int win_wchstr(WINDOW * cchar_t*);

int winwstr(WINDOW *, wchar_t *);

int wmove(WINDOW *, int, int);

int wnoutrefresh(WINDOW *);

int wprintw(WINDOW * const char *, ...);
int wredrawin(WINDOW *,int, int);

int wrefresh(WINDOW *);

int wscanw(WINDOW *, const char *, ...);

int wscrl(WINDOW * . int);

int wsetscrreg(WINDOW *int, int);

int wstandend(WINDOW *);

int wstandout(WINDOW *);

void wsyncup(WINDOW *);

void wsyncdown(WINDOW *);

void wtimeout(WINDOW *, int);

int wtouchIn(WINDOW *,int, int, int);
wchar_t *wunctrl(cchar_t *);

int wvline(WINDOW *, chtype, int);

int wvline_set(WINDOW * const cchar_t *, int);

Headers

Technical Standard 2009

Headers CURSES <curses.h>

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 1, <stdbool.h> (in the XBD specification), <stdio.h> (in the XBD specification),
<term.h>, <termios.h> (in the XBD specification), <unctrl.Lh>, <wcharh> (in the XBD
specification)

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is completely rewritten to include new constants, data types, and function prototypes.

Issue 4, Version 2
This entry is completely rewritten to correct the function prototypes.

Issue 7
The prototypes for the following functions are updated:

muscanw(), mowscanw(), newterm(), scanw(), tigetflag(), tigetnum(), tigetstr(), tparm(),
vw_printw(), vw_scanw(), wscanw()

The tparm () function has been marked obsolescent.

The tiparm () function has been added.

Corrigendum U018/3 is applied, adding the value of _XOPEN_SOURCE for environments that
support the Base Specifications, Issue 5.

Corrigendum U018/5 is applied, correcting the vw_printw() function prototype.

Corrigendum U022/1 is applied, correcting the shading on the addchnstr() and addchstr()
function prototypes.

Corrigendum U056/2 is applied, adding the value of _XOPEN_SOURCE for environments that
support the Base Specifications, Issue 6.

Corrigendum U058/1 is applied, moving the COLOR_PAIR() and PAIR_NUMBER() functions
prototypes into the “Color-Related Macros™ section.

X/Open Curses, Issue 7 319

<term.h> ENHANCED CURSES

NAME

term.h — terminal capabilities
SYNOPSIS
EC #include <term.h>

DESCRIPTION

The following data type is defined through typedef:

Headers

TERMINAL An opaque representation of the capabilities for a single terminal from the

terminfo database.

The <term.h> header provides a declaration for the following object: cur_term. It represents the
current terminal record from the terminfo database that the application has selected by calling

set_curterm().

The <term.h> header defines the variable names listed in the Variable column in the table in

Section 7.1.3 (on page 340).

The following are declared as functions, and may also be defined as macros:

int del_curterm(TERMINAL *);
int putp(const char *);
int restartterm(char *int, int *);
TERMINAL *set_curterm(TERMINAL *);
int setupterm(char *int, int *);
int tigetflag(const char *);
int tigetnum(const char *);
char *tigetstr(const char *);
char *tiparm(const char *, ...);
OB char *tparm(const char *, long, long, long, long, long, long, long,
long, long);
int tputs(const char *, int, int (*)(int));
The <term.h> header defines the following data type as a macro:
bool As described in <stdbool.h>.
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO
Chapter 7 (on page 337), printf(), (in the XSH specification), putp(), tigetflag(), <stdbool.h> (in
the XBD specification)
CHANGE HISTORY

First released in Issue 4.

Issue 4, Version 2

320

This entry is corrected.

Technical Standard 2009

Headers CURSES <unctrl.h>

NAME

unctrl.h — definitions for unctri()
SYNOPSIS

#include <unctrl.h>
DESCRIPTION

The <unctrl.h> header defines the chtype type as defined in <curses.h>.
The following is declared as a function, and may also be defined as a macro:
char *unctrl(chtype);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
unctrl(), <curses.h>

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 7 321

Headers

322 Technical Standard 2009

Chapter 6

Utilities

This chapter describes the Curses utilities to support applications portability and consistency of
user experience at the shell command level.

The Curses utilities shall conform to the requirements stated in the XCU specification, Section
1.4, Utility Description Defaults, as if the text in the XCU specification, Section 1.4, Utility
Description Defaults contained the phrase “POSIX.1-2008 or XCurses, Issue 7” instead of
“POSIX.1-2008”, and contained the phrase “the Curses utilities” instead of “the standard
utilities”.

The Curses utilities shall conform completely to the utility syntax guidelines defined in the XBD
specification, Section 12.2, Utility Syntax Guidelines, as if those guidelines contained the term
“shall” instead of “should”. On some implementations, the utilities accept usage in violation of
those guidelines for backwards-compatibility as well as accepting the required form.

If a Curses utility uses operands to represent files, it is implementation-defined whether the
operand - stands for standard input (or standard output) or for a file named -.

X/Open Curses, Issue 7 323

infocmp CURSES Utilities

NAME

infocmp — compare or print out terminfo descriptions

SYNOPSIS

EC

infocmp [-I| -L] [-1] [-A directory] [-B directory]
[-s sortorder] [-w width] [termane]

infocmp -u [-I|] -L] [-1] [-A directory] [-B directory]
[-s sortorder] [-w width] termmane termane...

infocmp [-c| -d| -n] [-A directory] [-B directory]
[-s sortorder] [-w width] termmane termane

infocmp -n [-A directory] [-B directory]
[-s sortorder] [-w wi dth]

DESCRIPTION

The infocmp utility compares a compiled terminfo entry with other terminfo entries, rewrites a
terminfo description to take advantage of the use= terminfo field, or prints out a terminfo
description from the compiled entry in a variety of formats.

It displays boolean fields first, then numeric fields, followed by the string fields.

If none of the -1, L, or —n options are specified and zero or one termname is specified, the —I
option is assumed. If none of the —¢, —d, —n, or —u options are specified and two termname
operands are specified, the —d option is assumed. If the —u option is not specified and more than
two termname operands are specified, it is unspecified whether the —u option is assumed.

OPTIONS

324

The -d, —c, and —-n options can be used for comparisons. The infocmp utility compares the
terminfo description of the first terminal termname with each of the descriptions given by the
entries for the other terminal’s termname. If a capability is defined for only one of the terminals,
the value returned will depend on the type of the capability: F for boolean variables, -1 for
integer variables, and a null string for string variables.

-d Produce a list of each capability that is different between two entries. This option is
useful to show the difference between two entries, created by different people, for
the same or similar terminals.

- Produce a list of each capability that is common between two entries. Capabilities
that are not set are ignored. This option can be used as a quick check to see if the
—u option is worth using.

-n Produce a list of each capability that is in neither entry. If no termname is given, the
environment variable TERM will be used for both of the termnames. This can be
used as a quick check to see if anything was left out of a description.

The -I and -L options will produce a source listing for the terminal named by the termname
operand, or for the terminal named by the environment variable TERM if no termname operand
is specified.

-1 Use the terminfo names.
-L Use the long C variable name listed in <term.h>.
-u Produce a terminfo source description of the first terminal termname which is

relative to the sum of the descriptions given by the entries for the other terminals’
termnames. It does this by analyzing the differences between the first termname and
the other termnames and producing a description with use= fields for the other
terminals. In this manner, it is possible to retrofit generic terminfo entries into a

Technical Standard 2009

Utilities

CURSES infocmp

terminal’s description. Or, if two similar terminals exist, but were coded at
different times, or by different people so that each description is a full description,
using infocmp will show what can be done to change one description to be relative
to the other.

A capability is displayed with an at-sign (@') if it no longer exists in the first termname, but one
of the other termname entries contains a value for it. A capability’s value is displayed if the value
in the first termname is not found in any of the other termname entries, or if the first of the other
termname entries that has this capability gives a different value for that capability.

The order of the other termname entries is significant. Since the terminfo compiler tic does a left-
to-right scan of the capabilities, specifying two use= entries that contain differing entries for the
same capabilities will produce different results, depending on the order in which the entries are
given. The infocmp utility will flag any such inconsistencies between the other termname entries
as they are found.

Alternatively, specifying a capability after a use= entry that contains that capability will cause
the second specification to be ignored. Using infocmp to recreate a description can be a useful
check to make sure that everything was specified correctly in the original source description.

Another error that does not cause incorrect compiled files, but will slow down the compilation
time, is specifying superfluous use= fields. The infocmp utility will flag any superfluous use=
fields.

—s sortorder ~ Sort the fields within each type according to the sortorder option-argument below:
d Leave fields in the order that they are stored in the terminfo database.
i Sort by terminfo name.
I Sort by the long C variable name.

If the —s option is not given, the fields are sorted alphabetically by the terminfo
name within each type, except in the case of the —L option, which causes the
sorting to be done by the long C variable name.

-1 Print the fields one to a line. Otherwise, the fields are printed several to a line to a
maximum width of 60 characters.

-w width Change the output to width characters.

The location of the compiled terminfo database is taken from the environment variable
TERMINFO. If the variable is not defined, or the terminal is not found in that location, the
system terminfo database is used. The options —A and —B can be used to override this location.

—A directory Set TERMINFO for the first termname.

-B directory Set TERMINFO for the other termnames. With this, it is possible to compare
descriptions for a terminal with the same name located in two different databases.
This is useful for comparing descriptions for the same terminal created by different

people.
OPERANDS
See the DESCRIPTION.
STDIN
Not used.

X/Open Curses, Issue 7 325

infocmp CURSES Utilities

INPUT FILES

None.

ENVIRONMENT VARIABLES

The following environment variables shall affect the execution of infocmp:

LANG Provide a default value for the internationalization variables that are unset or null.
(See the XBD specification, Section 8.2, Internationalization Variables for the
precedence of internationalization variables used to determine the values of locale
categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TERM Determine the default terminal name. If this variable is unset or null, and no
termname operand is specified, the behavior is unspecified.

TERMINFO Determine the location of a compiled terminfo database to be used instead of the
system terminfo database.

ASYNCHRONOUS EVENTS

Default.

STDOUT

When the —I or —L option is specified (explicitly or implicitly), the output shall consist of the
terminfo source for the specified terminal in the format described in Chapter 7 (on page 337),
except that if the —L option is specified, the capabilities are identified by their long C variable
names instead of the Capname short names defined in Section 7.1.3 (on page 340).

When the -d option is specified (explicitly or implicitly), the output shall contain differences
between the two entries in an unspecified format.

When the —c option is specified, the output shall contain a list of capabilities common between
the two entries in an unspecified format.

When the —-n option is specified, the output shall contain a list of capabilities that are in neither
entry in an unspecified format.

STDERR

The standard error shall be used only for diagnostic messages.

OUTPUT FILES

None.

EXTENDED DESCRIPTION

326

None.

Technical Standard 2009

Utilities CURSES infocmp

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.
>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
Implementations of infocmp exhibit different behavior when used outside the constraints of the
SYNOPSIS. In particular, the behavior is unspecified when:

 The I or -L option is used with more than one termname operand, without —u.

e The —c, -d, or —n option is used with one termname operand or with more than two
termname operands.

¢ Any two or more of the -I, -L, —c, —d, and —n options are used together.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 7, tic, untic, <term.h>, the XBD specification: Section 8.2, Internationalization Variables

CHANGE HISTORY
First introduced in Issue 7. Derived from Solaris 7.

X/Open Curses, Issue 7 327

tic CURSES Utilities

NAME
tic — translate terminfo files from source to compiled format
SYNOPSIS
EC tic [-c] file..
DESCRIPTION

The tic utility translates terminfo files from the source format into the compiled format.

If the TERMINFO environment variable is set, the results shall be placed there; otherwise, they
shall be placed in the system terminfo database.

The tic utility compiles all terminfo descriptions in the file or files specified by the file operand.
When the tic utility finds a use= field, it searches first the current file, then reads in the compiled
entry from the system terminfo database to complete the entry. If the environment variable
TERMINFO is set, that directory is searched instead of the system terminfo database.

The tic utility may impose limits on the size of compiled entries and on the length of the name
field. The limit on the size of compiled entries, if any, shall be at least 4096 bytes. The limit on
the length of the name field, if any, shall be at least 128 bytes. The tic utility shall support
terminal names of at least 14 bytes. Users creating portable terminfo description files should not
exceed these minimum limits

OPTIONS
- Check the file for errors only. Errors in the use= field need not be detected.

OPERANDS
See the DESCRIPTION.

STDIN
The standard input shall be used if a file operand is '~ and the implementation treats the ’-’
as meaning standard input. Otherwise, the standard input shall not be used. See the INPUT
FILES section.

INPUT FILES
The input files shall be text files.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of tic:

LANG Provide a default value for the internationalization variables that are unset or null.
(See the XBD specification, Section 8.2, Internationalization Variables for the
precedence of internationalization variables used to determine the values of locale
categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

328 Technical Standard 2009

Utilities CURSES tic

TERMINFO Determine the location of a compiled terminfo database to be used instead of the
system terminfo database.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
Compiled terminfo database entries in unspecified format are created.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.
>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
Some implementations of the tic utility report an error if no file operands are specified; other
implementations read terminfo descriptions from standard input or from a default file such as
Jterminfo.src in this case. This standard allows the latter two behaviors as extensions, but
conforming applications are required to supply one or more file operands.

FUTURE DIRECTIONS
None.

SEE ALSO
Chapter 7, infocmp, untic, the XBD specification: Section 8.2, Internationalization Variables

CHANGE HISTORY
First introduced in Issue 7. Derived from Tru64 UNIX.

X/Open Curses, Issue 7 329

tput CURSES Utilities
NAME
tput — initialize a terminal or query terminfo database
SYNOPSIS
EC tput [-T type] capnanme [parm..]
tput -S
DESCRIPTION

When XCURSES is supported, this description for the fput utility replaces that in the XCU
specification.

The tput utility uses the terminfo database to make the values of terminal-dependent
capabilities and information available to the shell (see sk in the XCU specification); to clear,
initialize, or reset the terminal; or to return the long name of the requested terminal type. The
tput utility outputs a string if the capability attribute (capname) is of type string, or an integer if
the attribute is of type integer. If the attribute is of type boolean, tput simply sets the exit status
(0 for TRUE if the terminal has the capability, 1 for FALSE if it does not), and produces no
output.

OPTIONS

The following options are supported:

-T type Indicate the type of terminal. Normally this option is unnecessary, because the
default is taken from the environment variable TERM. If -T is specified, then the
environment variables LINES and COLUMNS and the layer size will not be
referenced.

-S Allow more than one capability per invocation of tput. The capabilities must be
passed to tput from the standard input instead of from the command line (see the
EXAMPLES section). Only one capname is allowed per line. The —S option changes
the meaning of the 0 and 1 boolean and string exit statuses (see the EXIT STATUS
section).

OPERANDS

330

The following operands shall be supported:

capname Indicate the capability attribute from the terminfo database. See Chapter 7 (on
page 337) for a complete list of capabilities and the capname associated with each.

In addition, in the POSIX locale the following strings shall be supported as capname

operands:
clear Display the clear-screen sequence.
init If the terminfo database is present and an entry for the user’s

terminal exists (see —T type above), the following shall occur:

1. If present, the terminal’s initialization strings shall be output
(is1, is2, is3, if , iprog).

2. Any delays (for instance, <newline>) specified in the entry
shall be set in the terminal attributes (see the XBD
specification, Chapter 11, General Terminal Interface).

3. Tabs expansion shall be turned on or off according to the
specification in the entry.

Technical Standard 2009

Utilities

parm

STDIN

CURSES tput

4. If tabs are not expanded, standard tabs shall be set (every 8
spaces).

If an entry does not contain the information needed for any of the
four above activities, that activity shall be silently skipped.

reset Instead of putting out initialization strings, the terminal’s reset
strings shall be output if present (rsli, rs2, rs3, 1f). If the reset strings
are not present, but initialization strings are, the initialization strings
shall be output. Otherwise, reset shall act identically to init.

longname If the terminfo database is present and an entry for the user’s
terminal exists (see —T type above), then the long name of the
terminal shall be output. The long name is the last name in the name
field of the terminals’ entry.

If the attribute is a string that takes parameters, the argument parm will be
instantiated into the string.

If the —S option is specified, lines are read from standard input and processed as if the contents
of each line had been specified as a capname operand followed by zero or more parm operands on
the command line, except for the exit status.

INPUT FILES
None.
ENVIRONMENT VARIABLES

The following environment variables shall affect the execution of tput:

COLUMNS Override the system-selected horizontal screen size. See the XBD specification,
Chapter 8, Environment Variables for valid values and results when it is unset or
null.

LANG Provide a default value for the internationalization variables that are unset or null.
(See the XBD specification, Section 8.2, Internationalization Variables for the
precedence of internationalization variables used to determine the values of locale
categories.)

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as

characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES

LINES

NLSPATH
TERM

X/Open Curses, Issue 7

Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

Override the system-selected vertical screen size. See the XBD specification,
Chapter 8, Environment Variables for valid values and results when it is unset or
null.

Determine the location of message catalogs for the processing of LC_MESSAGES.

Determine the terminal type. If this variable is unset or null, and if the -T option is
not specified, an unspecified default terminal type shall be used.

331

tput CURSES Utilities

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the DESCRIPTION.

STDERR
The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 — If capname is of type boolean and -S is not specified, indicates TRUE.

— If capname is of type string and S is not specified, indicates capname is defined for
this terminal type.

— If capname is of type boolean or string and —S is specified, indicates that all lines
were successful.

— capname is of type integer.
— The requested string was written successfully.
1 — If capname is of type boolean and -8 is not specified, indicates FALSE.

— If capname is of type string and —S is not specified, indicates that capname is not
defined for this terminal type.

2 Usage error.

3 No information is available about the specified terminal type.

4 The specified operand is invalid.

255 capname is a numeric variable that is not specified in the terminfo database.

Any other value
An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES

Using the tput command

This example initializes the terminal according to the type of terminal in the environment
variable TERM:

tput init

The next example resets an AT&T 5620 terminal, overriding the type of terminal in the
environment variable TERM:

332 Technical Standard 2009

Utilities CURSES tput

tput -T 5620 reset

The following example outputs the sequence to move the cursor to row 0, column 0 (the upper
left corner of the screen, usually known as the “home” cursor position):

tputcup 00

The next example sends the sequence to move the cursor to row 23, column 4:
tput cup 23 4

The next example outputs the clear-screen sequence for the current terminal:
tput clear

The next command outputs the number of columns for the current terminal:
tput cols

The following command outputs the number of columns for the 450 terminal:
tput -T 450 cols

The next example sets the shell variable bold to the begin standout mode sequence, and offbold to
the end standout mode sequence, for the current terminal and then uses them in a prompt:

bold=3$(tput smso)
if [$? -ne 0]
then

fi

offbold=$(tput rmso)
if [$? -ne 0]
then

fi

printf %s "${bold}Please type in your name: ${offbold}"

This example sets the exit status to indicate whether the current terminal is a hardcopy terminal:
tput hc

The next example prints the long name from the terminfo database for the type of terminal
specified in the environment variable TERM:

tput longname

This last example shows tput processing several capabilities in one invocation. This example
clears the screen, moves the cursor to position 10,10, and turns on bold (extra bright) mode. The
list is terminated by an exclamation mark (I) on a line by itself:

tput -S <<!
clear
cup 10 10

bold
!

X/Open Curses, Issue 7 333

tput CURSES Utilities

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

Chapter 7, the XBD specification: Section 8.2, Internationalization Variables; the XCU
specification: sh, stty, tabs

CHANGE HISTORY
First introduced in Issue 7. Derived from Solaris 7.

334 Technical Standard 2009

Utilities CURSES untic

NAME

untic — terminfo de-compiler
SYNOPSIS
EC untic [-f file]

untic term

DESCRIPTION
The untic utility translates a terminfo file from the compiled format into the source format
suitable for use by the tic utility. If the environment variable TERMINFO is set to a pathname,
untic checks for a compiled terminfo description of the terminal under the path specified by
TERMINFO before checking the system terminfo database. Otherwise, only the system terminfo
database is checked.

Normally untic uses the terminal type obtained from the TERM environment variable. Using the
term operand, however, the user can specify the terminal type used.

When the —f option is specified, the file option argument specifies the file used for translation.
The untic utility writes the de-compiled terminfo description result to standard output.
OPTIONS

—f file Specify the file to be used. This option bypasses the use of the TERM and
TERMINFO environment variables.

OPERANDS
The following operand shall be supported:
term Indicate the type of terminal. If this operand is not present, the terminal is derived
from the environment variable TERM.
STDIN
Not used.
INPUT FILES

The input file is a compiled terminfo database entry, either present in the system terminfo
database or created by the tic utility.

ENVIRONMENT VARIABLES
The following environment variables shall affect the execution of untic:

LC_ALL If set to a non-empty string value, override the values of all the other
internationalization variables.

LC_CTYPE Determine the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multi-byte characters in
arguments).

LC_MESSAGES
Determine the locale that should be used to affect the format and contents of
diagnostic messages written to standard error.

NLSPATH Determine the location of message catalogs for the processing of LC_MESSAGES.

TERM Determine the default terminal name. If this variable is unset or null, and no term
operand is specified, behavior is unspecified.

TERMINFO Determine the location of a compiled terminfo database to be used instead of the
system terminfo database.

X/Open Curses, Issue 7 335

untic CURSES

ASYNCHRONOUS EVENTS
Default.

STDOUT
See the DESCRIPTION.

STDERR

The standard error shall be used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values shall be returned:

0 Successful completion.
>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

Utilities

Chapter 7, infocmp, tic, the XBD specification: Section 8.2, Internationalization Variables

CHANGE HISTORY
First introduced in Issue 7. Derived from HPUX.

336

Technical Standard 2009

EC

7.1

Chapter 7

Terminfo Source Format (ENHANCED CURSES)

The requirements in this chapter are in effect only for implementations that claim Enhanced
Curses compliance.

The terminfo database contains a description of the capabilities of a variety of devices, such as
terminals and printers. Devices are described by specifying a set of capabilities, by quantifying
certain aspects of the device, and by specifying character sequences that effect particular results.

This chapter specifies the format of terminfo source files.

The tic utility, described in Chapter 6 (on page 323), accepts source files in the format specified in
this chapter and can be used to enter information into the terminfo database. A valid terminfo
entry describing a given model of terminal can be added to terminfo on any X/Open-compliant
implementation to permit use of the same terminal model.

Section 7.1 describes the syntax of terminfo source files. The grammar and lexical conventions
appear in Section 7.1.2 (on page 338). A list of all terminal capabilities defined by The Open
Group appears in Section 7.1.3 (on page 340). An example follows in Section 7.1.4 (on page 349).
Section A.1 (on page 353) describes the specification of devices in general, such as video
terminals. Section A.2 (on page 366) describes the specification of printers.

The terminfo database is often used by screen-oriented applications such as vi and Curses
programs, as well as by some utilities such as Is and more. This usage allows them to work with
a variety of devices without changes to the programs.

Source File Syntax

Source files can use the ISO 8859-1:1987 codeset. The behavior when the source file is in another
codeset is unspecified. Traditional practice has been to translate information from other codesets
into the source file syntax.

terminfo source files consist of one or more device descriptions. Each description defines a
mnemonic name for the terminal model. Each description consists of a header (beginning in
column one) and one or more lines that list the features for that particular device. Every line in a
terminfo source file must end in a comma. Every line in a terminfo source file except the header
must be indented with one or more white spaces (either spaces or tabs).

Entries in terminfo source files consist of a number of comma-separated fields. White space after
each comma is ignored. Embedded commas must be escaped by using a backslash. The
following example shows the format of a terminfo source file:

alias; | aliasy | . .| alias, | longname,
<white space> am, lines #24,
<white space> home=\\Eeh,

The first line, commonly referred to as the header line, must begin in column one and must
contain at least two aliases separated by vertical bars. The last field in the header line must be
the long name of the device and it may contain any string.

X/Open Curses, Issue 7 337

Source File Syntax Terminfo Source Format (ENHANCED CURSES)

71.1

7.1.2

Alias names must be unique in the terminfo database and they must conform to filenaming
conventions established by implementation-defined terminfo compilation utilities.
Implementations will recognize alias names consisting only of characters from the portable
filename character set except that implementations need not accept a first character of minus
(" —"). For example, a typical restriction is that they cannot contain white space or slashes. There
may be further constraints imposed on source file values by the implementation-defined
terminfo compilation utilities. Section A.4.1 (on page 377) provides conventions for choosing
alias names.

Each capability in terminfo is of one of the following types:
 Boolean capabilities show that a device has or does not have a particular feature.
¢ Numeric capabilities quantify particular features of a device.

« String capabilities provide sequences that can be used to perform particular operations on
devices.

Whenever possible, capability names are chosen to be the same as or similar to those specified
by ISO/IEC 6429:1992. Semantics are also intended to match those of that standard.

All string capabilities may have padding specified, with the exception of those used for input.
Input capabilities, listed under the Strings section in the following tables, have names beginning
with key_. These capabilities are defined in <term.h>.

Minimum Guaranteed Limits

All X/Open-compliant implementations support at least the following limits for the terminfo
source file:

Source File Characteristic Minimum Guaranteed Value
Length of a line 1023 bytes
Length of a terminal alias 14 bytes
Length of a terminal model name 128 bytes
Width of a single field 128 bytes
Length of a string value 1000 bytes
Length of a string representing a numeric value | 99 digits
Magnitude of a numeric value 0 up to and including 32767

An implementation may support higher limits than those specified above.

Formal Grammar

The grammar and lexical conventions in this section together describe the syntax for terminfo
terminal descriptions within a terminfo source file. A terminal description that satisfies the
requirements of this section will be accepted by all implementations.

descriptions : START_OF_HEADER_LINE 1 rest_of header_line feature_lines
| d escriptions START_OF_HEADER_LINE rest_of_header_line
| f eature_lines

rest_of _header_line : PIPE LONGNAME COMMA NEWLINE

1. An ALIAS that begins in column one. This is handled by the lexical analyzer.

338

Technical Standard 2009

Terminfo Source Format (ENHANCED CURSES) Source File Syntax

| a liases PIPE LONGNAME COMMA NEWLINE

feature_lines : start_feature_line rest_of feature_line

| f eature_lines start_feature_line rest_of_feature_line

start_feature_line : START_FEATURE_LINE_BOOLEAN 2

| S TART_FEATURE_LINE_NUMERFR
| START_FEATURE_LINE_STRING

rest_of feature_line : features COMMA NEWLINE

| COMMA NEWLINE

features : COMMA feature

| f eatures COMMA feature

aliases : PIPE ALIAS

| a liases PIPE ALIAS

feature : BOOLEAN

| NUMERIC
| STRING

The lexical conventions for terminfo descriptions are as follows:

1.

2
3.
4
5

White space consists of the ' and <tab> character.
An ALIAS may contain any graph® characters other than’,’ ,’/ ,and’|
A LONGNAME may contain any print® characters other than’,” and’|
A BOOLEAN feature may contain any print characters other than’,” ,’=" ,and '#
A NUMERIC feature consists of:
a. A name which may contain any print character other than’,’ ,’=" ,and'#

b. The'# character

c. A positive integer which conforms to the C-language convention for integer
constants

A STRING feature consists of:

a. A name which may contain any print character other than’,’ ,’=" ,and '#

A W DN

A BOOLEAN feature that begins after column one but is the first feature on the feature line. This is handled by the lexical analyzer.
A NUMERIC feature that begins after column one but is the first feature on the feature line. This is handled by the lexical analyzer.

A STRING feature that begins after column one but is the first feature on the feature line. This is handled by the lexical analyzer.

5. Graph characters are those characters for whichph() returns non-zero.

6. Print characters are those characters for wigtint() returns non-zero.

X/Open Curses, Issue 7 339

Source File Syntax Terminfo Source Format (ENHANCED CURSES)

7.1.3

340

b. The'=" character
c. A string which may contain any print characters other than’,’
7. White space immediately followinga’,’ isignored.

8. Comments are lines consisting of zero or more whitespace characters followed by a '#
sign, followed by zero or more non-<newline> characters and terminated by a <newline>.

9. A header line must begin in column one.
10. A feature line must not begin in column one.

11. Blank lines are ignored.

Defined Capabilities

The Open Group defines the capabilities listed in the following table. All X/Open-compliant
implementations must accept each of these capabilities in an entry in a terminfo source file.
Implementations use this information to determine how properly to operate the current
terminal. In addition, implementations return any of the current terminal’s capabilities when the
application calls the query functions listed in tigetflag() (on page 232).

The table of capabilities has the following columns:

Variable Names for use by the Curses functions that operate on the terminfo database.
These names are reserved and the application must not define them.

Capname The short name for a capability specified in the terminfo source file. It is used for
updating the source file and by the tput command.

Description A description of the capability. In some cases a notation “#1”, “#2”, etc. is used to
refer to parameters for an associated call to tiparm ().

Booleans
Variable Capname Description

auto_left_margin bw cub1 wraps from column 0 to last column
auto_right_margin am Terminal has automatic margins
back_color_erase bce Screen erased with background color
can_change cce Terminal can redefine existing color
ceol_standout_glitch xhp Standout not erased by overwriting (hp)
col_addr_glitch xhpa Only positive motion for hpa/mhpa caps
cpi_changes_res cpix Changing character pitch changes resolution
cr_cancels_micro_mode crxm Using cr turns off micro mode
dest_tabs_magic_smso xt Destructive tabs, magic smso char (t1061)
eat_newline_glitch xenl Newline ignored after 80 columns (Concept)
erase_overstrike ') Can erase overstrikes with a <blank>
generic_type gn Generic line type (e.g., dialup, switch)
hard_copy hc Hardcopy terminal
hard_cursor chts Cursor is hard to see
has_meta_key km Has a meta key (shift, sets parity bit)
has_print_wheel daisy Printer needs operator to change character set
has_status_line hs Has extra “status line”
hue_lightness_saturation |hls Terminal uses only HLS color notation (Tektronix)
insert_null_glitch in Insert mode distinguishes nulls

Technical Standard 2009

Terminfo Source Format (ENHANCED CURSES) Source File Syntax

Variable Capname Description
Ipi_changes_res Ipix Changing line pitch changes resolution
memory_above da Display may be retained above the screen
memory_below db Display may be retained below the screen
move_insert_mode mir Safe to move while in insert mode
move_standout_mode msgr Safe to move in standout modes
needs_xon_xoff nxon Padding won’t work, xon/xoff required
no_esc_ctlc xsb Beehive (f1=escape, f2=ctr]l C)
no_pad_char npc Pad character doesn’t exist
non_dest_scroll_region ndscr Scrolling region is non-destructive
Non_rev_rmcup nrrmc smcup does not reverse rmcup
over_strike os Terminal overstrikes on hard-copy terminal
prtr_silent mc5i Printer won’t echo on screen
row_addr_glitch xvpa Only positive motion for vpa/mvpa caps
semi_auto_right_margin |sam Printing in last column causes cr
status_line_esc_ok eslok Escape can be used on the status line
tilde_glitch hz Hazeltine; can’t print tilde (V)
transparent_underline ul Underline character overstrikes
xon_xoff xon Terminal uses xon/xoff handshaking

Numbers

Variable Capname Description
bit_image_entwining bitwin | Number of passes for each bit-map row
bit_image_type bitype |Type of bit image device
buffer_capacity bufsz Number of bytes buffered before printing
buttons btns Number of buttons on the mouse
columns cols Number of columns in a line
dot_horz_spacing spinh Spacing of dots horizontally in dots per inch
dot_vert_spacing spinv Spacing of pins vertically in pins per inch
init_tabs it Initial number of columns between tab positions
label _height lh Number of rows in each label
label _width Iw Number of columns in each label
lines lines Number of lines on a screen or a page
lines_of_memory Im Lines of memory if > lines; 0 means varies
max_attributes ma Maximum combined video attributes terminal can

display
magic_cookie_glitch xmc¢ Number of <blank> characters left by smso or rmso
max_colors colors Maximum number of colors on the screen
max_micro_address maddr Maximum value in micro_..._address
max_micro_jump mjump | Maximum value in parm_..._micro
max_pairs pairs Maximum number of color-pairs on the screen
maximum_windows wnum Maximum number of definable windows
micro_col_size mcs Character step size when in micro mode
micro_line_size mls Line step size when in micro mode
no_color_video ncv Video attributes that can’t be used with colors
num_labels nlab Number of labels on screen (start at 1)
number_of_pins npins Number of pins in print-head
output_res_char orc Horizontal resolution in units per character
output_res_line orl Vertical resolution in units per line
output_res_horz_inch orhi Horizontal resolution in units per inch

X/Open Curses, Issue 7 341

Source File Syntax

342

Terminfo Source Format (ENHANCED CURSES)

Variable Capname Description
output_res_vert_inch orvi Vertical resolution in units per inch
padding_baud_rate pb Lowest baud rate where padding needed
print_rate cps Print rate in characters per second
virtual_terminal vt Virtual terminal number
wide_char_size widcs Character step size when in double-wide mode
width_status_line wsl Number of columns in status line

Strings

Variable Capname Description
acs_chars acsc Graphic charset pairs aAbBcC
alt_scancode_esc scesa Alternate escape for scancode emulation (default is for

VT100)
back_tab cbt Back tab
bell bel Audible signal (bell)
bit_image_carriage_return |bicr Move to beginning of same row
bit_image_newline binel Move to next row of the bit image
bit_image_repeat birep Repeat bit-image cell #1 #2 times
carriage_return cr Carriage-return
change_char_pitch cpi Change number of characters per inch
change_line_pitch Ipi Change number of lines per inch
change_res_horz chr Change horizontal resolution
change_res_vert cvr Change vertical resolution
change_scroll_region csr Change to lines #1 through #2 (VT100)
char_padding rmp Like ip but when in replace mode
char_set_names csnm Returns a list of character set names
clear_all_tabs tbc Clear all tab stops
clear_margins mgc Clear all margins (top, bottom, and sides)
clear_screen clear Clear screen and home cursor
clr_bol ell Clear to beginning of line, inclusive
clr_eol el Clear to end of line
clr_eos ed Clear to end of display
code_set_init csin Init sequence for multiple codesets
color_names colornm |Give name for color #1
column_address hpa Set horizontal position to absolute #1
command_character cmdch | Terminal settable cmd character in prototype
create_window cwin Define win #1 to go from #2,#3 to #4,#5
cursor_address cup Move to row #1 col #2
cursor_down cudl Down one line
cursor_home home Home cursor (if no cup)
cursor_invisible civis Make cursor invisible
cursor_left cubl Move left one space.
cursor_mem_address mrcup | Memory-relative cursor addressing
cursor_normal cnorm | Make cursor appear normal (undo cvvis/civis)
cursor_right cufl Non-destructive space (cursor or carriage right)
cursor_to_ll 11 Last line, first column (if no cup)
CUTSOY_up cuul Upline (cursor up)
cursor_visible cvvis Make cursor very visible
define_bit_image_region | defbi Define rectangular bit-image region
define_char defc Define a character in a character set

Technical Standard 2009

Terminfo Source Format (ENHANCED CURSES) Source File Syntax

Variable Capname Description
delete_character dch1 Delete character
delete_line dl1 Delete line
device_type devt Indicate language/codeset support
dial_phone dial Dial phone number #1
dis_status_line dsl Disable status line
display_clock dclk Display time-of-day clock
display_pc_char dispc Display PC character
down_half _line hd Half-line down (forward 1/2 linefeed)
ena_acs enacs Enable alternate character set
end_bit_image_region endbi End a bit-image region
enter_alt_charset_mode smacs Start alternate character set
enter_am_mode smam Turn on automatic margins
enter_blink_mode blink Turn on blinking
enter_bold_mode bold Turn on bold (extra bright) mode
enter_ca_mode smcup |String to begin programs that use cup
enter_delete_mode smdc Delete mode (enter)
enter_dim_mode dim Turn on half-bright mode
enter_doublewide_mode |swidm Enable double wide printing
enter_draft_quality sdrfq Set draft quality print
enter_horizontal_hl_mode | ehhlm Turn on horizontal highlight mode
enter_insert_mode smir Insert mode (enter)
enter_italics_mode sitm Enable italics
enter_left_hl_mode elhlm Turn on left highlight mode
enter_leftward_mode slm Enable leftward carriage motion
enter_low_hl_mode elohlm |Turn on low highlight mode
enter_micro_mode smicm Enable micro motion capabilities
enter_near_letter_quality |snlq Set near-letter quality print
enter_normal_quality snrmq |Set normal quality print
enter_pc_charset_mode smpch Enter PC character display mode
enter_protected_mode prot Turn on protected mode
enter_reverse_mode rev Turn on reverse video mode
enter_right_hl_mode erhlm Turn on right highlight mode
enter_scancode_mode smsc Enter PC scancode mode
enter_secure_mode invis Turn on blank mode (characters invisible)
enter_shadow_mode sshm Enable shadow printing
enter_standout_mode SmMso Begin standout mode
enter_subscript_mode ssubm |Enable subscript printing
enter_superscript_mode |ssupm |Enable superscript printing
enter_top_hl_mode ethlm Turn on top highlight mode
enter_underline_mode smul Start underscore mode
enter_upward_mode sum Enable upward carriage motion
enter_vertical_hl_mode evhlm Turn on vertical highlight mode
enter_xon_mode smxon Turn on xon/xoff handshaking
erase_chars ech Erase #1 characters
exit_alt_charset_mode rmacs End alternate character set
exit_am_mode rmam Turn off automatic margins
exit_attribute_mode sgr0 Turn off all attributes
exit_ca_mode rmcup |String to end programs that use cup
exit_delete_mode rmdc End delete mode
exit_doublewide_mode rwidm Disable double wide printing
exit_insert_mode rmir End insert mode

X/Open Curses, Issue 7 343

Source File Syntax

Terminfo Source Format (ENHANCED CURSES)

Variable Capname Description
exit_italics_mode ritm Disable italics
exit_leftward_mode rlm Enable rightward (normal) carriage motion
exit_micro_mode rmicm Disable micro motion capabilities
exit_pc_charset_mode rmpch Disable PC character display mode
exit_scancode_mode rmsc Disable PC scancode mode
exit_shadow_mode rshm Disable shadow printing
exit_standout_mode mso End standout mode
exit_subscript_mode rsubm | Disable subscript printing
exit_superscript_mode rsupm | Disable superscript printing
exit_underline_mode rmul End underscore mode
exit_upward_mode rum Enable downward (normal) carriage motion
exit_xon_mode rmxon Turn off xon/xoff handshaking
fixed_pause pause Pause for 2-3 seconds
flash_hook hook Flash the switch hook
flash_screen flash Visible bell (may move cursor)
form_feed ff Hardcopy terminal page eject
from_status_line fsl Return from status line
get_mouse getm Curses should get button events
goto_window wingo Go to window #1
hangup hup Hang-up phone
init_Istring is1 Terminal or printer initialization string
init_2string is2 Terminal or printer initialization string
init_3string is3 Terminal or printer initialization string
init_file if Name of initialization file
init_prog iprog Path name of program for initialization
initialize_color initc Set color #1 to RGB #2, #3, #4
initialize_pair initp Set color-pair #1 to fg #2, bg #3
insert_character ich1 Insert character
insert_line il1 Add new blank line
insert_padding ip Insert pad after character inserted

The key_ strings are sent by specific keys. The key_ descriptions include the macro, defined in

<curses.h>, for the code returned by getch() when the key is pressed (see getch()).

Variable Capname Description
key_al kal Upper left of keypad
key_a3 ka3 Upper right of keypad
key_b2 kb2 Center of keypad
key_backspace kbs Sent by backspace key
key_beg kbeg Sent by beg(inning) key
key_btab kebt Sent by back-tab key
key_c1 kel Lower left of keypad
key_c3 ke3 Lower right of keypad
key_cancel kcan Sent by cancel key
key_catab ktbc Sent by clear-all-tabs key
key_clear kelr Sent by clear-screen or erase key
key_close kclo Sent by close key
key_command kemd Sent by cmd (command) key
key_copy kepy Sent by copy key
key_create kert Sent by create key
key_ctab kctab Sent by clear-tab key

344

Technical Standard 2009

Terminfo Source Format (ENHANCED CURSES)

Source File Syntax

Variable Capname Description
key_dc kdch1 Sent by delete-character key
key_dl kdl1 Sent by delete-line key
key_down kcud1 Sent by terminal down-arrow key
key_eic krmir Sent by rmir or smir in insert mode
key_end kend Sent by end key
key_enter kent Sent by enter/send key
key_eol kel Sent by clear-to-end-of-line key
key_eos ked Sent by clear-to-end-of-screen key
key_exit kext Sent by exit key
key_f0 kf0 Sent by function key {0
key_f1 kfl Sent by function key f1

similarly for {2 through {61
key_f62 kf62 Sent by function key {62
key_f63 kf63 Sent by function key {63
key_find kfnd Sent by find key
key_help khlp Sent by help key
key_home khome |Sent by home key
key_ic kich1 Sent by ins-char/enter ins-mode key
key_il kil1 Sent by insert-line key
key_left kcub1 Sent by terminal left-arrow key
key_ll kll Sent by home-down key
key_mark kmrk Sent by mark key
key_message kmsg Sent by message key
key_mouse kmous 0631, Mouse event has occurred
key_move kmov Sent by move key
key_next knxt Sent by next-object key
key_npage knp Sent by next-page key
key_open kopn Sent by open key
key_options kopt Sent by options key
key_ppage kpp Sent by previous-page key
key_previous kprv Sent by previous-object key
key_print kprt Sent by print or copy key
key_redo krdo Sent by redo key
key_reference kref Sent by ref(erence) key
key_refresh krfr Sent by refresh key
key_replace krpl Sent by replace key
key_restart krst Sent by restart key
key_resume kres Sent by resume key
key_right kcufl Sent by terminal right-arrow key
key_save ksav Sent by save key
key_sbeg kBEG Sent by shifted beginning key
key_scancel kCAN |Sent by shifted cancel key
key_scommand kCMD |Sent by shifted command key
key_scopy kCPY Sent by shifted copy key
key_screate kCRT Sent by shifted create key
key_sdc kDC Sent by shifted delete-char key
key_sdl kDL Sent by shifted delete-line key
key_select kslt Sent by select key
key_send kEND |Sent by shifted end key

X/Open Curses, Issue 7

345

Source File Syntax Terminfo Source Format (ENHANCED CURSES)

Variable Capname Description
key_seol kEOL Sent by shifted clear-line key
key_sexit KEXT Sent by shifted exit key
key_sf kind Sent by scroll-forward /down key
key_sfind kFND Sent by shifted find key
key_shelp kHLP Sent by shifted help key
key_shome kHOM | Sent by shifted home key
key_sic kIC Sent by shifted input key
key_sleft KLFT Sent by shifted left-arrow key
key_smessage kMSG |Sent by shifted message key
key_smove kMOV |Sent by shifted move key
key_snext kNXT Sent by shifted next key
key_soptions kOPT Sent by shifted options key
key_sprevious kPRV Sent by shifted prev key
key_sprint kPRT Sent by shifted print key
key_sr kri Sent by scroll-backward /up key
key_sredo kRDO |Sent by shifted redo key
key_sreplace kRPL Sent by shifted replace key
key_sright kRIT Sent by shifted right-arrow key
key_srsume kRES Sent by shifted resume key
key_ssave kSAV Sent by shifted save key
key_ssuspend kSPD Sent by shifted suspend key
key_stab khts Sent by set-tab key
key_sundo kUND |Sent by shifted undo key
key_suspend kspd Sent by suspend key
key_undo kund Sent by undo key
key_up kcuul Sent by terminal up-arrow key
keypad_local rmkx Out of “keypad-transmit” mode
keypad_xmit smkx Put terminal in “keypad-transmit” mode
lab_f0 1f0 Labels on function key f0 if not fO
lab_f1 If1 Labels on function key f1 if not f1
lab_f2 1£2 Labels on function key f2 if not f2
lab_f3 1£3 Labels on function key £3 if not £3
lab_f4 1f4 Labels on function key f4 if not f4
lab_f5 1£5 Labels on function key £5 if not f5
lab_f6 1f6 Labels on function key £6 if not f6
lab_f7 1£7 Labels on function key {7 if not {7
lab_f8 1£8 Labels on function key £8 if not f8
lab_f9 1£9 Labels on function key {9 if not f9
lab_f10 1f10 Labels on function key f10 if not 10
label _format fin Label format
label _off rmln Turn off soft labels
label_on smln Turn on soft labels
meta_off rmm Turn off "meta mode"
meta_on smm Turn on "meta mode" (8th bit)
micro_column_address mhpa Like column_address for micro adjustment
micro_down mcudl Like cursor_down for micro adjustment
micro_left mcub1 Like cursor_left for micro adjustment
micro_right mcufl Like cursor_right for micro adjustment
micro_row_address mvpa Like row_address for micro adjustment
micro_up mcuul Like cursor_up for micro adjustment
mouse_info minfo Mouse status information

346 Technical Standard 2009

Terminfo Source Format (ENHANCED CURSES)

Source File Syntax

Variable

Capname

Description

newline
order_of pins
orig_colors
orig_pair
pad_char
parm_dch
parm_delete_line
parm_down_cursor
parm_down_micro
parm_ich
parm_index
parm_insert_line
parm_left_cursor
parm_left_micro
parm_right_cursor
parm_right_micro
parm_rindex
parm_up_cursor
parm_up_micro
pc_term_options
pkey_key
pkey_local
pkey_plab
pkey_xmit
plab_norm
print_screen
prir_non
prir_off

prtr_on

pulse

quick_dial
remove_clock
repeat_char
req_for_input
req_mouse_pos
reset_1string
reset_2string
reset_3string
reset_file
restore_cursor
row_address
save_cursor
scancode_escape
scroll_forward
scroll_reverse
select_char_set
set0_des_seq
set]_des_seq
set2_des_seq
set3_des_seq
set_a_attributes

nel
porder
oc

op
pad
dch
dl
cud
mcud
ich
indn
il

cub
mcub
cuf
mcuf
rin
cuu
mcuu
pctrm
pfkey
pfloc
pfxl
pfx
pln
mc0
mc5p
mc4
mc5
pulse
qdial
rmclk
rep
rfi
reqmp
rsl
rs2
rs3

rf

rc
vpa
sc
scesc
ind

ri

scs
s0ds
slds
s2ds
s3ds
sgrl

Newline (behaves like cr followed by If)
Matches software bits to print-head pins
Set all color(-pair)s to the original ones
Set default color-pair to the original one
Pad character (rather than null)

Delete #1 chars

Delete #1 lines

Move down #1 lines.

Like parm_down_cursor for micro adjust.
Insert #1 <blank> chars

Scroll forward #1 lines.

Add #1 new blank lines

Move cursor left #1 spaces

Like parm_left_cursor for micro adjust.
Move right #1 spaces.

Like parm_right_cursor for micro adjust.
Scroll backward #1 lines.

Move cursor up #1 lines.

Like parm_up_cursor for micro adjust.
PC terminal options

Prog funct key #1 to type string #2

Prog funct key #1 to execute string #2
Prog key #1 to xmit string #2 and show string #3
Prog funct key #1 to xmit string #2

Prog label #1 to show string #2

Print contents of the screen

Turn on the printer for #1 bytes

Turn off the printer

Turn on the printer

Select pulse dialing

Dial phone number #1, without progress detection
Remove time-of-day clock

Repeat char #1 #2 times

Send next input char (for ptys)

Request mouse position report

Reset terminal completely to sane modes
Reset terminal completely to sane modes
Reset terminal completely to sane modes
Name of file containing reset string
Restore cursor to position of last sc

Set vertical position to absolute #1

Save cursor position

Escape for scancode emulation

Scroll text up

Scroll text down

Select character set

Shift into codeset 0 (EUC set 0, ASCII)
Shift into codeset 1

Shift into codeset 2

Shift into codeset 3

Define second set of video attributes #1-#6

X/Open Curses, Issue 7

347

Source File Syntax

Terminfo Source Format (ENHANCED CURSES)

Variable

Capname

Description

set_a_background
set_a_foreground
set_attributes
set_background
set_bottom_margin
set_bottom_margin_parm
set_clock
set_color_band
set_color_pair
set_foreground
set_left_margin
set_left_margin_parm
set_lr_margin
set_page_length
set_pglen_inch
set_right_margin
set_right_margin_parm
set_tab

set_tb_margin
set_top_margin
set_top_margin_parm
set_window
start_bit_image
start_char_set_def
stop_bit_image
stop_char_set_def
subscript_characters
superscript_characters
tab

these_cause_cr
to_status_line

tone

user(Q

userl

user2

user3

user4

user5

user6

user7

user8

user9

underline_char
up_half_line
wait_tone
xoff_character
xon_character
zero_motion

setab
setaf
sgr
setb
smgb
smgbp
sclk
setcolor
scp
setf
smgl
smglp
smglr
slines
slength
smgr
smgrp
hts
smgtb
smgt
smgtp
wind
sbim
scsd
rbim
resd
subcs
supcs
ht
docr
tsl
tone
u0

ul

u2

u3

ud

ub

ub

u?7

u8

u9

uc

hu
wait
xoffc
xongc
zerom

Set background color to #1 using ANSI escape
Set foreground color to #1 using ANSI escape
Define first set of video attributes #1-#9
Set background color to #1

Set bottom margin at current line

Set bottom margin at line #1 or #2 lines from bottom
Set clock to hours (#1), minutes (#2), seconds (#3)
Change to ribbon color #1

Set current color pair to #1

Set foreground color to #1

Set left margin at current column

Set left (right) margin at column #1 (#2)
Sets both left and right margins

Set page length to #1 lines

Set page length to #1 hundredth of an inch
Set right margin at current column

Set right margin at column #1

Set a tab in all rows, current column

Sets both top and bottom margins

Set top margin at current line

Set top (bottom) margin at line #1 (#2)
Current window is lines #1-#2 cols #3-#4
Start printing bit image graphics

Start definition of a character set

End printing bit image graphics

End definition of a character set

List of “subscript-able” characters

List of “superscript-able” characters

Tab to next 8-space hardware tab stop
Printing any of these chars causes cr

Go to status line, col #1

Select touch tone dialing

User string 0

User string 1

User string 2

User string 3

User string 4

User string 5

User string 6

User string 7

User string 8

User string 9

Underscore one char and move past it
Half-line up (reverse 1/2 linefeed)

Wait for dial tone

X-off character

X-on character

No motion for the subsequent character

Technical Standard 2009

Terminfo Source Format (ENHANCED CURSES) Source File Syntax

714 Sample Entry
The following entry describes the AT&T 610 terminal:

610610bciATT610att6 10AT&T61080column98key keyboard,
am, eslok, hs, mir, msgr, xenl, xon,
cols#80, it#8, Ih#2, lines#24, lw#8, nlab#8, wsl#80,
acsc="aaffggjjkkllmmnnooppqgqgrrssttuuvvwwxxyyzz{{|[}}",
bel="G, blink=\E[5m, bold=\E[1m, cbt=\E[Z,
civis=\E[?25I, clear=\E[H\E[J, cnorm=\E[?25h\E[?12I,
cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cubl1=\b,
cud=\E[%p1%dB, cud1=\E[B, cuf=\E[%p1%dC, cufl=\E[C,
cup=\E[%i%p1%d;%p2%dH, cuu=\E[%pl%dA, cuul=\E[A,
cwvis=\E[?12;25h, dch=\E[%p1%dP, dch1=\E[P, dim=\E[2m,
dI=\E[%p1%dM, dI1=\E[M, ed=\E[J, el=\E[K, ell=\E[1K,
flash=\E[?5h$<200>\E[?5I, fsI=\E8, home=\E[H, ht=\t,
ich=\E[%p1%d@, il=\E[%p1%dL, il1=\E[L, ind=\ED, .ind=\ED$<9>,
invis=\E[8m,
is1=\E[8;0 | \E[?3;4;5;13;15\E[13;20\E[?7h\E[12h\E(B\E)O,
is2=\E[OM"0O, is3=\E(B\E)O, KLFT=\E[\s@, kRIT=\E[\sA,
kbs="H, kcbt=\E[Z, kclr=\E[2J, kcub1=\E[D, kcud1=\E[B,
kcufl=\E[C, kcuul=\E[A, kfP=\EOc, kfPO=\ENp,
kfP1=\ENq, kfP2=\ENTr, kfP3=\ENs, kfP4=\ENt, kfl=\EOd,
kfB=\EOe, kf4=\EOf, kf(CW=\EOg, kf6=\EOh, kf7=\EOiI,
kf8=\EOj, kf9=\ENo, khome=\E[H, kind=\E[S, kri=\E[T,
[I=\E[24H, mc4=\E[?4i, mc5=\E[?5i, nel=\EE,
pfxI=\E[%p1%d;%p2%I%02dq%?%p1%{9}%<%t\s\s\sF%p1%ld\s\s\s\s\s
\s\s\s\s\s\s%;%p2%s,
pIn=\E[%p1%d;0;0;0q%p2%:-16.16s, rc=\ES8, rev=\E[7m,
r=\EM, rmacs="0, rmir=\E[4], rmIn=\E[2p, rmso=\E[m,
rmul=\E[m, rs2=\Ec\E[?3I, sc=\E7,
sgr=\E[0%?%p6%t;1%;%?%p5%t;2%;%?%p2%t;4%;%?%p4%:t;5%);
%?%p3%p1% | %t;7%;%?%p7%t;8%;m%?%p9%t"NY%e 0%:;,
sgrO=\E[m"~O, smacs="N, smir=\E[4h, smIn=\E[p,
smso=\E[7m, smul=\E[4m, tSI=\E7\E[25;%i%p1%dX,

7.1.5 Types of Capabilities in the Sample Entry

The sample entry shows the formats for the three types of terminfo capabilities: Boolean,
numeric, and string. All capabilities specified in the terminfo source file must be followed by
commas, including the last capability in the source file. In terminfo source files, capabilities are
referenced by their capability names (as shown in the Capname column of the previous tables).

Boolean Capabilities

A boolean capability is true if its Capname is present in the entry, and false if its Capname is not
present in the entry.

The '@’ character following a Capname is used to explicitly declare that a boolean capability is
false, in situations described in Section A.1.16 (on page 366).

X/Open Curses, Issue 7 349

Source File Syntax Terminfo Source Format (ENHANCED CURSES)

350

Numeric Capabilities

Numeric capabilities are followed by the character '# and then a positive integer value. The
example assigns the value 80 to the cols numeric capability by coding;:

cols#80

Values for numeric capabilities may be specified in decimal, octal, or hexadecimal, using normal
C-language conventions.

String Capabilities

String-valued capabilities such as el (clear to end of line sequence) are listed by the Capname, an

1

=", and a string ended by the next occurrence of a comma.

A delay in milliseconds may appear anywhere in such a capability, preceded by '$" and
enclosed in angle brackets, as in el=\EK$<3>. The Curses implementation achieves delays by
outputting to the terminal an appropriate number of system-defined padding characters. The
tputs() function provides delays when used to send such a capability to the terminal.

The delay can be any of the following: a number, a number followed by an asterisk, such as 50 a
number followed by a slash, such as 5/, or a number followed by both, such as 5.

e A shows that the required delay is proportional to the number of lines affected by the
operation, and the amount given is the delay required per affected unit. (In the case of
insert characters, the factor is still the number of lines affected. This is always 1 unless the
device has in and the software uses it.) When a ' is specified, it is sometimes useful to
give a delay of the form 3.5 to specify a delay per unit to tenths of milliseconds. (Only one
decimal place is allowed.)

« Al indicates that the delay is mandatory and padding characters are transmitted
regardless of the setting of xon. If '/ is not specified or if a device has xon defined, the
delay information is advisory and is only used for cost estimates or when the device is in
raw mode. However, any delay specified for bel or flash is treated as mandatory.

The following notation is valid in terminfo source files for specifying special characters:

Notation Represents Character
"X Control-x (for any appropriate x)
\a Alert

\b Backspace

\Eor \e | An ESCAPE character

\f Form feed

\1 Linefeed

\n Newline

\r Carriage-return

\s Space

\t Tab

\" Caret (")

\\ Backslash (\)

\, Comma (,)

\: Colon (3)

\0 Null

\nnn Any character, specified as three octal digits

(See the XBD specification, General Terminal Interface.)

Technical Standard 2009

Terminfo Source Format (ENHANCED CURSES) Source File Syntax

Commented-out Capabilities

Sometimes individual capabilities must be commented out. To do this, put a period before the
capability name. For example, see the second ind in the example in Section 7.1.4 (on page 349).
Note that capabilities are defined in a left-to-right order and, therefore, a prior definition will
override a later definition.

351

X/Open Curses, Issue 7

Terminfo Source Format (ENHANCED CURSES)

352 Technical Standard 2009

Al

All

Appendix A

Application Usage

Device Capabilities

Basic Capabilities

The number of columns on each line for the device is given by the cols numeric capability. If the
device has a screen, then the number of lines on the screen is given by the lines capability. If the
device wraps around to the beginning of the next line when it reaches the right margin, then it
should have the am capability. If the terminal can clear its screen, leaving the cursor in the home
position, then this is given by the clear string capability. If the terminal overstrikes (rather than
clearing a position when a character is struck over) then it should have the os capability. If the
device is a printing terminal, with no soft copy unit, specify both hc and os. If there is a way to
move the cursor to the left edge of the current row, specify this as cr. (Normally this will be
<carriage-return>, <control-M>.) If there is a way to produce an audible signal (such as a bell or
a beep), specify it as bel. If, like most devices, the device uses the xon/xoff flow-control
protocol, specify xon.

If there is a way to move the cursor one position to the left (such as backspace), that capability
should be given as cubl. Similarly, sequences to move to the right, up, and down should be
given as cufl, cuul, and cudl, respectively. These local cursor motions must not alter the text
they pass over; for example, you would not normally use cufl =\s because the space would
erase the character moved over.

A very important point here is that the local cursor motions encoded in terminfo are undefined
at the left and top edges of a screen terminal. Programs should never attempt to backspace
around the left edge, unless bw is specified, and should never attempt to go up locally off the
top. To scroll text up, a program goes to the bottom left corner of the screen and sends the ind
(index) string. To scroll text down, a program goes to the top left corner of the screen and sends
the ri (reverse index) string. The strings ind and ri are undefined when not on their respective
corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin. These versions have the
same semantics as ind and ri, except that they take one argument and scroll the number of lines
specified by that argument. They are also undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text is
output, but this does not necessarily apply to a cufl from the last column. Backward motion
from the left edge of the screen is possible only when bw is specified. In this case, cubl will
move to the right edge of the previous row. If bw is not given, the effect is undefined. This is
useful for drawing a box around the edge of the screen, for example. If the device has switch-
selectable automatic margins, am should be specified in the terminfo source file. In this case,
initialization strings should turn on this option, if possible. If the device has a command that
moves to the first column of the next line, that command can be given as nel (newline). It does
not matter if the command clears the remainder of the current line, so if the device has no cr and

X/Open Curses, Issue 7 353

Device Capabilities Application Usage

If it may still be possible to craft a working nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus, the AT&T 5320
hardcopy terminal is described as follows:

5320|att5320|AT&T 5320 hardcopy terminal,
am, hc, os,
cols#132,
bel="G, cr=\r, cubl=\b, cnd1=\n,
dch1=\E[P, dI1=\E[M,
ind=\n,

while the Lear Siegler ADM-3 is described as:

adm3si adma3,
am, bel="G, clear="Z, cols#80, cr="M, cub1="H,
cud1="J, ind="J, lines#24,

A.1.2 Parameterized Strings

Cursor addressing and other strings requiring arguments are described by a argumentized
string capability with escapes in a form (%x) comparable to printf(). For example, to address the
cursor, the cup capability is given, using two arguments: the row and column to address to.
(Rows and columns are numbered from zero and refer to the physical screen visible to the user,
not to any unseen memory.) If the terminal has memory-relative cursor addressing, that can be
indicated by mrcup.

The argument mechanism uses a stack and special % codes to manipulate the stack in the
manner of Reverse Polish Notation (postfix). Typically, a sequence pushes one of the arguments
onto the stack and then prints it in some format. Often more complex operations are necessary.
Operations are in postfix form with the operands in the usual order. That is, to subtract 5 from
the first argument, use %p1%{5}%-.

The %encodings have the following meanings:
%% Outputs "%’ .

%l [:1flagsl[widthl.precision]l[doxXs]
As in printf(); flags are [—+#] and space.

Y%c Print pop() gives %c

%pl1-9] Push the ith argument.

%Pla-z] Set dynamic variable [a-z] to pop().
Y%gla-z] Get dynamic variable [a-z] and push it.
%P[A-Z] Set static variable [a-z] to pop().
%gl[A-Z] Get static variable [a-z] and push it.
%’c’ Push char constant c.

Yo{nn} Push decimal constant nn.

%l Push strlen(pop()).

Y%+ %= %%/ Yom
Arithmetic (%m is mod): push(pop integer, op pop integer;) where integer;
represents the top of the stack.

354 Technical Standard 2009

Application Usage Device Capabilities

Al13

%& % | %" Bit operations: push(pop integer, op pop integer,)

Y%= %> %< Logical operations: push(pop integer, op pop integer;)

%A %0 Logical operations: and, or

%! %~ Unary operations: push(op pop())

Yoi (For ANSI terminals) add 1 to the first argument (if one argument present), or

first two arguments (if more than one argument present).

%? expr %t thenpart %e elsepart %;
If-then-else, %e elsepart is optional; else-if’s are possible ala Algol 68: %? ¢, %t
b. %ec, %tb,_ %ec, %tb, %ec, %tb,K %eb_%;
1 2 .2 3 3. "4 4 5
c; are conditions, b ; are bodies.

If the — flag is used with %[doxXs] , then a colon must be placed between the %and the — to
differentiate the flag from the binary %- operator. For example: %:-16.16s .

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to be sent
\E&al2c03Y padded for 6 milliseconds. Note that the order of the rows and columns is
inverted here, and that the row and column are zero-padded as two digits. Thus, its cup
capability is:

cup=\E&a%p2%2.2dc%pl%2.2dY$<6>

The Micro-Term ACT-IV needs the current row and column sent preceded by a "T , with the row
and column simply encoded in binary:

cup="T%pl1l%c%p2%c

Devices that use %cneed to be able to backspace the cursor (cubl), and to move the cursor up
one line on the screen (cuul). This is necessary because it is not always safe to transmit \n , "D,
and \r , as the system may change or discard them. (The library functions dealing with terminfo
set tty modes so that <tab>s are never expanded, so \t is safe to send. This turns out to be
essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a <blank> character,
thus:

cup=\E=%p1%"\s'%+%c%p2%"\s'%+%cC

After sending \E=, this pushes the first argument, pushes the ASCII value for a space (32), adds
them (pushing the sum on the stack in place of the two previous values), and outputs that value
as a character. Then the same is done for the second argument. More complex arithmetic is
possible using the stack.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper-left corner of screen) then this
can be given as home; similarly, a fast way of getting to the lower left-hand corner can be given
as 11; this may involve going up with cuul from the home position, but a program should never
do this itself (unless 11 does) because it can make no assumption about the effect of moving up
from the home position. Note that the home position is the same as addressing to (0,0): to the top
left corner of the screen, not of memory. (Thus, the \EH sequence on Hewlett-Packard terminals
cannot be used for home without losing some of the other features on the terminal.)

If the device has row or column absolute-cursor addressing, these can be given as single
argument capabilities hpa (horizontal position absolute) and vpa (vertical position absolute).
Sometimes these are shorter than the more general two-argument sequence (as with the

X/Open Curses, Issue 7 355

Device Capabilities Application Usage

Al4

A.l5

356

Hewlett-Packard 2645) and can be used in preference to cup. If there are argumentized local
motions (such as “move 7n spaces to the right”), these can be given as cud, cub, cuf, and cuu
with a single argument indicating how many spaces to move. These are primarily useful if the
device does not have cup, such as the Tektronix 4025.

If the device needs to be in a special mode when running a program that uses these capabilities,
the codes to enter and exit this mode can be given as smcup and rmcup. This arises, for
example, from terminals, such as the Concept, with more than one page of memory. If the device
has only memory-relative cursor addressing and not screen-relative cursor addressing, a one
screen-sized window must be fixed into the device for cursor addressing to work properly. This
is also used for the Tektronix 4025, where smcup sets the command character to be the one used
by terminfo. If the rmcup will not restore the screen after an smcup sequence is output (to the
state prior to outputting smcup) specify nrrmc.

Area Clears

If the terminal can clear from the current position to the end of the line, leaving the cursor where
it is, this should be given as el. If the terminal can clear from the beginning of the line to the
current position inclusive, leaving the cursor where it is, this should be given as ell. If the
terminal can clear from the current position to the end of the display, then this should be given
as ed. ed is only defined from the first column of a line. (Thus, it can be simulated by a request
to delete a large number of lines, if a true ed is not available.)

Insert/Delete Line

If the terminal can open a new blank line before the line where the cursor is, this should be given
as ill1; this is done only from the first position of a line. The cursor must then appear on the
newly blank line. If the terminal can delete the line which the cursor is on, then this should be
given as dl1; this is done only from the first position on the line to be deleted. Versions of il1
and dl1 which take a single argument and insert or delete that many lines can be given as il and
dlL

If the terminal has a settable destructive scrolling region (like the VT100) the command to set
this can be described with the csr capability, which takes two arguments: the top and bottom
lines of the scrolling region. The cursor position is, alas, undefined after using this command. It
is possible to get the effect of insert or delete line using this command—the sc and rc (save and
restore cursor) commands are also useful. Inserting lines at the top or bottom of the screen can
also be done using ri or ind on many terminals without a true insert/delete line, and is often
faster even on terminals with those features.

To determine whether a terminal has destructive scrolling regions or non-destructive scrolling
regions, create a scrolling region in the middle of the screen, place data on the bottom line of the
scrolling region, move the cursor to the top line of the scrolling region, and do a reverse index
(ri) followed by a delete line (dI1) or index (ind). If the data that was originally on the bottom
line of the scrolling region was restored into the scrolling region by dI1 or ind, then the terminal
has non-destructive scrolling regions. Otherwise, it has destructive scrolling regions. Do not
specify csr if the terminal has non-destructive scrolling regions, unless ind, ri, indn, rin, dl, and
dI1 all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which all commands affect,
it should be given as the argumentized string wind. The four arguments are the starting and
ending lines in memory and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be given; if

Technical Standard 2009

Application Usage Device Capabilities

A.l.6

display memory can be retained below, then db should be given. These indicate that deleting a
line or scrolling a full screen may bring non-blank lines up from below or that scrolling back
with ri may bring down non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete character
operations which can be described using terminfo. The most common insert/delete character
operations affect only the characters on the current line and shift characters off the end of the
line rigidly. Other terminals, such as the Concept 100 and the Perkin-Elmer Owl, make a
distinction between typed and untyped <blank>s on the screen, shifting upon an insert or delete
only to an untyped <blank> on the screen which is either eliminated, or expanded to two
untyped <blank>s. You can determine the kind of terminal you have by clearing the screen and
then typing text separated by cursor motions. Type abc def using local cursor motions (not
spaces) between the abc and the def. Then position the cursor before the abc and put the
terminal in insert mode. If typing characters causes the rest of the line to shift rigidly and
characters to fall off the end, then your terminal does not distinguish between <blank>s and
untyped positions. If the abc shifts over to the def which then move together around the end of
the current line and onto the next as you insert, you have the second type of terminal, and
should give the capability in, which stands for “insert null”. While these are two logically
separate attributes (one line versus multi-line insert mode, and special treatment of untyped
spaces) we have seen no terminals whose insert mode cannot be described with the single
attribute.

terminfo can describe both terminals that have an insert mode and terminals which send a
simple sequence to open a blank position on the current line. Give as smir the sequence to get
into insert mode. Give as rmir the sequence to leave insert mode. Now give as ichl any
sequence needed to be sent just before sending the character to be inserted. Most terminals with
a true insert mode will not give ichl; terminals that send a sequence to open a screen position
should give it here. (If your terminal has both, insert mode is usually preferable to ichl. Do not
give both unless the terminal requires both to be used in combination.) If post-insert padding is
needed, give this as a number of milliseconds padding in ip (a string option). Any other
sequence which may need to be sent after an insert of a single character may also be given in ip.
If your terminal needs both to be placed into an “insert mode” and a special code to precede
each inserted character, then both smir/rmir and ichl can be given, and both will be used. The
ich capability, with one argument, n, will insert n <blank>s.

If padding is necessary between characters typed while not in insert mode, give this as a number
of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete characters on the
same line (for example, if there is a <tab> after the insertion position). If your terminal allows
motion while in insert mode you can give the capability mir to speed up inserting in this case.
Omitting mir will affect only speed. Some terminals (notably Datamedia) must not have mir
because of the way their insert mode works.

Finally, you can specify dchl to delete a single character, dch with one argument, #, to delete n
characters, and delete mode by giving smdc and rmdc to enter and exit delete mode (any mode
the terminal needs to be placed in for dch1 to work).

A command to erase n characters (equivalent to outputting n <blank>s without moving the
cursor) can be given as ech with one argument.

X/Open Curses, Issue 7 357

Device Capabilities Application Usage

Al1.7

358

Highlighting, Underlining, and Visible Bells

Your device may have one or more kinds of display attributes that allow you to highlight
selected characters when they appear on the screen. The following display modes (shown with
the names by which they are set) may be available:

A blinking screen (blink)

 Bold or extra-bright characters (bold)

¢ Dim or half-bright characters (dim)

« Blanking or invisible text (invis)

 Protected text (prot)

» A reverse-video screen (rev)

o An alternate character set (smacs to enter this mode and rmacs to exit it)

(If a command is necessary before you can enter alternate character set mode, give the
sequence in enacs or “enable alternate-character-set” mode.) Turning on any of these
modes singly may turn off other modes.

sgr0 should be used to turn off all video enhancement capabilities. It should always be specified
because it represents the only way to turn off some capabilities, such as dim or blink.

Choose one display method as standout mode and use it to highlight error messages and other
text to which you want to draw attention. Choose a form of display that provides strong contrast
but that is easy on the eyes. (We recommend reverse-video plus half-bright or reverse-video
alone.) The sequences to enter and exit standout mode are given as smso and rmso, respectively.
If the code to change into or out of standout mode leaves one or even two blank spaces on the
screen, as the TVI 912 and Teleray 1061 do, then xmc should be given to tell how many spaces
are left.

Sequences to begin underlining and end underlining can be specified as smul and rmul,
respectively. If the device has a sequence to underline the current character and to move the
cursor one space to the right (such as the Micro-Term MIME), this sequence can be specified as
uc.

Terminals with the “magic cookie” glitch (xmc) deposit special “cookies” when they receive
mode-setting sequences, which affect the display algorithm rather than having extra bits for
each character. Some terminals, such as the Hewlett-Packard 2621, automatically leave standout
mode when they move to a newline or the cursor is addressed. Programs using standout mode
should exit standout mode before moving the cursor or sending a newline, unless the msgr
capability, asserting that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement),
then this can be given as flash; it must not move the cursor. A good flash can be done by
changing the screen into reverse video, pad for 200 ms, then return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to
make, for example, a non-blinking underline into an easier to find block or blinking underline)
give this sequence as cvvis. The boolean chts should also be given. If there is a way to make the
cursor completely invisible, give that as civis. The capability cnorm should be given, which
undoes the effects of either of these modes.

If your terminal generates underlined characters by using the underline character (with no
special sequences needed) even though it does not otherwise overstrike characters, then specify
the capability ul. For devices on which a character overstriking another leaves both characters
on the screen, specify the capability os. If overstrikes are erasable with a <blank>, then this

Technical Standard 2009

Application Usage

Device Capabilities

should be indicated by specifying eo.

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr (set
attributes), taking nine tiparm() arguments, called here p1 through p9. Each argument is either
0 or non-zero, as the corresponding attribute is on or off. The nine arguments are, in order:
standout, underline, reverse, blink, dim, bold, blank, protect, alternate character set. Not all
modes need to be supported by sgr; only those for which corresponding separate attribute
commands exist should be supported. For example, let’s assume that the terminal in question
needs the following escape sequences to turn on various modes:

X/Open Curses, Issue 7

tiparm()
Argument | Attribute | Escape Sequence
none \E[Om
pl standout \E[0;4;7m
p2 underline | \E[0;3m
p3 reverse \E[0;4m
p4 blink \E[0;5m
p5 dim \E[0;7m
p6 bold \E[0;3;4m
p7 invis \E[0;8m
P8 protect not available
p9 altcharset | "O (off) "N (on)

Note that each escape sequence requires a 0 to turn off other modes before turning on its own
mode. Also note that, as suggested above, standout is set up to be the combination of reverse and
dim. Also, because this terminal has no bold mode, bold is set up as the combination of reverse
and underline. In addition, to allow combinations, such as underline+blink, the sequence to use
would be \E[0;3;5m . The terminal doesn’t have protect mode either, but that cannot be
simulated in any way, so p8 is ignored. The altcharset mode is different in that it is either "O or
"N, depending on whether it is off or on. If all modes were to be turned on, the sequence would
be:

\E[0;3;4,5,7;8m"N
Now look at when different sequences are output. For example, ;3 is output when either p2 or

p6 is true; that is, if either underline or bol modes are turned on. Writing out the above sequences,
along with their dependencies, gives the following:

Sequence | When to Output terminfo Translation
\E[O always \E[O

'3 if p2 or p6 %7?%p2%p6%|%t; 3%;

4 if p1 or p3 or p6 | %7%p1%p3%]|%p6%0|%t;4%:;
5 if p4 %?%p4%it;5%);

7 if p1 or p5 %7?%p1%p5%|%t; 7%;

;8 if p7 %?%p7%t;8%);

m always m

"N or "O | if pO'N ,else"O | %?%p9%t"N%e"0%;

Putting this all together into the sgr sequence gives:

sgr=\E[0%?%p2%p6%|%6t;3%;%?%p1%p3%|%p6%
|%t;4%;%?%p5%t;5%;%?%p1%p5%
|%t;7%;%?%p7%t;8%;m%?%p9%t"NY%e 0%;,

Remember that sgr and sgr0 must always be specified.

359

Device Capabilities Application Usage

A.18

A.19

360

Keypad

If the device has a keypad that transmits sequences when the keys are pressed, this information
can also be specified. Note that it is not possible to handle devices where the keypad only works
in local (this applies, for example, to the unshifted Hewlett-Packard 2621 keys). If the keypad
can be set to transmit or not transmit, specify these sequences as smkx and rmkx. Otherwise,
the keypad is assumed to always transmit.

The sequences sent by the left arrow, right arrow, up arrow, down arrow, and home keys can be
given as kcub1, kcufl, kcuul, kcudl, and khome, respectively. If there are function keys such as
{0, f1, ..., f63, the sequences they send can be specified as kf0, kfl, ..., kf63. If the first 11 keys
have labels other than the default fO through f10, the labels can be given as 1f0, 1f1, ..., 1f10.

The codes transmitted by certain other special keys can be given: kll (home down), kbs
(backspace), ktbc (clear all <tab>s), kctab (clear the tab stop in this column), kclr (clear screen or
erase key), kdch1 (delete character), kdl1 (delete line), krmir (exit insert mode), kel (clear to end
of line), ked (clear to end of screen), kich1 (insert character or enter insert mode), kill (insert
line), knp (next page), kpp (previous page), kind (scroll forward/down), kri (scroll
backward /up), khts (set a tab stop in this column). In addition, if the keypad has a 3-by-3 array
of keys including the four arrow keys, the other five keys can be given as kal, ka3, kb2, kcl, and
kc3. These keys are useful when the effects of a 3-by-3 directional pad are needed. Further keys
are defined above in the capabilities list.

Strings to program function keys can be specified as pfkey, pfloc, and pfx. A string to program
screen labels should be specified as pIn. Each of these strings takes two arguments: a function
key identifier and a string to program it with. pfkey causes pressing the given key to be the
same as the user typing the given string; pfloc causes the string to be executed by the terminal in
local mode; and pfx causes the string to be transmitted to the computer. The capabilities nlab,
Iw, and 1h define the number of programmable screen labels and their width and height. If there
are commands to turn the labels on and off, give them in smln and rmIn. smln is normally
output after one or more pln sequences to make sure that the change becomes visible.

Tabs and Initialization

If the device has hardware tabs, the command to advance to the next tab stop can be given as ht
(usually <control-I>). A “backtab” command that moves leftward to the next tab stop can be
given as cbt. By convention, if tty modes show that <tab>s are being expanded by the computer
rather than being sent to the device, programs should not use ht or cbt (even if they are present)
because the user might not have the tab stops properly set. If the device has hardware <tab>s
that are initially set every n spaces when the device is powered up, the numeric argument it is
given, showing the number of spaces the <tab>s are set to. This is normally used by fput init to
determine whether to set the mode for hardware tab expansion and whether to set the tab stops.
If the device has tab stops that can be saved in non-volatile memory, the terminfo description
can assume that they are properly set. If there are commands to set and clear tab stops, they can
be given as tbc (clear all tab stops) and hts (set a tab stop in the current column of every row).

Other capabilities include: is1, is2, and is3, initialization strings for the device; iprog, the path
name of a program to be run to initialize the device; and if, the name of a file containing long
initialization strings. These strings are expected to set the device into modes consistent with the
rest of the terminfo description. They must be sent to the device each time the user logs in and
be output in the following order: run the program iprog; output is1; output is2; set the margins
using mgc, smgl, and smgr; set the <tab>s using tbc and hts; print the file if; and finally output
is3. This is usually done using the init option of fput.

Most initialization is done with is2. Special device modes can be set up without duplicating

Technical Standard 2009

Application Usage Device Capabilities

A1.10

Al11

Al1.12

strings by putting the common sequences in is2 and special cases in is1 and is3. Sequences that
do a reset from a totally unknown state can be given as rs1, rs2, rf, and rs3, analogous to isl, is2,
is3, and if. (The method using files, if and rf, is used for a few terminals; however, the
recommended method is to use the initialization and reset strings.) These strings are output by
tput reset, which is used when the terminal gets into a wedged state. Commands are normally
placed in rs1, rs2, rs3, and rf only if they produce annoying effects on the screen and are not
necessary when logging in. For example, the command to set a terminal into 80-column mode
would normally be part of is2, but on some terminals it causes an annoying glitch on the screen
and is not normally needed because the terminal is usually already in 80-column mode.

If a more complex sequence is needed to set the <tab>s than can be described by using tbc and
hts, the sequence can be placed in is2 or if.

Any margin can be cleared with mgc. (For instructions on how to specify commands to set and
clear margins, see Margins (on page 371).)

Delays

Certain capabilities control padding in the tty driver. These are primarily needed by hard-copy
terminals, and are used by fput init to set tty modes appropriately. Delays embedded in the
capabilities cr, ind, cubl, ff, and tab can be used to set the appropriate delay bits to be set in the
tty driver. If pb (padding baud rate) is given, these values can be ignored at baud rates below
the value of pb.

Status Lines

If the terminal has an extra “status line” that is not normally used by software, this fact can be
indicated. If the status line is viewed as an extra line below the bottom line, into which one can
cursor address normally (such as the Heathkit H19’s 25th line, or the 24th line of a VT100 which
is set to a 23-line scrolling region), the capability hs should be given. Special strings that go to a
given column of the status line and return from the status line can be given as tsl and fsl. (fsl
must leave the cursor position in the same place it was before tsl. If necessary, the sc and rc
strings can be included in tsl and fsl to get this effect.) The capability tsl takes one argument,
which is the column number of the status line the cursor is to be moved to.

If escape sequences and other special commands, such as tab, work while in the status line, the
flag eslok can be given. A string which turns off the status line (or otherwise erases its contents)
should be given as dsl. If the terminal has commands to save and restore the position of the
cursor, give them as sc and rc. The status line is normally assumed to be the same width as the
rest of the screen (that is, cols). If the status line is a different width (possibly because the
terminal does not allow an entire line to be loaded) the width, in columns, can be indicated with
the numeric argument wsl.

Line Graphics

If the device has a line drawing alternate character set, the mapping of glyph to character would
be given in acsc. The definition of this string is based on the alternate character set used in the
Digital VT100 terminal, extended slightly with some characters from the AT&T 4410v1 terminal.

X/Open Curses, Issue 7 361

Device Capabilities

Glyph Name

VT100+
Character

arrow pointing right
arrow pointing left
arrow pointing down
solid square block
lantern symbol
arrow pointing up
diamond

checker board (stipple)
degree symbol
plus/minus

board of squares
lower right corner
upper right corner
upper left corner
lower left corner
plus

scan line 1
horizontal line

scan line 9

left tee (|-)

right tee ()

bottom tee (|)

top tee ()
vertical line

bullet

+

- 0o -

IXs<Cc~"T0wWOOS3 -XTSQ ™Y

Application Usage

The best way to describe a new device’s line graphics set is to add a third column to the above
table with the characters for the new device that produce the appropriate glyph when the device
is in alternate-character-set mode. For example:

VT100+ Character Used

Glyph Name Character | on New Device
upper left corner I R
lower left corner m F
upper right corner k T
lower right corner] G
horizontal line q)
vertical line X

Now write down the characters left to right; for example:

acsc=IRmFKkTjGa\,x.

In addition, terminfo lets you define multiple character sets (see Section A.2.5, on page 373).

362

Technical Standard 2009

Application Usage Device Capabilities

A.1.13 Color Manipulation
Most color terminals belong to one of two classes of terminal:
» Tektronix-style

The Tektronix method uses a set of N predefined colors (usually 8) from which an
application can select “current” foreground and background colors. Thus, a terminal can
support up to N colors mixed into N*N color-pairs to be displayed on the screen at the
same time.

» Hewlett-Packard-style

In the HP method, the application cannot define the foreground independently of the
background, or vice versa. Instead, the application must define an entire color-pair at once.
Up to M color-pairs, made from 2*M different colors, can be defined this way.

The numeric variables colors and pairs define the number of colors and color-pairs that can be
displayed on the screen at the same time. If a terminal can change the definition of a color (for
example, the Tektronix 4100 and 4200 series terminals), this should be specified with ccc (can
change color). To change the definition of a color (Tektronix 4200 method), use initc (initialize
color). It requires four arguments: color number (ranging from 0 to colors—1) and three RGB
(red, green, and blue) values or three HLS colors (Hue, Lightness, Saturation). Ranges of RGB
and HLS values are terminal-dependent.

Tektronix 4100 series terminals only use HLS color notation. For such terminals (or dual-mode
terminals to be operated in HLS mode) one must define a boolean variable hls; that would
instruct the init_color() functions to convert its RGB arguments to HLS before sending them to
the terminal. The last three arguments to the initc string would then be HLS values.

If a terminal can change the definitions of colors, but uses a color notation different from RGB
and HLS, a mapping to either RGB or HLS must be developed.

If the terminal supports ANSI escape sequences to set background and foreground, they should
be coded as setab and setaf, respectively. If the terminal supports other escape sequences to set
background and foreground, they should be coded as setb and setf, respectively. The vidputs()
function and the refresh functions use setab and setaf if they are defined. Each of these
capabilities requires one argument: the number of the color. By convention, the first eight colors
(0-7) map to, in order: black, red, green, yellow, blue, magenta, cyan, white. However, color re-
mapping may occur or the underlying hardware may not support these colors. Mappings for
any additional colors supported by the device (that is, to numbers greater than 7) are at the
discretion of the terminfo entry writer.

To initialize a color-pair (HP method), use initp (initialize pair). It requires seven arguments: the
number of a color-pair (range=0 to pairs—1), and six RGB values: three for the foreground
followed by three for the background. (Each of these groups of three should be in the order
RGB.) When initc or initp are used, RGB or HLS arguments should be in the order “red, green,
blue” or “hue, lightness, saturation”), respectively. To make a color-pair current, use scp (set
color-pair). It takes one argument, the number of a color-pair.

Some terminals (for example, most color terminal emulators for PCs) erase areas of the screen
with current background color. In such cases, bece (background color erase) should be defined.
The variable op (original pair) contains a sequence for setting the foreground and the
background colors to what they were at the terminal start-up time. Similarly, oc (original colors)
contains a control sequence for setting all colors (for the Tektronix method) or color-pairs (for the
HP method) to the values they had at the terminal start-up time.

Some color terminals substitute color for video attributes. Such video attributes should not be
combined with colors. Information about these video attributes should be packed into the ncv

X/Open Curses, Issue 7 363

Device Capabilities Application Usage

Al.14

364

(no color video) variable. There is a one-to-one correspondence between the nine least-
significant bits of that variable and the video attributes. The following table depicts this
correspondence.

Bit Decimal Characteristic
Attribute Position Value That Sets
WA_STANDOUT 0 1 sgr, parameter 1
WA_UNDERLINE 1 2 sgr, parameter 2
WA_REVERSE 2 4 sgr, parameter 3
WA_BLINK 3 8 sgr, parameter 4
WA_DIM 4 16 sgr, parameter 5
WA_BOLD 5 32 sgr, parameter 6
WA_INVIS 6 64 sgr, parameter 7
WA _PROTECT 7 128 sgr, parameter 8
WA_ALTCHARSET 8 256 sgr, parameter 9
WA_HORIZONTAL 9 512 sgrl, parameter 1
WA_LEFT 10 1024 sgrl, parameter 2
WA_LOW 11 2048 sgrl, parameter 3
WA_RIGHT 12 4096 sgrl, parameter 4
WA_TOP 13 8192 sgrl, parameter 5
WA_VERTICAL 14 16384 sgrl, parameter 6

When a particular video attribute should not be used with colors, set the corresponding ncv bit
to 1; otherwise, set it to 0. To determine the information to pack into the ncv variable, add the
decimal values corresponding to those attributes that cannot coexist with colors. For example, if
the terminal uses colors to simulate reverse video (bit number 2 and decimal value 4) and bold
(bit number 5 and decimal value 32), the resulting value for ncv will be 36 (4 + 32).

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as pad.
Only the first character of the pad string is used. If the terminal does not have a pad character,
specify npc.

If the terminal can move up or down half a line, this can be indicated with hu half-line up) and
hd (half-line down). This is primarily useful for superscripts and subscripts on hardcopy
terminals. If a hardcopy terminal can eject to the next page (form feed), give this as ff (usually
<control-L>).

If there is a command to repeat a given character a given number of times (to save time
transmitting a large number of identical characters) this can be indicated with the argumentized
string rep. The first argument is the character to be repeated and the second is the number of
times to repeat it. Thus:

tiparm(repeat_char, 'x’, 10)
is the same as XXXXXXXXXX

If the terminal has a settable command character, such as the Tektronix 4025, this can be
indicated with cmdch. A prototype command character is chosen which is used in all
capabilities. This character is given in the e¢mdch capability to identify it. The following
convention is supported on some systems: If the environment variable CC exists, all occurrences
of the prototype character are replaced with the character in CC.

Terminal descriptions that do not represent a specific kind of known terminal, such as switch,

Technical Standard 2009

Application Usage Device Capabilities

A.1.15

dialup, patch, and network, should include the gn (generic) capability so that programs can
complain that they do not know how to talk to the terminal. (This capability does not apply to
virtual terminal descriptions for which the escape sequences are known.) If the terminal is one of
those supported by the virtual terminal protocol, the terminal number can be given as vt. A
line-turn-around sequence to be transmitted before doing reads should be specified in rfi.

If the device uses xon/xoff handshaking for flow control, give xon. Padding information should
still be included so that functions can make better decisions about costs, but actual pad
characters will not be transmitted. Sequences to turn on and off xon/xoff handshaking may be
given in smxon and rmxon. If the characters used for handshaking are not "S and "Q, they may
be specified with xonc and xoffc.

If the terminal has a “meta key” which acts as a shift key, setting the eighth bit of any character
transmitted, this fact can be indicated with km. Otherwise, software will assume that the eighth
bit is parity and it will usually be cleared. If strings exist to turn this “meta mode” on and off,
they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the number of lines
of memory can be indicated with Im. A value of Im#0 indicates that the number of lines is not
fixed, but that there is still more memory than fits on the screen.

Media copy strings which control an auxiliary printer connected to the terminal can be given as:

mc0 Print the contents of the screen.
mc4 Turn off the printer.
mc5 Turn on the printer.

When the printer is on, all text sent to the terminal will be sent to the printer. A variation, mc5p,
takes one argument, and leaves the printer on for as many characters as the value of the
argument, then turns the printer off. The argument should not exceed 255. If the text is not
displayed on the terminal screen when the printer is on, specify mc5i (silent printer). All text,
including mc4, is transparently passed to the printer while an mc5p is in effect.

Special Cases

The working model used by terminfo fits most terminals reasonably well. However, some
terminals do not completely match that model, requiring special support by terminfo. These are
not meant to be construed as deficiencies in the terminals; they are just differences between the
working model and the actual hardware. They may be unusual devices or, for some reason, do
not have all the features of the terminfo model implemented.

Terminals that cannot display tilde (™) characters, such as certain Hazeltine terminals, should
indicate hz.

Terminals that ignore a <linefeed> immediately after an am wrap, such as the Concept 100,
should indicate xenl. Those terminals whose cursor remains on the right-most column until
another character has been received, rather than wrapping immediately upon receiving the
right-most character, such as the VT100, should also indicate xenl.

If el is required to get rid of standout (instead of writing normal text on top of it), xhp should be
given.

Those Teleray terminals whose <tab>s turn all characters moved over to <blank>s, should
indicate xt (destructive <tab>s). This capability is also taken to mean that it is not possible to
position the cursor on top of a “magic cookie”. Therefore, to erase standout mode, it is necessary,
instead, to use delete and insert line.

X/Open Curses, Issue 7 365

Device Capabilities Application Usage

A.1.16

A2

A21

A22

366

For Beehive Superbee terminals that do not transmit the <escape> or <control-C> characters,
specify xsb, indicating that the f1 key is to be used for escape and the {2 key for <control-C>.

Similar Terminals

If there are two similar terminals, one can be defined as being just like the other with certain
exceptions. The string capability use can be given with the name of the similar terminal. The
capabilities given before use override those in the terminal type invoked by use. A capability
can be canceled by placing capability-name@ prior to the appearance of the string capability use.
For example, the entry:

att4424-2|Teletype 4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

defines an AT&T 04424 terminal that does not have the rev, sgr, and smul capabilities, and
hence cannot do highlighting. This is useful for different modes for a terminal, or for different
user preferences. More than one use capability may be given.

Printer Capabilities

The terminfo database lets you define capabilities of printers as well as terminals. Capabilities
available for printers are included in the lists in Section 7.1.3 (on page 340).

Rounding Values

Because argumentized string capabilities work only with integer values, terminfo designers
should create strings that expect numeric values that have been rounded. Application designers
should note this and should always round values to the nearest integer before using them with a
argumentized string capability.

Printer Resolution

A printer’s resolution is defined to be the smallest spacing of characters it can achieve. In
general, the horizontal and vertical resolutions are independent. Thus, the vertical resolution of
a printer can be determined by measuring the smallest achievable distance between consecutive
printing baselines, while the horizontal resolution can be determined by measuring the smallest
achievable distance between the leftmost edges of consecutive printed, identical characters.

All printers are assumed to be capable of printing with a uniform horizontal and vertical
resolution. The view of printing that terminfo currently presents is one of printing inside a
uniform matrix: All characters are printed at fixed positions relative to each “cell” in the matrix;
furthermore, each cell has the same size given by the smallest horizontal and vertical step sizes
dictated by the resolution. (The cell size can be changed as will be seen later.)

Many printers are capable of “proportional printing”, where the horizontal spacing depends on
the size of the character last printed. terminfo does not make use of this capability, although it
does provide enough capability definitions to allow an application to simulate proportional
printing.

A printer must not only be able to print characters as close together as the horizontal and
vertical resolutions suggest, but also of “moving” to a position an integral multiple of the

Technical Standard 2009

Application Usage Printer Capabilities

A23

smallest distance away from a previous position. Thus, printed characters can be spaced apart a
distance that is an integral multiple of the smallest distance, up to the length or width of a single
page.

Some printers can have different resolutions depending on different “modes”. In “normal
mode”, the existing terminfo capabilities are assumed to work on columns and lines, just like a
video terminal. Thus, the old lines capability would give the length of a page in lines, and the
cols capability would give the width of a page in columns. In “micro mode”, many terminfo
capabilities work on increments of lines and columns. With some printers the micro mode may
be concomitant with normal mode, so that all the capabilities work at the same time.

Specifying Printer Resolution

The printing resolution of a printer is given in several ways. Each specifies the resolution as the
number of smallest steps per distance:

Characteristic Number of Smallest Steps
orhi Steps per inch horizontally
orvi Steps per inch vertically

orc Steps per column

orl Steps per line

When printing in normal mode, each character printed causes movement to the next column,
except in special cases described later; the distance moved is the same as the per-column
resolution. Some printers cause an automatic movement to the next line when a character is
printed in the rightmost position; the distance moved vertically is the same as the per-line
resolution. When printing in micro mode, these distances can be different, and may be zero for
some printers.

Automatic Motion after Printing
Normal Mode:
orc Steps moved horizontally
orl Steps moved vertically
Micro Mode:
mcs Steps moved horizontally
mls Steps moved vertically

Some printers are capable of printing wide characters. The distance moved when a wide
character is printed in normal mode may be different from when a regular width character is
printed. The distance moved when a wide character is printed in micro mode may also be
different from when a regular character is printed in micro mode, but the differences are
assumed to be related: If the distance moved for a regular character is the same whether in
normal mode or micro mode (mcs=orc), then the distance moved for a wide character is also the
same whether in normal mode or micro mode. This doesn’t mean the normal character distance
is necessarily the same as the wide character distance, just that the distances don’t change with a
change in normal to micro mode. However, if the distance moved for a regular character is
different in micro mode from the distance moved in normal mode (mcs<orc), the micro mode
distance is assumed to be the same for a wide character printed in micro mode, as the table
below shows.

X/Open Curses, Issue 7 367

Printer Capabilities Application Usage

368

Automatic Motion after Printing Wide Character
Normal Mode or Micro Mode
(mcs=orc):
widcs Steps moved horizontally
Micro Mode

(mcs<orc):
mcs Steps moved horizontally

There may be control sequences to change the number of columns per inch (the character pitch)
and to change the number of lines per inch (the line pitch). If these are used, the resolution of the
printer changes, but the type of change depends on the printer:

Changing the Character/Line Pitches

cpi Change character pitch
cpix | If set, cpi changes orhi; otherwise, changes orc

Ipi Change line pitch

Ipix | If set, Ipi changes orvi; otherwise, changes orl
chr | Change steps per column

cvr | Change steps per line

The cpi and 1pi string capabilities are each used with a single argument, the pitch in columns (or
characters) and lines per inch, respectively. The chr and cvr string capabilities are each used with
a single argument, the number of steps per column and line, respectively.

Using any of the control sequences in these strings will imply a change in some of the values of
orc, orhi, orl, and orvi. Also, the distance moved when a wide character is printed, widcs,
changes in relation to orc. The distance moved when a character is printed in micro mode, mcs,
changes similarly, with one exception: if the distance is 0 or 1, then no change is assumed.

Programs that use cpi, 1pi, chr, or cvr should recalculate the printer resolution (and should
recalculate other values; see Section A.2.7, on page 375).

Effects of Changing the Character/Line Pitches
Before After
Using cpi with cpix clear:
orhi’ orhi
, orc orhi
orc =
chi
Using cpi with cpix set:
orhi’ orhi = orc [V ,;
orc' orc
Using Ipi with Ipix clear:
orvi' orvi
orl’ orl = 2
Vi
Using lpi with lpix set:
orvi' orvi = orl [V},
orl’ orl
Using chr:

Technical Standard 2009

Application Usage Printer Capabilities

Effects of Changing the Character/Line Pitches
Before After
orhi’ orhi
orc' Vo
Using cvr:
orvi' orvi
orl’ chr
Using cpi or chr:
widcs' widcs = widcs' gc'
, _ , orc
mcs mcs = mes' —
orc

Veir Vipi, Ve, and V. are the arguments used with cpi, lpi, chr, and cvr, respectively. The
pir Vlp & pL 1p P Y.
prime marks (™) indicate the old values.

A.2.4 Capabilities that Cause Movement

In the following descriptions, “movement” refers to the motion of the “current position”. With
video terminals this would be the cursor; with some printers, this is the carriage position. Other
printers have different equivalents. In general, the current position is where a character would
be displayed if printed.

terminfo has string capabilities for control sequences that cause movement a number of full
columns or lines. It also has equivalent string capabilities for control sequences that cause
movement a number of smaller steps.

String Capabilities for Motion

mcubl | Move 1 step left
mcufl | Move 1 step right
mcuul | Move 1 step up
mcudl | Move 1 step down

mcub | Move N steps left
mcuf Move N steps right
mcuu Move N steps up
mcud | Move N steps down

mhpa | Move N steps from the left
mvpa Move N steps from the top

The latter six strings are each used with a single argument, N.

Sometimes the motion is limited to less than the width or length of a page. Also, some printers
don’t accept absolute motion to the left of the current position. terminfo has capabilities for
specifying these limits.

Limits to Motion

mjump | Limit on use of mcub1, mcufl, mcuul, mcudl
maddr | Limit on use of mhpa, mvpa

xhpa If set, hpa and mhpa can’t move left
Xvpa If set, vpa and mvpa can’t move up

If a printer needs to be in a “micro mode” for the motion capabilities described above to work,
there are string capabilities defined to contain the control sequence to enter and exit this mode.

X/Open Curses, Issue 7 369

Printer Capabilities Application Usage

370

A boolean is available for those printers where using a <carriage-return> causes an automatic
return to normal mode.

Entering/Exiting Micro Mode

smicm | Enter micro mode
rmicm | Exit micro mode

crxm Using cr exits micro mode

The movement made when a character is printed in the rightmost position varies among
printers. Some make no movement, some move to the beginning of the next line, others move to
the beginning of the same line. terminfo has boolean capabilities for describing all three cases.

What Happens After Character Printed in Rightmost Position

sam Automatic move to beginning of same line

Some printers can be put in a mode where the normal direction of motion is reversed. This mode
can be especially useful when there are no capabilities for leftward or upward motion, because
those capabilities can be built from the motion reversal capability and the rightward or
downward motion capabilities. It is best to leave it up to an application to build the leftward or
upward capabilities, though, and not enter them in the terminfo database. This allows several
reverse motions to be strung together without intervening wasted steps that leave and reenter
reverse mode.

Entering/Exiting Reverse Modes

slm Reverse sense of horizontal motions
rIlm Restore sense of horizontal motions
sum Reverse sense of vertical motions
rum Restore sense of vertical motions

While sense of horizontal motions reversed:
mcubl | Move 1 step right

mcufl | Move 1 step left

mcub Move N steps right

mcuf Move N steps left

cubl Move 1 column right
cufl Move 1 column left
cub Move N columns right
cuf Move N columns left

While sense of vertical motions reversed:
mcuul Move 1 step down

mcudl Move 1 step up

mcuu Move N steps down
mcud Move N steps up

cuul Move 1 line down
cudl Move 1 line up

cuu Move N lines down
cud Move N lines up

The reverse motion modes should not affect the mvpa and mhpa absolute motion capabilities.
The reverse vertical motion mode should, however, also reverse the action of the line
“wrapping” that occurs when a character is printed in the right-most position. Thus, printers
that have the standard terminfo capability am defined should experience motion to the
beginning of the previous line when a character is printed in the rightmost position in reverse
vertical motion mode.

Technical Standard 2009

Application Usage Printer Capabilities

The action when any other motion capabilities are used in reverse motion modes is not defined;
thus, programs must exit reverse motion modes before using other motion capabilities.

Two miscellaneous capabilities complete the list of motion capabilities. One of these is needed
for printers that move the current position to the beginning of a line when certain control
characters, such as <line-feed> or <form-feed>, are used. The other is used for the capability of
suspending the motion that normally occurs after printing a character.

Miscellaneous Motion Strings

docr List of control characters causing cr
zerom | Prevent auto motion after printing next single character

Margins

terminfo provides two strings for setting margins on terminals: one for the left and one for the
right margin. Printers, however, have two additional margins, for the top and bottom margins of
each page. Furthermore, some printers require not using motion strings to move the current
position to a margin and then fixing the margin there, but require the specification of where a
margin should be regardless of the current position. Therefore, terminfo offers six additional
strings for defining margins with printers.

Setting Margins
smgl Set left margin at current column
smgr Set right margin at current column
smgb Set bottom margin at current line
smgt Set top margin at current line

smgbp | Setbottom margin at line N
smglp | Setleft margin at column N
smgrp | Setright margin at column N
smgtp | Set top margin at line N

The last four strings are used with one or more arguments that give the position of the margin or
margins to set. If both of smglp and smgrp are set, each is used with a single argument, N, that
gives the column number of the left and right margin, respectively. If both of smgtp and smgbp
are set, each is used to set the top and bottom margin, respectively: smgtp is used with a single
argument, N, the line number of the top margin; however, smgbp is used with two arguments,
N and MM, that give the line number of the bottom margin, the first counting from the top of
the page and the second counting from the bottom. This accommodates the two styles of
specifying the bottom margin in different manufacturers’ printers. When coding a terminfo
entry for a printer that has a settable bottom margin, only the first or second argument should be
used, depending on the printer. When writing an application that uses smgbp to set the bottom
margin, both arguments must be given.

If only one of smglp and smgrp is set, then it is used with two arguments, the column number of
the left and right margins, in that order. Likewise, if only one of smgtp and smgbp is set, then it
is used with two arguments that give the top and bottom margins, in that order, counting from
the top of the page. Thus, when coding a terminfo entry for a printer that requires setting both
left and right or top and bottom margins simultaneously, only one of smgl and smgrp or smgtp
and smgbp should be defined; the other should be left blank. When writing an application that
uses these string capabilities, the pairs should be first checked to see if each in the pair is set or
only one is set, and should then be used accordingly.

In counting lines or columns, line zero is the top line and column zero is the left-most column. A
zero value for the second argument with smgbp means the bottom line of the page.

X/Open Curses, Issue 7 371

Printer Capabilities Application Usage

372

All margins can be cleared with mgc.

Shadows, Italics, Wide Characters, Superscripts, Subscripts

Five sets of strings describe the capabilities printers have of enhancing printed text.

Enhanced Printing

sshm Enter shadow-printing mode
rshm Exit shadow-printing mode
sitm Enter italicizing mode

ritm Exit italicizing mode

swidm | Enter wide character mode
rwidm | Exit wide character mode

ssupm | Enter superscript mode
rsupm | Exit superscript mode
supcs List of characters available as superscripts

ssubm | Enter subscript mode
rsubm | Exit subscript mode
subcs List of characters available as subscripts

If a printer requires the sshm control sequence before every character to be shadow-printed, the
rshm string is left blank. Thus, programs that find a control sequence in sshm but none in rshm
should use the sshm control sequence before every character to be shadow-printed; otherwise,
the sshm control sequence should be used once before the set of characters to be shadow-
printed, followed by rshm. The same is also true of each of the sitm/ritm, swidm/rwidm,
ssupm/rsupm, and ssubm/rsubm pairs.

terminfo also has a capability for printing emboldened text (bold). While shadow printing and
emboldened printing are similar in that they “darken” the text, many printers produce these two
types of print in slightly different ways. Generally, emboldened printing is done by overstriking
the same character one or more times. Shadow printing likewise usually involves overstriking,
but with a slight movement up and/or to the side so that the character is “fatter”.

It is assumed that enhanced printing modes are independent modes, so that it would be
possible, for instance, to shadow print italicized subscripts.

As mentioned earlier, the amount of motion automatically made after printing a wide character
should be given in widcs.

If only a subset of the printable ASCII characters can be printed as superscripts or subscripts,
they should be listed in supcs or subcs strings, respectively. If the ssupm or ssubm strings
contain control sequences, but the corresponding supcs or subcs strings are empty, it is assumed
that all printable ASCII characters are available as superscripts or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to be the same as
for regular characters. Thus, for example, printing any of the following three examples results in
equivalent motion:
Bi B, B

Note that the existing msgr boolean capability describes whether motion control sequences can
be used while in “standout mode”. This capability is extended to cover the enhanced printing
modes added here. msgr should be set for those printers that accept any motion control
sequences without affecting shadow, italicized, widened, superscript, or subscript printing.
Conversely, if msgr is not set, a program should end these modes before attempting any motion.

Technical Standard 2009

Application Usage Printer Capabilities

A25

Alternate Character Sets

In addition to allowing you to define line graphics (described in Section A.1.12, on page 361),
terminfo lets you define alternate character sets. The following capabilities cover printers and
terminals with multiple selectable or definable character sets:

Alternate Character Sets

scs Select character set N

scsd Start definition of character set N, M characters
defc Define character A, B dots wide, descender D
resd End definition of character set N

csnm | List of character set names

daisy | Printer has manually changed print-wheels

The scs, rcsd, and csnm strings are used with a single argument, N, a number from 0 to 63 that
identifies the character set. The scsd string is also used with the argument N and another, M,
that gives the number of characters in the set. The defc string is used with three arguments: A
gives the ASCII code representation for the character, B gives the width of the character in dots,
and D is zero or one depending on whether the character is a “descender” or not. The defc
string is also followed by a string of “image-data” bytes that describe how the character looks
(see below).

Character set 0 is the default character set present after the printer has been initialized. Not
every printer has 64 character sets, of course; using scs with an argument that doesn’t select an
available character set should cause a null pointer to be returned by tiparm().

If a character set has to be defined before it can be used, the scsd control sequence is to be used
before defining the character set, and the resd is to be used after. They should also cause a NULL
pointer to be returned by tiparm() when used with an argument N that doesn’t apply. If a
character set still has to be selected after being defined, the scs control sequence should follow
the resd control sequence. By examining the results of using each of the scs, scsd, and resd
strings with a character set number in a call to tiparm(), a program can determine which of the
three are needed.

Between use of the scsd and resd strings, the defc string should be used to define each character.
To print any character on printers covered by terminfo, the ASCII code is sent to the printer.
This is true for characters in an alternate set as well as “normal” characters. Thus, the definition
of a character includes the ASCII code that represents it. In addition, the width of the character
in dots is given, along with an indication of whether the character should descend below the
print line (such as the lowercase letter “g” in most character sets). The width of the character in
dots also indicates the number of image-data bytes that will follow the defc string. These image-
data bytes indicate where in a dot-matrix pattern ink should be applied to “draw” the character;

the number of these bytes and their form are defined in Section A.2.6 (on page 374).

It is easiest for the creator of terminfo entries to refer to each character set by number; however,
these numbers will be meaningless to the application developer. The csnm string alleviates this
problem by providing names for each number.

When used with a character set number in a call to tiparm(), the csnm string will produce the
equivalent name. These names should be used as a reference only. No naming convention is
implied, although anyone who creates a terminfo entry for a printer should use names
consistent with the names found in user documents for the printer. Application developers
should allow a user to specify a character set by number (leaving it up to the user to examine the
csnm string to determine the correct number), or by name, where the application examines the
csnm string to determine the corresponding character set number.

X/Open Curses, Issue 7 373

Printer Capabilities Application Usage

A2.6

374

These capabilities are likely to be used only with dot-matrix printers. If they are not available,
the strings should not be defined. For printers that have manually changed print-wheels or font
cartridges, the boolean daisy is set.

Dot-Matrix Graphics

Dot-matrix printers typically have the capability of reproducing raster graphics images. Three
numeric capabilities and three string capabilities help a program draw raster-graphics images
independent of the type of dot-matrix printer or the number of pins or dots the printer can
handle at one time.

Dot-Matrix Graphics
npins | Number of pins, N, in print-head
spinv | Spacing of pins vertically in pins per inch
spinh Spacing of dots horizontally in dots per inch
porder | Matches software bits to print-head pins
sbim Start printing bit image graphics, B bits wide
rbim End printing bit image graphics

The sbim string is used with a single argument, B, the width of the image in dots.

The model of dot-matrix or raster-graphics that terminfo presents is similar to the technique
used for most dot-matrix printers: each pass of the printer’s print-head is assumed to produce a
dot-matrix that is N dots high and B dots wide. This is typically a wide, squat, rectangle of dots.
The height of this rectangle in dots will vary from one printer to the next; this is given in the
npins numeric capability. The size of the rectangle in fractions of an inch will also vary; it can be
deduced from the spinv and spinh numeric capabilities. With these three values an application
can divide a complete raster-graphics image into several horizontal strips, perhaps interpolating
to account for different dot spacing vertically and horizontally.

The sbim and rbim strings start and end a dot-matrix image, respectively. The sbim string is
used with a single argument that gives the width of the dot-matrix in dots. A sequence of
“image-data bytes” are sent to the printer after the sbim string and before the rbim string. The
number of bytes is a integral multiple of the width of the dot-matrix; the multiple and the form
of each byte is determined by the porder string as described below.

The porder string is a comma-separated list of pin numbers optionally followed by an numerical
offset. The offset, if given, is separated from the list with a semicolon. The position of each pin
number in the list corresponds to a bit in an 8-bit data byte. The pins are numbered
consecutively from 1 to npins, with 1 being the top pin. Note that the term “pin” is used loosely
here; “ink-jet” dot-matrix printers don’t have pins, but can be considered to have an equivalent
method of applying a single dot of ink to paper. The bit positions in porder are in groups of 8,
with the first position in each group the most significant bit and the last position the least
significant bit. An application produces 8-bit bytes in the order of the groups in porder.

An application computes the “image-data bytes” from the internal image, mapping vertical dot
positions in each print-head pass into 8-bit bytes, using a 1 bit where ink should be applied and
0 where no ink should be applied. This can be reversed (0 bit for ink, 1 bit for no ink) by giving a
negative pin number. If a position is skipped in porder, a 0 bit is used. If a position has a
lowercase 'x" instead of a pin number, a 1 bit is used in the skipped position. For consistency, a
lowercase ‘0" can be used to represent a 0 filled, skipped bit. There must be a multiple of 8-bit
positions used or skipped in porder; if not, low-order bits of the last byte are set to 0. The offset,
if given, is added to each data byte; the offset can be negative.

Some examples may help clarify the use of the porder string. The AT&T 470, AT&T 475, and

Technical Standard 2009

Application Usage Printer Capabilities

C.Itoh 8510 printers provide eight pins for graphics. The pins are identified top to bottom by the
8 bits in a byte, from least significant to most. The porder strings for these printers would be
8,7,6,54,321. The AT&T 478 and AT&T 479 printers also provide eight pins for graphics.
However, the pins are identified in the reverse order. The porder strings for these printers would
be 1,2,3,4,5,6,7,8. The AT&T 5310, AT&T 5320, Digital LA100, and Digital LNO3 printers provide
six pins for graphics. The pins are identified top to bottom by the decimal values 1, 2, 4, 8, 16,
and 32. These correspond to the low six bits in an 8-bit byte, although the decimal values are
further offset by the value 63. The porder string for these printers would be ,,6,5,4,3,2,1;63, or
alternately o0,0,6,5,4,3,2,1;63.

A.2.7 Effect of Changing Printing Resolution

If the control sequences to change the character pitch or the line pitch are used, the pin or dot
spacing may change:

Changing the Character/Line Pitches
cpi Change character pitch
cpix If set, cpi changes spinh
Ipi Change line pitch

Ipix If set, 1pi changes spinv

Programs that use cpi or Ipi should recalculate the dot spacing:

Effects of Changing the Character/Line Pitches
Before After
Using cpi with cpix clear:
spinh’ spinh
Using cpi with cpix set:
orhi
inh’' inh = spinh' 0——
spin spinh =spinh' 0
Using Ipi with Ipix clear:
spinv’ spinv
Using Ipi with Ipix set:
orhi
. r . - .]
spinv spinv = spinv I—or i
Using chr:
spinh’ spinh
Using cvr:
spinv’ spinv

orhi’ and orhi are the values of the horizontal resolution in steps per inch, before using cpi and
after using cpi, respectively. Likewise, orvi” and orv are the values of the vertical resolution in
steps per inch, before using lpi and after using lpi, respectively. Thus, the changes in the dots
per inch for dot-matrix graphics follow the changes in steps per inch for printer resolution.

X/Open Curses, Issue 7 375

Printer Capabilities Application Usage

A28

A.29

376

Print Quality

Many dot-matrix printers can alter the dot spacing of printed text to produce near-letter-quality
printing or draft-quality printing. It is important to be able to choose one or the other because the
rate of printing generally decreases as the quality improves. Three strings describe these
capabilities:

Print Quality
snlq Set near-letter quality print
snrmq | Set normal quality print
sdrfq | Set draft quality print

The capabilities are listed in decreasing levels of quality. If a printer doesn’t have all three levels,
the respective strings should be left blank.

Printing Rate and Buffer Size

Because there is no standard protocol that can be used to keep a program synchronized with a
printer, and because modern printers can buffer data before printing it, a program generally
cannot determine at any time what has been printed. Two numeric capabilities can help a
program estimate what has been printed.

Print Rate/Buffer Size

cps Nominal print rate in characters per second
bufsz | Buffer capacity in characters

cps is the nominal or average rate at which the printer prints characters; if this value is not
given, the rate should be estimated at one-tenth the prevailing baud rate. bufsz is the maximum
number of subsequent characters buffered before the guaranteed printing of an earlier character,
assuming proper flow control has been used. If this value is not given it is assumed that the
printer does not buffer characters, but prints them as they are received.

As an example, if a printer has a 1000-character buffer, then sending the letter 'a’ followed by
1000 additional characters is guaranteed to cause the letter 'a’ to print. If the same printer
prints at the rate of 100 characters per second, then it should take 10 seconds to print all the
characters in the buffer, less if the buffer is not full. By keeping track of the characters sent to a
printer, and knowing the print rate and buffer size, a program can synchronize itself with the
printer.

Note that most printer manufacturers advertise the maximum print rate, not the nominal print
rate. A good way to get a value to put in for cps is to generate a few pages of text, count the
number of printable characters, and then see how long it takes to print the text.

Applications that use these values should recognize the variability in the print rate. Straight text,
in short lines, with no embedded control sequences will probably print at close to the advertised
print rate and probably faster than the rate in cps. Graphics data with a lot of control sequences,
or very long lines of text, will print at well below the advertised rate and below the rate in cps.
If the application is using cps to decide how long it should take a printer to print a block of text,
the application should pad the estimate. If the application is using cps to decide how much text
has already been printed, it should shrink the estimate. The application will thus err in favor of
the user, who wants, above all, to see all the output in its correct place.

Technical Standard 2009

Application Usage Selecting a Terminal

A3

A4

A4l

Selecting a Terminal

If the environment variable TERMINFO is defined, any program using Curses checks for a local
terminal definition before checking in the standard place. For example, on implementations
which use the traditional directory layout for the terminfo data, if TERM is set to att4424, then
the compiled terminal definition is found in by default the path:

a/att4424

within an implementation-specific directory.

(The a is copied from the first letter of att4424 to avoid creation of huge directories.) However, if
TERMINFO is set to SHOME/myterms, Curses first checks:

$HOME/myterms/a/att4424

If that fails, it then checks the default pathname.

This is useful for developing experimental definitions or when write permission in the
implementation-defined default database is not available.

If the LINES and COLUMNS environment variables are set, or if the program is executing in a
window environment, line and column information in the environment will override
information read by terminfo. The use_env() function can be used to override this default
behavior.

Application Usage

The most effective way to prepare a terminal description is by imitating the description of a
similar terminal in terminfo and to build up a description gradually, using partial descriptions
with a screen-oriented editor, to check that they are correct. To easily test a new terminal
description the environment variable TERMINFO can be set to the pathname of a directory
containing the compiled description, and programs will look there rather than in the terminfo
database.

Conventions for Device Aliases

Every device must be assigned a name, such as vt100. Device names (except the long name)
should be chosen using the following conventions. The name should not contain hyphens
because hyphens are reserved for use when adding suffixes that indicate special modes.

These special modes may be modes that the hardware can be in, or user preferences. To assign a
special mode to a particular device, append a suffix consisting of a hyphen and an indicator of
the mode to the device name. For example, the —-w suffix means wide mode; when specified, it
allows for a width of 132 columns instead of the standard 80 columns. Therefore, if you want to
use a vtl00 device set to wide mode, name the device vt100-w. Use the following suffixes
where possible:

X/Open Curses, Issue 7 377

Application Usage

A42

378

Application Usage

Suffix

Meaning

Example

W

—nam
-n

—np

-Iv

Wide mode (more than 80 columns)
With automatic margins (usually default)
Without automatic margins

Number of lines on the screen

No arrow keys (leave them in local)
Number of pages of memory

Reverse video

5410-w
vt100—am
vt100—nam
2300—40
c100—na
c100-4p
4415-rv

Variations of Terminal Definitions

It is implementation-defined how the entries in terminfo may be created.

There is more than one way to write a terminfo entry. A minimal entry may permit applications
to use Curses to operate the terminal. If the entry is enhanced to describe more of the terminal’s
capabilities, applications can use Curses to invoke those features, and can take advantages of
optimizations within Curses and thus operate more efficiently. For most terminals, an optimal
terminfo entry has already been written.

Technical Standard 2009

Glossary

background
A property of a window that specifies a character (the background character) and a
rendition to be used in a variety of situations. See Section 3.3.6 (on page 17).

Curses window
Data structures, which can be thought of as two-dimensional arrays of characters that
represent screen displays. These data structures are manipulated with Curses functions.

cursor position
The line and column position on the screen denoted by the terminal’s cursor.

empty wide-character string
A wide-character string whose first element is a null wide-character code.

erase character
A special input character that deletes the last character in the current line, if there is one.

kill character
A special input character that deletes all data in the current line, if there are any.

null chtype
A chtype with all bits set to zero.

null wide-character code
A wide-character code with all bits set to zero.

pad
A window that is not necessarily associated with a viewable part of a screen.

parent window
A window that has subwindows or derived windows associated with it.

rendition
The rendition of a character displayed on the screen is its attributes and a color pair.

SCREEN
An opaque Curses data type that is associated with the display screen.

subwindow
A window, created within another window, but positioned relative to that other window.
Changes made to a subwindow do not affect its parent window. A derived window differs
from a subwindow only in that it is positioned relative to the origin of its parent window.
Changes to a parent window will affect both subwindows and derived windows.

touch
To set a flag in a window that indicates that the information in the window could differ
from that displayed on the terminal device.

wide-character code (C language)
An integer value corresponding to a single graphic symbol or control code.

wide-character string
A contiguous sequence of wide-character codes terminated by and including the first null
wide-character code.

X/Open Curses, Issue 7 379

Glossary

window
A two-dimensional array of characters representing all or part of the terminal screen. The

term window in this document means one of the data structures maintained by the Curses
implementation, unless specified otherwise. (This document does not define the interaction
between the Curses implementation and other windowing system paradigms.)

window hierarchy
The aggregate of a parent window and all of its subwindows and derived windows.

380 Technical Standard 2009

Index

<10 1 45 GRS S 377
COUTSES.IIS ettt ettt e ete e et e et e et e e aeeeteeeaeeeteeeaesenteeeseeenteesassenseesnesensseenesennes 306
B S 5 4 1N TP 320
Bt 2 Tet 5 o 1 s DRSO 321
@ ettt ettt e e aett e e —eea—tea—t e —tea—ttan—t e et eatteeaaee—teateeatteateeeaeeatteeatteereeeneeenteeereeentes 366
XBD specification

TelatiONSNIP T0 . ..iiiiiiii s 13
XSH specification

1e]atiONSRIP T0 . ..viiiiiii s 13
B V20 0} 5 TR 25
_XOPEN_SOURCE ...ttt ettt eetee et eeae e e eteeeae e e teeeaeeesaeeesesenteeeseeeteeesssenseessesenseeeseseseeesesenras 10
QUCSC uvrrreeeeeeiurteeeeeeetrreeeeeeatraeeeeeaaareaaeeaaaraaaeeaaabataeeeaaataaaaaeeaaabaaaeeeaarbaaeeeaaabateeeeeatareaeeeaaaraeeeeeeanrraeeeeannres 361
add

effect on straddling character ... 20

1eSUltINg TENAITION. ..o 21
F=T Lo 15 400 4 od s (o) s WU ROTTORTORUROT 18
AAACIN() cveeetete ettt bbbttt b et b et bbbttt b et be e ene 36
=T [s [43 =) 5 (RS TOROTUROT 37
F=To U Lol <1 w () SO OO OO OO OO OO OO OO O USRS SOT USRS 37
AAANSII() cevetitetirteiert ettt ettt ettt b bbbt b et bt b et b ettt bt be e ene 38
AAANIWSET() e+ttt ettt ettt b bbbttt bbbt b et b et e bttt et b et be e 40
=T [11 4 SRRSO 38
=T Lo A 741 o PSRRI 40
AAA_ W) 1ttt ettt b et b ettt b et b e 33
AAA_WERNNSET() -ttt ettt ettt bttt b ettt b ettt b et be e 34
=T Lo I el 4 V=1 v oSO 34
adjustment of CUTSOT POSIION........ccuiuiuiiiiiiiiiiiccc e 19
advertised PIINt TALEcccciiiiiiiii e 376
AAVISOTY AElAY ... 350
alias

FL Y1) 5 04 1 4} (o JUU OSSRt 337
AltErNAte CRATACIET SEL.....ccviiviiiieticieceeteee ettt ettt ettt et e e teeaeereeteereeseeraesbeenseseas 358, 373

HNE ATAWINIZ ..o 361
alternate KeyPad ..o 360
=1 0 0 SRR 353

ignoring linefeed after ... 365
P2} g T <11 (0) PSS UPUPRN 15
ANn Arbor 4080 (€XAMPLE)ovmimiiiiiiiiiiii e 355
ANSI foreground /background............ccciiiiiiiiiiiiiicccc e 363
application CONSIAETAION.........c.ciiiuiiiiiiiiiiiic e 27
LN <= Wl <Y § TR SRPOR 356
ATTOW KEYS ..ot 360
asterisk

FL YR 1) 5 04 1 4} (o JUU OO RURRRRTt 350
AT&T 4410v1

HNE ATAWINIZ ..o s 361
ATEIT AT70/ AT ettt e ettt e et e et s e ete e et e eteeeaeeeateeeteeessentesenseeesesenssenseeeneseseeeneeennes 374

X/Open Curses, Issue 7 381

AT&T 5320 (EXAMPLE) ..ottt 354
AT&T 610 (EXAMPLE) ..ot 349
AHTIDULE (ot 16
AEETOFE() woveneetitet ettt ettt ettt ettt bttt ettt s bRt b e st b et be Rt b et he b s et e st e st b e st be e seneene 43
AEELOTL ot 43
AEISEL Lo 43
AET_ZOE() eveeieeeeecec ettt 41
Eo N0 ol o) s ST ORRRTROR 41
=X d 0 o) o WO PP U PP TP RRRURRRROR 41
=N 0 <1< AP T U U P U PP TP RRRURRRRROR 41
AUAIble SIGNAL.......coiiiii e 353
AUEOMAtIC NATZIN ..voviiiici ettt s 353
AUEOMAIC INOTION .. 372
auxiliary printer CONLIOL. ... 365
DaCKGIOUNG ..o s 18, 379
background ChaTACeTccueiiiiiiiicee e 18
IMPLCIE US o.viviiiiiiiiici s 21
background COIOTouiiiiiiicii s 363
backslash
USE IN EETTIINSO ..o s 337
backslash in terminfo.........ccoeiiiiiiiiii s 350
backspace
SPECIAL PLOCESSINIZ.....vvvvietttctcttttct ettt 21
basic CAPabILItycccoiiiiiiiii e 353
baud rate, versus printer throughput ..o 376
DAUATALE() cvvervenieieieieieiet ettt sttt sttt ettt ettt et e bt e st et e s et ene st e st ssene et ene et eneebe s esetesetesestenesteneas 44
D e 363
Beehive SUPETIDEE ... 366
DEEP() - ettt 45
DL oo 353
EIAYS o.vveitttt bbbttt 350
DEIL e 353
VISIDLE 1. s 358
bidirectional WITHNEc.oouiviiiiiiici s 3
DREA() cvivieeriiiiniii s 46
DRGASEL.....eieie s 46
DREITIA() coviiiiiiiii s 48
DRGINASEL ..ottt 48
BIANKING tEXE ..o 358
BLIK (oo 358
DINKING SCIETL.......cuviiiiiiiiici it 358
DLOCK CUISOT ..o 358
BIOCK MO ... s 27
DOLA. oo 358
PIINEIINIG oottt 372
boolean capabilitycccoviiiiiiiiiiii s 338
DOTAET() vttt sttt et ettt ettt e b et e s e be st st ene st e st st ene et et et ene et et ese s esebesentenesteneas 50
eliminates straddling charactersccoeuoieiiiiiciii e 20
DOTAET_SEE() -eveuereeneeieieieteteteterte ittt sttt ettt ettt et et s et e st st eneste st st eneebene et eneebentesensesesesessenessenens 52
DOX AFAWING ..o 353
DOX() everttentrteerte ettt ettt ettt ettt ettt etttk et b et b et b bRt e Rtk e Rt et en e ek e ae ek et ek et et et ete s ese b eseeteneeteneas 54
DOX_SEE() cvevenerteneeietete ettt ettt ettt ettt sttt ettt e ettt ettt b et e stk e st et en et ent et et ek et et et ese s ebeeteseeteneeteneas 55

382 Technical Standard 2009

Index

brightness of Character ..o 358
DUTLET SIZE .ttt ettt ettt sttt e st st et et e st et et e b et ebe e ebe e eseneene 376
DULSZ ettt b et b et b et e sttt ae et ne et et b et be e be e be e be st ene 376
DI ettt ettt ettt b et b et bt e b e e Rt e Rt et e st et ene et e st be e be e ebe st ebe e enentene 353
CIEORN 8510 . cuviietieeeieetetete ettt ettt ettt ettt ettt ettt e et e et b e st e s e b e st s e st b e st esentesentesentesenseseasenensenes 374
calculating Print Fate.........ccoveviiiiiiciec e 376
Lo) o LSOO PO PO PR TP PRRPPTRPRROTRRPROt 4
€an_Change_COLOT()coovuiiiiiiiiiiiiniii s 56
Capability Of AEVICEccvviiiiiiiii 337
capability, deVICEccoiiiiiiiiiiiii 338
carriage-return

SPECIAL PLOCESSINIEvvvivititittctittctetct ettt 21
CDTEAK() ettt ettt bbb bbbttt ettt e b e bt et e h e bbbt et nee 59
CD ettt ettt ettt h bRt e st be st b e st b e st b en et e s esenteseasenebenen 360
CC enviroNMeNt VATriabIe........coceeiiririiriinierieieeretet ettt ettt ettt be bbb e ben 364
COC tuuttenteeeute et ettt e bt e st e et s bt ettt st e e s bt e s et e e b et e bt e e e e Rt e et SR bt e Rt e e R et e bt e e Ra e e b e e e a e e bt e san e et e e s an e e neeeneesareesaneeanes 363
change

affecting SUDWINAOW ... 14
Change TeSOIULIONciviviiiiiii s 375
character

TEPLACEIMENLE ...t 18

reSUltNG FeNAItION. ..ot e 21

SHAAAINE ..o s 20
Character INSEIT/AELETE ..ottt ettt e st esat e eate e saaeenveans 19, 357
character set

ALEEITIATE ..ottt ettt et e e e ae e te e ebeeebeeebeebaeeare e baeeabeeteeenbeereeas 358, 373

AS SUD /SUPETSCIIPE ..oucvviiiiiiii s 372

lIN@ AFaWING ...ocviiiiiiie s 361

TMATYLE ...ttt et e et e bt e e et e bt e ettt et e saa e ettt sab e e bt e e ab e e be e e bt e b e s bt e bt s bt e b e e et e e ba e e bt e bee s ne e nae s neesnneeneene 373
Character SPACING ..o 366
CREAT() v 60
T ettt et ettt e h e bbbt bbbt b bt et et et e a e a e bt e beeb e e bt b seeben 368

recalculate TESOIULION AftET.......ccvvuiirieieiiieieietee ettt ettt be st e 368
LS ettt ettt h bt bbb bt b bt e et et e a e st e bt e heeb e e b b sbeben 358
CIVES ettt ettt ettt ettt ettt b et e bttt e bt et s ae e s bt e e s bt e b e e bt e b e bt et e et bt e et e bt e Rt e eb e et sae et e ese e b e et e beearenbeeas 358
CLBAT .ttt ettt et et et a et h e bt e bt bbb bbb e bt et et et e a e e a e bt e bt eb e bt b sbeben 353
CLEAT SCIEEIN ...ttt ettt ettt et h e bt e bt s bt e bt b et e b et et et e st e st et eat e st ebeebeebeebesbesbenben 353
ClEAT 10 ENA-Of-TINE ...ttt ettt ettt b et et b et e s et se s ne s eneasenes 356
CLEAT() ettt ettt ettt b ettt et et e a e bt e st e b e bt e bt bbb bbbt e b e a e st e at bt e bt bt e bt e b b e be st e benee 61
CLEATOK() entetetetet ettt ettt b e bbbt e b b s bbb e b et ea b et et e bt e bt e bt e bt e b e b e s b st e b enee 62
ClippINg Of WINAOW ... 14
CITEODOE()ttt ettt et ettt e b e bt be s bt b e b s bt et et et eat et e at e bt e bt e bt e bt eb e b e s b e st e benee 64
CITEOEOL() ettt ettt et b e bbbt b bbb et et et eat e st e st e bt e bt e bt e bt e b e b e st e st e b nee 65
CIMUACR ettt ettt b bbbt b b st b e b et et et et ea e st e bt e bt eb e b b sbeben 364
Lol 41033 RO P O P O PP P TR PRRPTRPPRO 358
COAESEL .ottt ettt et et ea bt a s bt e bt bt s bt et e b s b et et et et ea b e st e st e bt e bt e bt sbe b e besbe e e bentens 1
COLOT ettt ettt et et a et b e bt e bt bbb bbbt e b et e st e st e bt e bt bt e bt b e b e bt ebenee 16
€OlOr MANIPUIATION ...ttt 363
COLORS ...ttt ettt ettt ettt es et e st e b et e b et e s e e e s et es e b e st b e st b e st bentese st esentes et enesseneesenebeneeseneane 30
COLOTS -ttt ettt ettt et et et e st e ae e bt e bt e bt e bt e bt b e b et e b e b et ea b ea b et ea e ea e bt e bt ebeebesbesbeben 363
110) o) [0) 4 1 1<) o | RSO RRY 56
COLOT_COMEEIIE() ettt ettt h bbbt b e s bbbt e b et et et e bt ebe e bt ebeeb e besbenaenbenee 66

X/Open Curses, Issue 7 383

COLOR_PAIRS ..ottt s 30
110 o) ol 1<) SRRSO 41
COLOT_SEL() ittt ettt a et b e bt e bt bt e bt b e s bt et et et eat et e st e bt eb e e bt e bt e b e b e st e st e benee 67
COLS .o 31
COLS bbb 353

STALUS LINE....ciiiiiii s 361
column

OFPRANEA ..ottt 18
COLUMNES ..ottt 377
comma

after last entry in terminfo ... 349

USE TN EEIININEO .. 337
command ChaTaCTeT ... 364
COMMENT IN EEITIINTO ...t e e 351
compilation eNVIIONIMENTciiiiiiii e 10
COMPLEX ChATACLETvvviieiiit et 17

fUNCHON NAMMIIIE ..o 25
Concept (EXAMPIE)cvvivirieiiiiiiiicccccc et 356
Concept 100

ignoring linefeed after WIap ... 365
Concept 100 (EXAMPIE) ...curviviririririrititiicitctcrctcct sttt ettt teae 357
COMNFOTIIIANICE. ...ttt ettt 3
CONVENTIONS, 1EXICAL.....iivievietieiecteecteeeeete ettt ettt et et ete et eteeteeeteeaseeteeseeteenseessenseesseeseensestsensesssensesseens 339
COOKI ..ot 358
COOTAINALE PAIT...vivivitititctitt ittt b sttt et s et tae 18
COPYWIIL() 1 ertrtirerincrct ettt bttt s sttt a bbbt teb bbbttt b bttt et ettt teteten 68
o) o OO OO 375

recalculate reSOIUtION AftET..........covvviiiiiiire s 368
CPIX ttt ettt ettt ettt ettt b bbbttt b e bbbk b ek bbbt bt b s bbbt ettt b aes 375
CPAIX] e 368
QS e teutetent ettt ettt ettt ettt bbbk oLt b et bt LR bbbk h bk b et bt b R b s bbb et e bbbttt aes 376
o3 OO 353

EIAYS ..ttt ettt 361
o3 e o OO 370
63 4o OO 373
6 OO 356
CUD o 355
CUDL ot 353, 355

EIAYS ..ttt ettt 361
QU e nenene 355
QUL e et n et nenene 355
CUET o e s ne 353
CUD 1ottt ettt ettt ettt ettt ettt ettt et a e b e b ek e bbbk bete bt bt e b e R bR bbb ek h ek b et bt bR b s bbb bbbttt b aes 354
current or specified POSItION........cccovviiiiiiiiiii 25
current or specified WINAOWccooviiiiiiiiii 24
CUTTENE POSIHION ..ttt 369
Lo =T OO OO OSSO 71
CUTSES . 1
CUISES WINAOW ..ot 379
cursor

ACTUAL POSILION ..ottt 18

analogue in printing terminalcccccoiiiiiiini s 369

384 Technical Standard 2009

Index

APPEATAIICE Of v..viviiiiiiiiii s 358
CUISOT AAAIESSINGeeieiiiectct ittt 354
CUISOT MMNOVEITIEIIE c..eeiiiiiiiiiiiiiiieiitete ettt ettt et sttt saa e e be e s bt st e saneebeesanessneesnnesaneesnneeanes 353

TELOCATION ..ttt ettt ettt ettt s et et e b e s et et e s en s et ea s e s eabes e besebeneebenesseneesentesansesensenn 19

WIthIN FOW OF COIUIMINuiiiiiiieiirieieie ettt sttt ettt b et s et se st esestenestenesseneas 355
CUTSOT POSIELOM ...ttt enas 18, 379

Lo 411y & A () <1 < SRRSO TSRO 19
CUTS_SEL() cuverventententetentet et ettt et et e bt b e sttt e e et et et e e e st eat e st e bt e bt e bt s bt eb e b e e b et et et et enteatemtestebe e bt ebeeb e besbentenbenee 70
(o § o (=15 o o RSP 69
CUUL ettt ettt ettt et et et e bt st e sat e st e e ba e e bt e b e e e aaeeabe e sab e e st e eat e e bt e eaa e e beeemneeab e e san e e bt e san e enneesaeeeabeesaneeans 355
UL ettt ettt et ettt s bt et e s bt e b e e bt e bt e bt e bt e atesb e e st e sb e et e sae e bt sme e beemnenbeeanenbeens 355
CUID/ A/ E/U]LT ettt ettt ettt b et b et b et et ettt ne s ne s enen 370
CVT ettt ettt ettt ettt st e bt st a e et e h et et e e a e e bt SR bt e Rt e Rt e bt e e Ra e e b e e e bt e bt e s aa e et e e s an e eneeeaeesaneesnneeans 368

recalculate TESOIULION AFtET.......ccvvuiirieieiiieieteteece ettt ettt ettt eneste e 368
CVVES itiitentieieeteetteste et e s bt et e bt et e s bt et e e bt et e ae et e e st e sb e e ma e s bt emb e s bt et e ebe e bt e st e bt e ateebeemtesbeemeesueenbesmt e beemnebeeanenbeens 358
8 ettt a et a et e et ea st et e s et R et e st b e st b e st b en e e b en s et entesentese s enesenen 356
L6 1) OO 373
darkened Printing ... 372
ALA EYPES ¢ttt ettt 12
Aatabase, tEITNIINLOccuieviitieeecectececete ettt ettt et et e e teeseete et e eteeseeseeseenseeseerseetsensenteenrenreens 337
Datamedia (EXAMPLE)cccviiiiiiiiiiiiiiiii s 357
D ettt a ettt et ettt s bRt e st be st be st b enteben s et et esentene s eneasenen 356
6 1] o OO OO OO SU S U ST O U ERTOTRURRR 357
6 1<l 0 1 OO OO TSP TP O U OO 357
I ettt ettt ettt s bRt b e st e st be st b en e b et et entese b ene s eneasenen 373
definition, SNATINGccvoiiiiei e 366
def_Prog_mMOde() ..o 72
o <Y A=) < 11 o Vo e <Y ROTR SO RRTROR 72
LAY ..t 350, 361
delay MOAe......oiiiiiiiii e 24
delay_OULPUL() oo 75
16 123 1G] o 1 SO OO TSROSO SO 76
delete

effect on straddling character ..o 20
delete /INSEIT CRATACEETooviieieeeieeee ettt ettt e e et e e s e ae e sabeettesateeaeesasesnseesnaeennes 357
F6 1<) e LW =T o) 11 a L= P T TOTT OSSOSO 356
AEIETEIN() cevvirtetiteiiete ettt ettt ettt ettt ettt ettt s et e st e st b e st b et be st b et s et e s et e st b e st b et beneebeneene 77
16 123 1Y o) o OO OO O SRRSO 20
EISEIEEINI().venvvirteuiteiietei ettt ettt ettt bttt ettt et e s et e s et e s e b e st b e st b e st be st e s e st ese st es et eneasenesenebeneeseneane 78
EITWINI() cvnetttet ettt ettt ettt ettt s et e s et e s et e st b e st b e st b e st s et ese st e s et e st et e st b eneebeneesenene 79
AEI_CUTTEITI().ttt ettt ettt ettt ettt ettt ettt e st e st b e st b e e b e st e se e ese st e s et enesenesenebeneeseneane 73
AETIVEA WINIAOW ..ttt sttt ettt et ettt et b et ebesb e be s b sa e benee 15
AEIWITI() ettt ettt b bbbt bbbt e et et eat e st e st e bt eb e e bt e bt e b e b e s b et et enee 80
description Of AeVICE.......cccvviiiiiiiiiii 337
destructive SCIOLLNG........c.ovviiiiiiici s 356
AESTIUCHIVE £AD ..ttt ettt ettt et be bt bbb b ben 365
device CapabIlity......cccooviiiiiiiiii 337
AEVICE NAIIIE ..ttt ettt b e bt bbb st e b e b et et e st et eat e st e bt ebesbeebesbesbenben 377
dialup terminal ... 364
Digital LA100, LINO3ccoiiiiiiiiiiiicn s 374
AT ettt ettt ettt et a ettt e et ettt h bRt s b e st b e st b e st ehen e et et esenteneseneabenen 358
direct cursor addreSSINg.........cueiiiiiiiieiicici s 354

X/Open Curses, Issue 7 385

ALttt ettt a et etttk a et ettt R et e Rt e st b e st b en e e b en s et et e senteseaseneabenen 356
LT ettt a ettt ettt et e st s e st be st b e st b en e e b en e et entesentesesenesenen 356
IO ettt ettt et ettt h e bt bbb bt b bt e e st et ea e st e bt e bt eb e bt besbeben 371
dot-MatriX GrAPhiCScvoviieiiciie s 374
AOUPAALE() o s 82
Araft-qUALIEY ..o 376
AraWINgG @ DOX c.vcuieieiiiiiiiiiiccc ettt 353
AL ettt a ettt ettt et ettt s et e st be st b e st b en e e b en s et entesenteseasenesenen 361
AUPWIN)t 83
B ettt bttt a et a et ae ke stk e et et b et e b et e b et e b et b et eRe b ene et e st te e teneeteneene 5
ECRL. ettt ettt h e bbbt e h b bt b et et e b et et ea e st e st e bt eh e bt b sbeben 357
€CNO PIOCESSITIE ..vveviiiiiiictt bbb bbb bbb 24
ECIIO() cvtt ettt ettt h bbbt bbbttt e e ea et e e bt bt et e bt b e b e bt e benee 84
ECROCIAT() ittt ettt b bt b b bttt ettt et b et b e bbbt e b nee 86
ECRO_WECNAT() ettt ettt b bbb bbbt ettt e b e bt et b e bbb st e b nee 85
B ettt a ettt a et e a et ea e et ea s et et st bRt e Rt e st b e st b ent e b en s et et esenteneasenebenen 356
@GN Dit...cooeee e 365
Bl ettt ettt a et a et a et ea et ea s et et st R bRt e st ebe st b en e e b en s et et esenteseasenebenen 356
ELT ettt et a et a et en et en et et s et st b e st e st be Rt b enteben e et et etenteseasenebenen 356
empty wide-character String ... 379
EMUIATOT, TEITIUNAL......viivieiiiiciece ettt ettt ettt et et e e e e e te e s e eteeseeteenseeseenseenseseersesssensesssensenseens 363
EI1 ottt ettt ettt et et h e a e st h e et a e e bt e bt SR bRt e Rt e bt e e Ra e e bt e e bt e bt e s aa e et e e s an e eneeeaneeabeesnneeanes 355
EILACS . .veeeererutieite et e et e e e sttt e bt ettt s bt e s bt st e b e e e bt et ea e e bt SR a e Rt e aa e e bt e e Ra e e b e e e bt e bt e s aa e e bt e s aa e e bt e eaeeeabeesnneeanes 358
end-of-line

TrUNCAtION/ WIAPPINE ...cvvviiiiiicii s 19
EIUAWWITI() ettt ettt e a et b e b e bt s bbb s b et et e b et eat e st et e bt e bt bt bt b e b e be st e benee 87
€NhANCEA ChATACTET SOeouiiiiiiiiiete ettt ettt st b e b bbb e se et neens 2
eNhaNCEIMENT, TUITL Off.....c.viviiiiceiciececetece ettt ettt eteeveeteeteeaseeseersestsesesseensesseens 358
€O ettt ettt et h e st a e st h et et e et e bt e b et SR bt e Rt e Rt e bt e e et e b e e e bt e bt e s bt e bt e san e e bt e eaeesbeesaneeanes 358
ETASE .eeeeneeeeirieeite et et et ettt ettt et a e et e st e bt e b et e bt e b et s bt e ae e et e e R et e bt e ba e e bt e be e s b e e bt e et e e na e et e e beeebeenee s 61
ETASE CRATACTET ...unieiiieee ettt b e bbbt b bt e et et e st e st e bt e bt ebeebesbesbenben 379
€IASE 10 ENA-OF-TINE....cieiiieiieieieieeee ettt bt e b e ettt et ne s s s enes 356
EIASE() c+euvenretetetet et et et et et e et et e bt e bt e bt s bt et b e s et et et et e a e a e h e bt e bt e bt e bt b e bbbt b et ea e e st et e bt e bt bt e bt eb e beebe st e benee 88
ETASECIIAT() c.venteutentetet ettt ettt ettt ettt et et e st e bt et e bt e bt e bt s bt e b e b s b et et et et ea b e st e a e e bt e bt bt e bt b b e st et e benee 89
EIASEWCAT «.ntvieieiiieiieieitetete ettt ettt ettt ettt e st e st et et e b en s e s e e e s et es e bes e b e st be st bentese st esentesenseneseneseneebeneeseneene 89
EITOT TUUITIDETS ...c.vieveiiieiietenietentetetet ettt te st tes e bestesentesestesessesesseseasenesenteses e benteseneesensesenseneseneseneseneeseneane 13
€SCaAPE IN tEIMUINLO c..vuiviiiiii s 350
€SCAPE SEYUETICE....c.viueitieretisietistetit ettt ettt ettt e st e s et e ab et e s b et e bt e b e be b e be b e s e b e s e b e s s e b e b e b s b et s b et b e se b e se bt es 14
ES1OK ettt et h b bbb bt b bt e et et ea et b e bt bt bbb ben 361
estimating printer throughput ... 376
B ettt ettt ettt ettt a bRt en et e st en ek e n e ek ea s ek ea s e st e Rt b e Rt e st eh e Rt b enteben s et entesentenenbeneabenen 355
extension

B ettt bbb st ekt h et R e e Rt bRt e Rt b et b et b et b et eneete st beneebeneeee 5

O B ettt b Rt bea e b e stk et st R e e Rt b e Rt b e Rt b et e b et b et b et ene et e st teneebeneee 5
EXETA TINE Of SCTEEI ...ttt ettt bttt b et b et e b et e s et e senbesenseneasens 361
extra-bright Character ... 358
B ettt ettt a et a et ea et en et en e ek ea s et e At e s et R et e st b e st b e st s enteben s et et esenten e s enebenen 364

EIAYS ..vveeitttt bbbttt ettt 361
FHIEET() euveveneeretet ettt ettt ettt ettt ettt e st e st b e st e b et e b e st ese st e s et esea b e st b e st b e st b e st e s et ese st e s et e st b e st b e st beneesenene 91
TSt TINE AN EEITNINTO .evveviieiieieieteete ettt ettt ettt ettt b et et et et et eseaseneasenes 337
flag, tOUCNEA..........coiiiii s 14
FTASK «. ettt ettt ettt ettt h bRt b e st be Rt b e st b e st et en e et et e sentenenseneabenen 358

386 Technical Standard 2009

Index

EIAYS ..ttt ettt 350
FTASI() 1ottt ettt ettt b et b et s e st e Rt b e st b e st b e st b et s et e s et ene et ene et eneebeneesenene 92
flasShing SCIEEMcuviiiiiiccic e 358
FLOW COMUETOL ..ot 365
FTUSIINP () et nenenen 93
fOT@ZIOUNA COLOT ..ottt 363
£OTIN fEE .. 371
fOrmat Of ENETIESvvviviiii 6
format Of teIMUINTO.......covviiiiiiii 337
ESL o 361
FUNCHON NAMING ..o s 24
functions

IMPIEMENTATION ...vviiiiii s 9

LT O OO OO TR EOOTEO RO 9
generic terminal desCription........coccioiiiiiiiiii s 364
GEIDREYX() cerverieieetetet s 97
GEIDKG oo 46
GEIDKEA() e 99
GEDKGITIA ..o 48
GEIDKEINA() ceovivieiie e 100
GEECCRAT() «oveieiee e 101
=03 (T TR 102
o8 10T 0 OO 97
GEEMAXTX() oveveriririnircict ettt ettt et ettt 104
Fo0S] w15 (OO 107
GEINLWSEI(). cecviritctinctctt ettt ettt 105
OEPATYX ottt 97
L0 5 T= o7 (OO 109
BOESET s 107
oS3 115 (OO 110
GEEWIII() cvveviieieiceee ettt 111
o1 OO 97
Fo0S] 70 (OO 112
GEEWER() et 94
GO WL (ot 105
GEOE WSTI() orceett ettt 96
glitch, MAGIC COOKIEuviiiiiiiiiiici s 358
BLYPI oottt 20
00 OO 364
o0 =1 0 010 0T 1 OO 338
graphic rendition, SEHNEcoviiiiiiiii s 359
graphics, dOT-MATIXcvoviieiiiieie s 374
graphics, HNe-drawing ... s 361
half line cUrsor MOVEMENL........ccovviiiiiiiiiiii s 364
half-bright Character ... 358
RALEAEIAY() vt 113
T T T ol 0] (o) 4= RSOOSR R SRRSO 56
NAS_COLOTS() cuvvireenirienisteieie ettt ettt ettt ettt sttt et et et e b et et et e s et e st s e st st es e st en e st enesbenteseneebensesensenens 114
IHAS_TC() tververetemerientrte sttt e ettt ettt ettt st b sttt sttt et et et b ettt b et bt e st et e st et e stk entete e et et et et etennenens 115
| T V=T 1 TSSOSO RO RPN 115
HAZEIHNE ..ottt 365
G s 353

X/Open Curses, Issue 7 387

A ettt ettt bRt b et b et s bRt e st b et bentebe st ebe e ebeneene 364
header liNe i teIMNINTO . .c.veuirieiieiiie ettt ettt ettt ettt be e be e be e ene 337
EAETS ...ttt bbbt ae bRt n bt e st be st be e se e ene 305
Heathkit H19 (EXAMPLE)cuiuiuiiiiiiiiiiccccecceeececcce e e 361
Hewlett-Packard

model of color SPecification..........ccoiiiiiiiiiiiiiii s 363
Hewlett-Packard 2621

KEYPA .o s 360

magic COOKie GItCh ..o 358
Hewlett-Packard 2645 (EXAMPLE)c.cururuiuiimiuiiiiieiciieeceiecieieieiee e sese oo senenenes 355
high-order bit, SEttiNgccooeuiiiiiiii e 365
highlightingcooueiieiic 358
IIIINIE() vttt ettt ettt ettt ettt ettt ettt et et ettt b et bbb et bt e st et e st et e stk en et et et et eteneetentenens 116
NI _SEE()eevenveverenirienirteeete ettt ettt ettt ettt sttt ettt et et et et e b et et et e s et e s et e st et e st et e st et entete st et et etentetentenens 117
IS ettt a bRt b Rt b e Rt b e n b en e b et e st e Rt e st be st et et be st ebe e neneene 363
MOIMIE. ..ttt ettt b ettt et b e n et b et b et a e ae b e s bt entebe st ebe e beneene 355
APA s 355
S ettt ettt s b e st b e Rt b e n b e n bR e At e st e Rt s e st b et be st ebe st ebe e enentene 361
ettt h ettt s b e st b e st b e st ben b e b en b e s et e st et e s et e st be e ebe st be e esentene 360
S ettt ettt s b e Rt b e Rt b e n b e n e b e At s et e Rt e st b e Rt et eneebe st e b e e bentene 360
ULttt b e Rt b et b et b et st e ae b e sttt bentebe st be e ebeneene 364
Z ettt et s et bea b et b et e b et se b e Rt e st e st be st ebe st ebe e ebentene 365
CIL ettt ettt h bt bbb bt b b et et e st et ea e a e bt bt eb e bt b seeben 357
IR ettt ettt ettt ettt h bt bbb bt b bt e b ea b et ea e a e bt e bt ebe b b sbeben 357
TAICOK() ettt sttt et ettt e st e bt e st e bt e bbbt sb e b e bbb e b et et ebentene 118
ATOK ottt ettt ettt b et b e ekt s e st e Rt b e n b et be st b et se s s et ene b e st e st beneeseneene 62
IATOK() 1ntetentetetetert ettt sttt sttt ettt et et e sttt e b st e b st ese st e st et e st e b e st st ene et eneebe e ebe e e b et e se st enenae st et eneeseneeee 119
T ettt b ettt h e st n et ea et e st et ea e ek ea s s ea s e s et e R et e Rt e st be st e s e st ehen s e s entesenteneaseneasenen 360
Tl ettt b ettt ettt s et a et a et ea ek ea e et en s e R ea s e st R e e st e st b e st et e st eben s et en s senteneasenesenen 356
TLT ettt ettt h e st a et a et ea et ea ek ea e R et s et Rt e Rt e st b e st e ben e e s en et entesenteneaseneasenen 356
IMNIMNEAOK() c1veteee ettt ettt b s b bbb st b e b et et e b et eat e st e bt e bt ebeebesbesbeben 120
implementation-defined...........cccooiiiiiiinii e 4
TTECRI() ettt bbbttt ettt h e bbbt e b bbb b b et ea b et et eaeea e e bt bt eb e b b sbeben 123
IUCRNISET() ettt ettt ettt b e b e b b e bbb s b e b e b et et et et eatea e bt e bt eb e b besbeben 124
ITUCRISET <.ttt ettt e b e bbbt e bbbt e b et et e st et et ea e a e bt e heeb b b sbeben 124
U 1ttt bbbttt s bbb e Rt be st b e st b e Rt b et b et e re s ene et eneese st senene 353, 356

EIAYS ..vvvietttt bbbttt 361
independence of print modes assumed............cccoooviiiiiiii 372
TTUATL ¢ttt bbbt b et st b et e st bRt b e st b et b et b et e se s e st et enebeneebeneeee 353, 356
INFOCIIP oo 324
ITUIEC ettt e st s b et e e bt et saa e et e saa e bt e ean e ebe e nneeanes 363
INIHATIZATION 1.ttt et e e e et e e ebe e tee e beeetaeeabeestbeenseenteeebeeeseeeabeessaeenreens 27,360
INitialiZation SNccveiiiei s 27
initialize @ COLOT-PAIL......ciiiiiiccc e 363
EIUEED et 363
TTUESCI()ttt ettt ettt ettt ettt e st et e bt e bt e bt s bt e bt b e b e s b et et et e st en b et eat e st e bt e bt ebeebesbeseeben 126
FE VLA ole) (o) U ORRY 56
TE_COLOT() caventententet ettt ettt et b e bt bbb b s e b et et et et et eateat e bt e bt sbeebesbesbenben 125
INIE PAIT cooniiiiiii s 56, 125
TINISET() 1ottt ettt ettt b ettt ettt et e st e bt e bt e bt e bt bt e bbbt b e b et ea b ea b et eatea e bt e bt eh e b s besbenben 128
IIITIWSET(). ettt ettt ettt ettt et et et e st et e bt e bt e bt s bt e b e b e b e st e b et et en s ea b et eateateae bt ebeebesbeseenben 130
TTISCI() cteteteet ettt ettt et et b e bt bbb bt b bbb e st et ea e a e bt e beeb e bt b sbeben 134

388 Technical Standard 2009

Index

INISAEIINI() cevvietetiietiete ettt ettt ettt ettt et et et et et et e s et e s e s e s e b e st b e st ebenteseneesentesensesenseseasenensenes 135
insert

delay Per LINEovviiiiiiiiiicicccc ettt 350

effect on straddling character ..o 20

reSUltNG FeNAItION. ..ot e 21
INSETT/ AELETE CRATACLET ..ottt ettt e e e ae e st e e ttesateeaeesasesnsesnseennes 357
INSEIT/AELETE LINE ...ttt ettt e et e st e e eaeeete e sabeeteesatseaeesaseesnsesnneennes 356
ITISETTION .t utteeiteeite ettt ettt et e st e et e e st e e beeste e st e e aeesabeesabesabe e sbeessaestessbaensaesabaessesaseensbesnsaenseesnsaenseenn 19
TISEIEIII() ettt et ettt et b e b bbb bt b et et e e et et ea e st e bt e beeb e bt b saeben 136
TTISTUSTI() vttt ettt ettt bttt ettt et et et e st e st e bt e bt e bt s bt e b e b e b et e b e b et et et et ea e e a e bt e bt eb e e b besbenben 137
11 0111 u o OO U OO TS U U PTRURU SRRSO 137
ITUSET ettt ettt e et e et e s bt e e e s a bt e e bt e s bt e e e a b et e et e e s bt e e e abe e e e bt e e e bt e e e abee e e bt e e enbaeeanreeenn 128
TUSET()ttt ettt b bbbttt et et e e st et e h e e bt e bt bbb bt b b et ea b ea b et ea e a e bt e bt eb e b besbeben 138
IS _IIWSET() ettt ettt ettt ettt ettt et ettt et e bt e bt e bt s bt e b e b e b e e b et et et emten b et eateatebe e bt ebeebeebeseenben 132
TITIS_WER() ettt ettt ettt ettt ettt ettt et et et en et et ettt e st b e st b e st b e st b enteben e et et esentene s enesenen 133
ITES _WSET cntiriieeeeietiie e e ettt e e eeetr e e e eeraaeeeeeeeestareeeeeetaaaeeeeesssasaeeeeesssbaseeeenstaseeeeeastaseseeeenabaaeeeeeenarreeeeeennres 132
interfaces

IMPIEMENTATION ..vviiiiii s 9

SYSTRITL .ottt 305

LISt utteeeuutee ettt e sttt e et e e e uteeesub e e e e bt e e s anb e e e bt eeeeab et e e a b b e e e bt e e e ab e e e a b e e e e a b et e e nb et e at e e e e be e e e bt ee s bt e e e abeeeearaeesbeeeeas 9
INEEINATIONALIZATIONcvieeieiieieieetest ettt s e ae st et e st e be e e e s e essessaesseseessenseessanseessesseensennes 2
INETEIUSI) 1ottt ettt ettt s ettt b e st b et e b et e b e st et entesentene s eneasenen 139
ITIVES 1etutteetieetteste et e st e e e sttt e bt e bt e e beesatesa b e e baeeaseesbaessbeenbeesab e e baeea b e e b e e e st e e baeeabeeabee e Rt e et e e eat e e baenateenbaennaeeabes 358
INIVISIDIE TEXE..eeuviieiiiieieceetecee ettt et sttt e st e et e e b e e st e s e e st e st aessesseessesseessesssessanssesannsansenns 358
ITEWSET ettt ettt ettt ettt et e st e st e s bt e st e e btesabeenbaesab e e saesat e e baeeas e e baeeabeeabaesabeenbaesat e e baenatesnbaenaaeeates 130
ITUWSET() ettt ettt bbbttt et et et a e a e bt e bt e bt e bt e bt b e b et e b e b et e a b ea b et ea e e a e e bt ebe bt b beseenben 140
I_WEII() ettt ettt bbbt bbbt b bbbttt et b e bt bbb sbeben 121
IN_WEORIISET() 1ottt ettt sb e bbb st b et et e et et e st e st e bt e bt e bt b e b sbeben 122
51T 4] 4 1<) 5 (E TR 122
E Pttt et ne s s nenene 357
10 0 OO OO 360
ST, 82, 183 ittt ettt ettt ettt h e bbb bbb b et ea e st et e a e a e bt e bt eb e b b sbeben 360
ISEIUAWATI() 1ttt ettt ettt et e b b s bt e bbbt et e b et e st e st et eateatebeebeebeebesbesbenben 143
ISO/TEC 6429: 1992 ...ttt ettt ettt ettt ettt s s s bt be st b e st e s e st esentesensesensesensenensenen 338
IS_NELOUCHEA() 1ttt ettt ettt ettt b et b et b et e b et e s ensesensesesenensens 141
FTCIIR 74 1 A Lo] Ta] o <o NSO 141
T ettt ettt ettt ettt ettt ettt ettt h ettt s et e stk en et e st ek ea e ek en s e s ea s e s et st e Rt b en e b e st ebe st eben e et entesentesenseneasenen 360
172 1 (TSRS 372
KA, KA3B ..ottt ettt et e ae et e e be e aa e et e e baeeaae e baeebe e beeeabeetaeeabe e baenareebaenraeentes 360
KD2 ettt a ettt h ettt s bRt e Rt e st b e st b enteben e et et esenteseaseneasenen 360
KIS ettt ettt a ettt et ettt s s s e e Rt e st be st b enteben e et et esenteseasenesenen 360
KO, KBttt ettt ettt et e aeeae et e eab et e etb e be e b e te et e eteeabeeatereeatere et eeteereeteenrenteen 360
o] TSRSt 360
ad =Y o TSROSO 360
a1 o X TSRS 360
ol U 1 RSOSSN 360
KOULT ottt ettt st et s et e st esbesaebeeseebeebeebeebe b e b esbesbessessessessessesseseeseesaeseerenrensas 360
KOUUL .ottt ettt ettt e e e s ae e b e s ae e s e e s e e s ees s e saessessaessessaessesssessenssessesssansanssensanns 360
KACIT ottt ettt e et et ettt s e s s e st b e st b e st b e st e b e st e b e st et et etenbesensenesenen 360
KAIT ottt ettt ettt ettt e et et et et et et e st s et e st e st b e st b en e b en e et et ese b eneabeneasenen 360
KO ottt ettt ettt ettt st e Rt e st be st b enteben e et et tenten e s enesenen 360
KEL ettt a ettt et et b et h et s b e Rt e st b e st b enteben s et et esentes e s enebenen 360

X/Open Curses, Issue 7 389

KEYNAMIE() 1.t 144
KEYPA ottt 360
KEYPAA() 1ovivivirirititcnttctct ettt 145
KeY_ PIefiX oo 338
KEY_NIAINE ..o 144
KEO, KEL, QIA SO OI caveviveeeeecteeeeteetee ettt ettt et et et eaveete e s e eteenveeseenseeaseseensestsensentsensenseens 360
KROINE ... 360
KIES 1o 360
KICRT o 360
KALT 1o 360
KTl CRATACEETeeeiiiiicciccc e e e 379
KAIICRAT <. et 89
KILLENAT () vttt ettt ettt ettt ettt et e e s et e st e s e b e s e b e st b e st esentesen e et ensesensesensenensenes 146
KIIIW AT «. ettt ettt et ettt eeeeteeaveete et e eteeseessenseessenseeasenseenseereenseereeneenees 89, 146
KINA 1o 360
KIL o oo 360
KIMU .o 365
KIYP ot 360
S 23« OO 360
KI Tt 360
KITNIT 1o s 360
KEDC o 360
last entry in terMINfOccviviiiiiiiii 349
LC_CTYPE ..ot 15
Lear Siegler ADM-3 (€XaIMPLe)......ccocvviiiimimiiiiiiiniiiiiiiic s 354
LEAVEOK ... s 62
LEAVEOK() euvenvententetet ettt ettt et b e bt bbb bt b bt e et e a e a e bbbt be b b ben 147
LEAVOK()ttt ettt ettt b et b bt b bbbt ea e a e bt e be e bbb b ben 148
left and tOP @AZe.......oviueiieiic e 353
Left MATGIN c..oocviiee s 371
left-to-Tight WITHNEoevieeii s 3
LRZACY vttt bbb 4
length of line, effect on print rate.........c.coooovieiiiiiiiic 376
letter-qUALILYc.oieieieiiic e 376
lexical CONVENEIONS.........cciiiiiiiii s 339
LE s 353
I£O, 11, QINA SO O vttt ettt ettt et ettt et e ete e e e teeaseeteeseeteenseeseenssesseseensestsensenteensenseens 360
LN 360
line drawing CharacCter ..o 14
LINE £EOM ... e e 371
lINE GIaPRICSeivivieiiiiciit ettt 361
liNe-drawing MACTOSc.coiuiuriiiiiicteie ettt bbb 308
liNe / COIUMIN COOTAINALEvveieviiiieceieeeteceeeeeee ettt ettt et e et eeeae e e aessaeesaaeesasessteesaseenseesssesnseesneean 18
LINES ..o 32
LIS o 353
LINES ..o 377
LINES O SCIEEM.......civiiiiii bbb 353
LL e 355
LINL et 365
LOCALE ..o e 1
10CALE-SPECIfIC.....oviiiiiiiiit s 15
long NAMe Of A@VICEc.vuiiieciiicicci e 337

390 Technical Standard 2009

Index

JONZNAIMNE(). cvivvivitititctct ettt ettt 149
LD e e e 375

recalculate TESOIULION AftET.......ccuviirieieieieieteteteee ettt ettt se st e et stenees 368
) OO 375
LPA[X] e 368
LSI ADM-3a (EXAMPLE)......iiiiiiiiiiiiiiiiiiicicii e 355
IV ettt bttt h e st a et a et e a et en ek a s et et s et Rt b e st e st b e st b en s e b en st et etentes e s enesenen 360
macros

HN@-AIAWINGcviiiiiiiiiici s 308
100 = e 1 SO OO OO PO T OO UTESRTERR 369
Magic COOKI@ GIECHouoviiiii e 358
MAaNAatory delay ..o 350
manipulation of WINAOW ... 14
10T N = OSSP PU PRI 353, 371
0= OO OO OO 4
MCO, MCA, ANA SO ONe.utiiiiieiieeiie ettt ettt e et e e e teeeeteeeteeebeestaeeebeesssessssessaeeasseseesaseesaeseseessessssenssensseenses 365
TYICS -eeenereenriennreetteeite et e ettt et e st e et e s bt e bt e e aa e e b e e e e s R bt e bt s bt e b et e bt e R et e bt et e bt e be e s bt e aae e bt e saneebeeennes 367-368
INCUD L] c.eetitit ettt ettt et b et e st et esb e s b eseebeebeebe et e et eebe b e b esbesbessessessessessesseseeseesaeseereeranrs 369
INCUA[L] ittt ettt ettt et et e st esbeseebeebeebe et e ebeebe b esbesbesbassessassessessassaseeseasaasesseesenss 369
INCUI L] oottt ettt ettt et e st et esbesbeseebeebeebe et e et eeb e b e b esbesbesbesbesbesbessesseseeseesaeteebeerenras 369
INCUU L] ettt ettt et ettt et e s b et esbesseseeseesaeseeseebaebeebesbesbesbessassassessessessaseeseasaasessensensas 369
INCUD / A/ E/U][L] oottt ettt ettt ettt e et e st e b e b e b esbesbessessesseseeseesaeseereerenras 370
Media COPY STANE ...ourviriiiriiiiiiiii sttt 365
INEEA KEY ettt ettt teae 365
TTEETA() cvenvetetetet ettt et ettt ettt h bbb bbb e et e e e st e bt e ae e bt e bt e bt e bt e b e b bttt e b ea b ea b et ea e e st e bt e bt eh e besbesbenben 150
TTEEIC cuttintetiat ettt ettt ettt ettt et et bbb bbbt b e bt bR bbb bbbk b R b e bbbkt b et ae e 361, 372
50Y) o OO OO 369

reverse Motion ShOULA NOt AffECLevviriiiieieieiee ettt 370
Micro-Term ACT-IV (€XAMPLE)cvrvrvriiiiiirireeieeeieieieeeieeeeeeeieteeete e eaeeeeees 355
Micro-Term MIME (€XAIMPLE).....c.curururiiiiiriririeieieieieieieieeeeeeieeeeete ettt eaeeeees 358
TIUIT cnteiieeteete ettt e et e e b et s bt et e bttt e b bt e b bt et s bt e b e s b e e b e b e e bt e R e e bt e Rt e e bt e Rt e eb e e et sbe et e eae e beenn e beeanenbeeas 357
01 D0 oo OO USRS 369
TIILS <ttt et a e a e e bt e h e bt bt e bbbt b bt et et et eat e st e bt e bt eb e e b besbenben 367
modification outside SUDWINAOWc.coueuivieirieiriiieteeeecee ettt 20
IMNOTION, AULOIMATIC .outiieiiiieciee ettt e ettt e et e e e s teeeeatbeestbee e abeeeessseeassaeesssaeaassseeessasensseeans 372
TTMOVE() +enventetententetet et et et et euteu e ebeeb e e bt s bt et et e b et et ea b et eateateae e bt e bt ebeeb e e b e b e b et et e b et entent et ententeneebeebeebesbesbenben 151
ITITCUD 1evtetiutetistetet ettt ettt ettt ettt as et e st ek et et b et e b e te s b e ae e b e ae e b e as e b e ab e b s as e b e e b e b e b e bbb e be b e se e b e s b e b e ab e b e as et e ab et ettt ebe b aes 354
107 . OO 358

enhanced PriNtiNgccooiiiieic e 372
multi-byte character

fUNCHON NAMMIILE ..o 25
MUIL-COIUMIN CRATACEET ...ttt et ettt e e b et be e ene 16
multiple character fUNCHONS.ccovviiiiiiiiii e 25
IILUSE. ettt ettt e a e et aa e st saa e eab e saa e e bt e aa e eneesaneeane 4
XLV ottt eitte e ettt e ettt e ettt e e ettt e e bt e e s bt e e e a bt e e e bt e e e bt e e e abe e e e at e e e hb e e e a b et e e bt e e s bt ee e nbe e e e bt e e ebbeeeeubeeeebaeeenneeeanreeean 152
IV PTEEIX coviiiiiiiei s 25

POSIHION ATZUMENES «....oviiiieice et 18
INVAAACR 1ttt ettt ettt et et be e b et e be st e s et e st b e st b eneebeneeseneene 36
INVAAACI() cvttetiteirte ettt ettt ettt e bbbt e st b e st ebe st e s e st ebent et entesentesenseneasenen 156
INVAAACIIISIT 1.ttt ettt et e et et e e bt e s e eteenbeeaeenseeteeseesseeseenseeseensennas 37,157
INVAAACRSET 1ttt ettt ettt et et b e s e b e e e se b e s et enessenebeneebeneeseneene 37
INVAAACRSEI() 1ttt ettt ettt ettt s et b e s be st ebe st sseneebeneesensesenseseasenensenen 157

X/Open Curses, Issue 7 391

392

MVAAANSIE oo
MVAAANSEE() eeveviieniieieieerereee e
MVAAANWSET ..ot
MVAAANWSE() weveviieniieirierieeee et
MVAAASEE v
MVAAAWSEL ..eeiveciieceeeeeeeeeree e
MVAdd_WCh ..cooiiiiiiiiie e
MVAdd_Wh() ceeveeeeeiieieeree e
mvadd_WChnStr........oooviviiiiiicieceeeeeeceeee

mvadd_wchnstr()

mMvadd_WChStooovviiiiiiiieieeeeeeeee

MVAEICh() e
MNVAETWIN() vttt
MVEetCh ..o
MVgetch() ..o
MVZEINST .o
MVEEtNSI() o
MVZEtN_WSEI oo,
MVEEtN_WSEI() .o
MVZETSTT..eiiiiii
MVEEt_WCh...oiiiiiii
MVEEt_WCh()i
MVZEE_ WS e,
MVHOLINE ..ot e
MVhINE()i
10 0074 0181 g LI
MVhINE_Set()....ccoevvevierieieieirerenereeee e
IMVINCA oottt
MVINCH() 1ottt
MVINCANSET ..o
MVINCANSEE() cveveieieieiee e
MVINCASET ...t
INVINNSEE .oviiiiiiieciieceree et esree e vaeeeaees
INVINNSTE() 1ottt
INVINNWSET ot e e evee e vee e
IMVINNWSET()ittt
MVINSCH oo
MVINSCA() cveiiieieieieeeee e
INVINSNSET ..eeiiiiieciieeeiieeeeiee e ireeere e esveeeereeeeaens
IMNVINSNSET() cvenveneeieieieieeeteee e
INVINSSET .ttt e e e
1001714 1] & (SO U SR UURU PSRNt
INVINS_TTWSET ooiiiiiiiiieieeiieeee et eearree e
MVINS_NWSE() cevenveieieieieieeeceeeeneseseese e
IMVINS_WCR c.vviiiiiiieeeeeeee e
MVINS_WCH() cviieieieieieiee e
INVINS_ WSET eeiiiiiiiiiiiiec ettt eeirreee e
INVINIWSET ©oeiiiiiieciieceiee et e e e evee e e vaeeeaens

.. 132,176
.. 130, 175

Technical Standard 2009

Index

50 087 1 4 T VYol o DT 121
ITLVATI_WICH() ettt ettt ettt b e bbbt b e st b et et et e b et e st e bt e bt e bt eb e b e b saeben 170
50 00741 o TN Vel 014 11 4 SO 122
TNV WCRIISTI() eententeiietete ettt ettt b s b ettt e et et eat e st e bt e bt sbeebesbesbenben 171
10 0874 1 o TNV ol 1 1] 0 oS 122,171
NIV tiuietinietitettt ettt ettt ettt ettt ekt bbb te bt bbb e s bbb ek h ek b ek b et b et b s b e bbbttt b aes 369

reverse Motion ShOULd NOt AffECEc..oovivuiiiiciiicceceeeeee ettt eae s 370
TVPTINEW() 1ottt 180
TTLVSCATIW () c1veuteutentententeutent et ett et et et e b e st e st et et et et et et eateateae e bt e bt e bt sb e eb e b e b e s e et e b et entent et ententeneebeebeebesbesbenben 181
INVVIIIIE 1ottt ettt et e et e e bt e e tte e teeeabeeeteeeebe e saeeassesseessseseseasaensseeaseesseenssessseenseeseean 116, 168
10 0 ATATH 1) o TSI 1 AR 117, 169
IV PIEIIX c.vviiiiriiiiiiciic e 25
INVWAAACR 1ottt e e et e et e e tee e be e taeeabeestbeeaseenteeeabaeesseenseessseenseens 36, 156
INVWAAACIINSIT ...ttt et e et e et e e be e taeeabeestbeeabeenteeebeesseeeaseessseenseens 37,157
INVWAAACISTT .ottt ettt et e e etee e veeetaeeabeestseeaseenteeebaeeseeeaseessseenseens 37,157
INVWAAANSET oottt ettt et e v e e te e eae e beeebeebeeeabeessseeaseessseensaesseebaensseenseessseenseens 38, 158
INVWAAANWWSET 1ottt ettt et e v e et eeae e te e ebe e beeeabeessseeaseessseenseesseebeeesseenseessseenseens 40, 159
INVWAAASTT 1ottt ettt ettt e et e e b e e teeeabe e baeebeeesaeeabeessesaseessseensaeseeenbaeesseeaseessseenseens 38, 158
INVWAAAWSET ..ottt et e et e e te e e ae e beeebeebeeeabeessaeeaseessseenseenseeebeeesseeaseessseenseens 40, 159
10 0 ATATZ=Te Lo I V0 el o WSRO 33,154
10 0 ATATYZ=Te o BTN 7el o1 o 1< o oS RPRR 34, 155
10 0 ATATYZ=Te Lo BTN 7el o T<] o SRR 34, 155
INVWCNGAL ..o s 60, 160
INVWARLCR ...ttt ettt ettt et et e ete et e ete et e etsenseeaseaseeaseseesseessenseeseeneennis 76,162
INVWEETCN ..ot s 102, 165
INVWEZEINSEE 1.ttt 107, 167
IMVWZETN_WSET ..ottt 105, 166
INVWEEESTE 1.ttt 107, 167
INVWEZET_ WO 94, 164
IMVWEZET WSEL Lot 105, 166
INIVWRIITIC ..ottt ettt ettt et ete et et teerteeseeaeeeteeneeeasensestsenseessenseessenseessenseenseneeenes 116, 168
§ 00 AVA YT o TSI TR TSSOSO 117, 169
IYLVIWITI() evtenveeeieteeetesteetesteeste st estesseesseeseesseesseseessasseassesseessesssessanssassenssassaessensaessesssessesssessenseessenssensenssensenns 182
INVIWATICR ottt ettt ettt e e ete e et e e beeeaae e beeeabeeseesabeensaessssebaessseenbaessseenseesaseenseensnas 123,172
INVWINICIIISTT ..ottt ettt et e teeeaae e beeeabeebeesabeensaesaseenbeesaseenbaessseenseesaseenseenenas 124,173
INVWITICIISET 1ottt ettt ettt e et e e e beeetae e beeeabeeseesabeenseestssebeessseenbaessseenseesaseensaenanas 124,173
IXLVWIATIIISET 1. eitiieeiieeeiiee et e e et e e ettt e e ettt e e e taeeetbeeeasaeeessseeassseaassaeaassseeanssasansseseassseeasssaeasssesanssseesnssens 128,174
IXLV WATIIIW ST «.teeiiieeeiieeeeieeeeiteeeteeeeteeeetaeeetbeeeasaeeessseeessseaessasaassseeanssasasseseassseeasssaeasssesanssseessssens 130, 175
INVIWITISCRL 1.ttt ettt e bt e et e e taeeaae e beeetbeeaseesabeensaesassebeessseenbaessseenseesaseensaensnas 134,178
18 AVAT AT 13 4 1] o USRS SRS 137,179
IXLVWATISSET L ntiiieeiieeeiiee ettt e eett e e et e e eetteeeetaeeetbee e esaeeasssaeassseaasssaeeassseeanssasasseseasssesasssaeanssesannsseennssens 137,179
IXLVWITISET Loeiiiiiiieiieeeitieeeieeeeieee e tteeeebeeeetaeeetbeeessaeaasssaeassseaassaseassseesnssasasseseasssesasssaeasssesanssseennssens 128,174
IOLVWVITIS _TUWSEE c.niiiviieeieiiteie e eeiit e e eeitee e e e eetar e e e e eestabeeeeeeesssaaeseeeenssaseeeeeessaseseeeensraseeesennssseeeeeensenes 132,176
10 ATAT A 1 T V£ o WS 133,177
IILVIWVITIS _WSET 1. eniiiiiieeieiiieeee ettt e e eette et e eeetar e e e e eesabeeeeeeeesaaaeeeesesstareeeeeensareseeeensbaseeeseensssseeeeensenes 132,176
IXLVWITIWSEE c..ttiiiiiieeeiiee et e eett e e et e e et eeetaeeetbeeessaeeesaseeassseaasssaeeasssseanssasanssaseassseeasssaeasssesenssseesnssens 130, 175
10 ATATY 41 (T £] o WO 121,170
10 VAT A 1 AT £ 6] 41 4 T<] o oS 122,171
10 VAT A 1 AT £ 6] 4115 (R RRRR 122,171
INVWPTIIEW .ottt ettt 180
TXLVTINSCATIW rveeeeeruurreeeeessnrreeeseesssseessesssssasessasanssseesssssssssesssesssssessssssssssssssssssssssesssssssseeesssssssseessessssseesesssnnses 181
INVIWVIITIE .ottt ettt ettt e e te e e tv e e bt e ette e beeebeeseeeebeesseeassesseesseenseeeasaensaeenseessesnssessseenseeseean 116, 168

X/Open Curses, Issue 7 393

Index

10 VAT AV I g LI <] SRR 117, 169
TUATHIX 1ttt ettt ettt ettt st st et st e et e e b et b et e b et b et e ae et e st e ne et e s et eneebe e be e beneeseneene 25
name Of CAPADILILYoiviiiiiiiiii s 338
NIAINE Of AOVICE ...uiveuieiinietiieteteiitet ettt ettt ettt et ettt b st et be st b e st e be st e b e st ese st eseases e beneebeneeseneeseneesensens 377
name space
X7 OPEIN..c e 10
A= 4415 g~ OO OO OO 24
TIAPINS() covveriiniieiet it 183
TICV ettt ettt ettt ettt s ettt et et e et et e st e bt e a e e he e bt b e e bt e bbb e A et et et et e st eatenteh e eh e e a e e bt e bt e bt e bt b e b e bt et et ententan 363-364
near-letter-qUAlity ... 376
TIEL 1ttt et a et et h bt h e e h bbb bbbt et et e atea e e st et e a e bt b she et e b e 353
NEEWOTK tEITIINAL. ...ttt ettt ettt ettt et be st be e se e ene 364
networked asynchronous terminal...........cccccooiiiiiii 27
TIEWIHTIE .ttt ettt b b e bt s bbbt s bbb et et e et et eat et et e a e bt be s bbb e 353
SPECIAL PLOCESSINIEZvvvivitititctctctttt ettt 21
NEWPAA() vt 184
TMEWEETIIL. ..ottt s et e bt e et et esaa e et esab e e bt e sma e e bt e ena e eabeesaneeaneesanesreens 126
TUEWEETTII() ententententeite ettt ettt ettt ettt ettt et et e bt e st e ae e bt e bt e bt s bt b e b e s b et e b e b et et et entemt e st e aeebeebeebesbe et enbenee 186
TUEWWITL 1otiieniienteniteat ettt et et et e st e este s bt e aesbeesbesae et e sae e bt esa e st e seesb e e st e sbtemaesbeembesmeenbeeatenbesabenbeensenbeensesaeennesne 80
TUEWIATITL() 1ottt ettt ettt ettt ettt et et et e bt e st e bt e bt e b e e bt s bt bt bt s b et e b et et et et entent e st e aesaeebeebesaeebenbenee 187
TUL() ettt ettt a et et e h e bt bt bbbt bbbt e b et et ea e e st et e a e bt e bt sae et e be e 188
TUAD .ottt h bbbt bbb bbbt ettt e a et et h e bt besae et be e 360
2 10 J PP PSPPI 189
TMOCDTEAK ...ttt b bbbt b e bbbt et et e et e bbbt bt b e bt st et ebenaens 59
TLOCDTEAK() ettt ettt h bbbt b bt bbbttt e e a et et h bbbt be e 190
DUOAELAY () ¢ttt ees 191
TMOECIIO .ttt ettt et e a et a e bbbt bbbttt e b et e st et e a e bt e bt e he e bt e b e e bt st e bebenaens 84
THOECIIO()ttt ettt et et a et et h bt e bt s bbbt bbbt e et e b et e a e bt et e h e bt bbb e b e 192
NON-SPACING CRATACLETcviiiiii e 16
NON-SPACING ChATACLETSeviii s 3
NON-StANAATA EEITNINAL.....eiveiieiiieieieeee ettt ettt ettt sttt e be e ebe e ene 27
TUOMI .ttt ettt et a e bt e a e bt e bt bt bbbt b bbbt et et et e st e st et e a e bt e bt she et e b e 188
THOTII() ettt ettt ettt ettt e a e bt e a e bt e b e bt s bbbt s bbbt et et et entea e e bt et h e e bt b s bt e b e 193
NOGIHTUSI() oot 194
TUOT@QW .evvteeeieiurreeeeesunreeeeeasnsaeeeeesasssseeessassssseessesssssessesssssssssessessssssesssnsssssesssessssseseesasssssseesssssssseessensnnnes 59,190
NOHIMEOUL TNOAE ..ttt ettt ettt et e et e bt e bt e bt sbeebesbesbenbebenaens 22
TLOBIITIEOUIL() c.entententeitetei ettt ettt a et e b b e bt s bbb s b et e b et et et et et eat e st eaeeaeebeebesbesbeebenee 195
TIPC ottt ettt ettt ettt b et ettt b et b e bbb bbb bR bR bR b bbb bbbt bbbt 364
4103 4 OO USSR 374
TATTTINC c.uvteuttenieeeiteeieeeete et e st e et esat e et e e aa e e bt e smaeeabe e sane e bt e saeeesaeeeae e eab e e embeeabeesaneeabeeemneemneesneesabeesnne s reesaneenreenns 356
UL CREYPE..ooiiiii s 379
NUIL Wide-CharaCter COAE.....oviuiiriiiiirieieieeeeee ettt ettt ettt bbbt be e be e ene 379
NUMETIC CAPADILIEY ..voveviiiiiii s 338
O B ettt a bt et e h bbbt b b bt eat et e a e e st e st e h e e bt e bt s bt b e b nbe b e benbens 5
DGttt ettt et et et e e st et e s a et et e bt et esa e et e b e e e bt e e e Rt e b et SR b e e Rt e as e e Rt e e Ra e e b e e e bt e bt e san e e bt e eaa e eneeene e e bt e saneeanes 363
octal specification in terminfo ..o 350
O teut ettt ettt ettt b L bbb L et bt bt Lt e b R ek k ek ek bbbt b e R b s b s bbbttt b aes 363
OPHIMIZATION c..eeect s 1
OFC ettt et ettt s et et ettt s bt e bt e st e s bt e et e e b e e e bt e e e e bt e be e s Rb e e Rt e e aa e bt e e Ra e e b e e e bt e bt e saa e e bt e s aa e e neesaeesareeenneeans 367
implied Change 0. s 368
OTRUL 1ttt b ettt ettt et et ea et h e bt e bt bt e bbbt b bt ea e ea b et ea e e a e bt ebeeheebe b sbenben 367
implied Change 0. s 368

394 Technical Standard 2009

Index

03 o =4 & o OO OO OO 18
03 o OO 367
implied Change 0. s 368
Orphaned ChATACLETcccviiiiiiiii e 18
orphaned COIUIMIN........cooiiiiiiiiii s 18
OV caitiiteti ettt ettt b et b s bbb bbbt b bbb bbbttt b as 367
implied Change 0. s 368
0 OO OO 353, 358
OVEILAPPIIIE c.vcvvvitctctctctctt ettt ettt 20
OVETIAT () vt 196
OVEISEIIKE ... ettt ettt 353
OVETWTIER 1ottt b e b e bt 196
OVERIWIIHINIG oottt s saes 18,20
P PTEEIX i s 24-25
PAG i 15, 364, 379
fUNCHONS that USEcoviiiiiii s 25
PAA CRATACLET ... s 364
PAAAING ..ot 338
PAAding ChATACRT ... e 350
PAGE EJECE .t 364
PAITS ¢ttt bbbt b e b et s s 363
PAIT_CONEENL ... 56
PAT_CONLENE() .ot 197
PAIR_NUMBER........ccoiiiiiitiiiitiinc s s 197
parametrized SEHINEccooviiiiiii s 354
Parent WindOWc.coviiiiiiiiiiiiii s 14, 379
PALCRL. o s 364
P s 361
PC terminal emUIAtorocviiiiiiccccccc e 363
PECROCHAT() ¢t 198
PEChO_WCRAT ... s 198
period in termMINfOccviiiii s 351
Perkin-EImer OW] (XamPIe).......cccciuiuiuiiuiiiiiiieeieiecceeeieieieie e se e enenenes 357
PIKEY o 360
PELOC o 360
PEX s 360
PN s 360
PRIOULTEITESI. ..o s 184
PROULTEITESII() oot 199
POP-UP WINAOW ...oiiiiiiiiciciee s 20
POTAET ..ot 374
position
current Or SPECIfied ... 25
POSEEIX ot 354
prefix on function/argument ... s 24
PLEITESH ..o 184, 199
PNt QUALEY ot 376
PIINEr TESOIULION ..o s 366
printer specification in terminfocccoviiiiiiiiii 366
PINENE TALE oot 376
PIINEW ettt 180
PIINEW ()t 200

X/Open Curses, Issue 7 395

Index

property
BACKZIOUN ... 18
TEINAIEION 1. 18
WINAOW . 17
Proportional delay ..o s 350
Proportional Printing........cccciiiiiiiiic s 366
PIOT ettt et bbbt 358
PIOLECEA tEXL ..ottt s 358
PTOLOCOL (XOTL/XOEE) .ot 353
PUEP() e 201
PUEWIIL oot 111
PUEWITI() ot 202
QUSSR o 194
RITUSI()t e 203
quality Of PIINHING ..c.cviviviiiiiiii 376
FASEET GTAPIICS c.vvviieiiciee e 374
= OO 59
e= 171 () T TSRS 204
TDIIN 1o s 374
(SOOI 356, 361
INCIUSION TN ESL/ESL .ttt ettt e et e et e e sae e e aeesaaesteesaaesnaeesaaeeneens 361
TS 1t 373
reading subwindow
effect on straddling character ..o 20
TEATAWIWITI()+ttt ettt ettt et ettt et e bt e b s bt e bt b e b e st et e b et e st ea b et eatentebeebeebeebesbeseenben 205
TEfEIEINCE PAZES ...voveiveieieiiit ittt 29
FOTIIAL ..ttt ettt et n bbb nenenen 6
TEETESIL ..ottt 82
clears touched flagccoiiiiiiiiiiiiiii 14
TEITESI() cventetiteteete ettt ettt ettt ettt et et ettt e s et e st e st e st b e st b e st e b en e et et e se b eneabeneasenen 206
TEIOCATION OFf CUTSOT ...ttt e nenenen 19
TEINAITION 1ottt ettt et et e ettt e et eeae e s tbe e beeetae e beeeaseenbeesaseesaesaseessessseenseesnseeseeaes 16, 359, 379
BACKZIOUN ... 18
WINAOW . 18
rendition of character placed in WINAOWccccovviiiiiiiiiiiaes 21
<] o OO OO OO OO OO OO OO OO OO OO OO OEROT IO ERRTERO 364
replacing ChATACETSc.oviieiiicc s 18
TESEEEY() 1ot s 208
reSet_PIOZ_INOUE.....ouiiiiiiiiitiiiiiictc ettt ettt 72
reset_Prog_IMOAE(). oottt reae 207
ST] A1) 0 4 Vo Lo LR 72,207
TESOLULION.....viiiiii s 366
resolution, effect of ChaNGINGccoovuiiiiiiiii s 375
TESTATHEOIIINL ..ot 73
TESTATEEETII(). ventententetet ettt ettt ettt ettt e b e bt s bt e bbb st e b et et e st e st et eat e st ebeebesbeebesbesbenben 209
restoring SUDWINAOWcoiiiiiiii s 20
OO 358
1EVETSE POLISH ..o 354
TEVETSE-VIAEO SCIEEIN ...t 358
T 360
Lot n bbb nenene 364
5 OO OO 353, 356

396 Technical Standard 2009

Index

FINE MATZIN oot e 371
right-to-left WITHNGoovieiii s 3
ATttt ettt ettt et ettt et eh e a e bt bt e bbbt b e b b E et et e b et ea s e a e e a e e a e e a e e a e e bt e bt e bt eh e b e b e s b et et e b et enean 353, 356
FIPOFFIIIE() e e nenen 210
15 0 0 OO O TP U SO PRRUSRRRRR 372
FIINL oottt ettt et ettt b et et et b et b e s e bt e bt et e et e ek e eh e b e b e b e s b e b erbesbestertessereereetaeteereerenran 370
TITVACS -vveeenureeeaunteenuueeeuteesaseeeasteesaueeesaaseeeaasaeesanseeesasaeeaasseesassee s abaeeansseesasseeenbeeseasteesanseesanseesnasaeesssaesnnseeean 358
FITICULD 1vttintetistetetete ettt ettt se et as et e st ekt e b et e b e te b e te b et e b e ss e b s ab e b e e b e b e s b e b e b e bbb e be b e s e b e s b e b e ab e b e s s et e b et e b e be b e be b aes 356
50 1 o Lol TSRO P PTRS 357
TTTUICTIY 1etenvteenteeeiteeteesute et estteeabe e tteeabeesaaesateessaeeaseensaessseensaesasaensaessteensaesaseensaesnsesnsaesaseensaesnseensaenssesnsaenssesnses 370
TITUIT ¢ttt eetee ettt e ettt e ettt e e ettt e et e e s abeeeeabeeeeasbeesaubee e s beeeaanteesanb e e e a b e e e east e e s bt e e e ab e e e e bt e e e bt e e e nbeeeeabaeeenraesanbaeean 357
TINLKX 1eetitieteetcete et e st et e st e st e st e et e et e e st e e st e s e ese et eeseeeseasaesseessesseesseassenseessensaesseasaenseeseenseentenseass et eensenseensensaans 360
0 11 ' RS TPUTRS 360
TITUITY c.eteeenitee ettt e ettt e ettt e eeaeeeeeaateesasbeeeeabeeeeasbeesasbee e s beeeaasseesasb e e e abeeeaasteesasbeeeabeeeeasteesanbee e nbeeeeabaeesanneeeanreeenn 365
FITIP oottt ettt ettt ettt ettt ettt b bbb bbb bbbt b et bt bt bbb b ek ek ek b ke bt b e R b s b e et b et bbbt b aes 357
TITESO 1 utteeeuuteeeeutteeeuteeeueeeeaaseeesaateesasteeeeabeeeeasaeesasbeeeabaeeaasseesanb e e e abeeeeasteesasbee e abee e e st e e eanbeeeanbeeeeabaeeenbaeeanreeean 358
FINVUL ettt ettt ettt e te et e te et e et et e be b esbesbessessesseseeseesaese et e ebeeb e b e b esbesbasbesbesbestertessereereeraeteereerenras 358
TITIXOTL e eeeuutteeueteeeuuteeeuteesaaseeesateesuteeeaaseeeeasaeesanseesabeeeaasseesaneee e abeeeaasseesasseeenbeeseasteesanbeeenbeeennsaeessseesanseenan 365
FOUNINE 1.ttt b bbb bbb bbb 366
row or column cursor addreSSING........cuovueueviiuiiciiiiicie s 355
RPN ettt ettt a et b e bt e bt s bt e bt b e b e st et e b et et et et e a e e st e bt e bt ebeebe b sbenben 354
TS T, 82 oetie ettt e ettt et e e et e e et e e e taee e tb e e e et tae e e abaeeabea e abaeaaabeeatbaeanbaeaantbeeaasbaeeanbaeearaeearraeanrraaann 360
TSIUIML oottt ettt ettt et et e st et e st e s b e st esbeseebe et e ebe et e ek e b e b e b e b e s b e st esbesbertertesseseeseetaeteereerenras 372
=10 0o o KOO TSRS 372
FSUPITL o ettt ettt ettt ettt e b bbbt b et e b te b et b e ts e b e s e b e as e b s e s ek e b e b e b e b e b e be b et b e e b b e s e b e bbbt bbbt b aes 372
TUTTL ¢ eteeenitee ettt e ettt e ettt e e e bt e e eaatee s sbeeeeabeeeeasbeesasbee e s beeeaasteesase e e e abeeeeasteesasbeeeanbeeeeasteesasbeeenbeeennsaeesansaesanseesan 370
70 T | 0 BTSSRSOt 372
SATTY 1.uteeeuiteeeeutteeeuteeeuteeeaabeeeeabee s bt te e e bt e e e b b ee e bt e e e a b et e e at e e s he e e e a b et e e bt e e e bt e e e a b e e e e bt e e enbeeeaabeeeebaeeenaaeeanreeean 370
SAVETEY 1ottt 208
SAVELEY () vttt 211
o3 1 4 TSRS 374
St ettt ettt et e ettt b bt ettt et ea e a e e a e h e h e bt e bt e bt b e e bt e h e b b e E et e a b e a b e ateaten s ea e eh e eh e a e e bt e bt e bt eb e e b e b e eb et et et enteneen 356, 361

INCIUSION TN ESL/ESL .ttt ettt e et e et e e eaeeeaeesaaesatessaaesaaeesraeeneens 361
SCATIWV .eeeuuteeeeutteenuteeeuteeeasteeaaeeesaseeeaaabeeeesaeesasbeeeabaeeaasteesanseeeaabeeeaasteesasbeeenbeeeeasteesasbeeeanbeeeansaeesanneesanreeenn 181
SCATIIW()ttt ettt et et e et e bt b e sb e st et e b et et e st et e st esteae e bt e bt ebeeb e eb e b e b e e e et e b et enten b et euteateneebeebeebesbesbenben 212
T o OO OO OO OO OO OO OO OO OO O OO RO U OT RO 363
Y0l (<1 4 EO USSR 14, 353
SCREEN ...ttt ettt ettt e b e bt s bt bt b e b e st et e b et et eat et eat e st eseebeebeebesbesbenben 379
SCIEEIN DIINK ...oovviiieiieieceetec ettt ettt et e st e e st e b e st esbe e st e s e essessaessensaessesssessesssessesssessenssensanssensenns 358
SCTL() cteeteetete ettt ettt ettt ettt et a et e h e bbbt bbb bbb et et ea b et ea e e st e bt e bt eb e e b s besbeben 215
Tex (0 | TSRS 215

effect on straddling character ..o 20
SCIOILING .ottt bbb 353
SCIOIIING T@GIOTL ...ttt bbb 356
Tex (0] 1 (o) TSRS 62
SCTOLLOK() 1ttt ettt et b bbbt b b st b e b et et et et e st e bt e bt e bt ebe b e ebesbenben 216
SCI_AUIMP() 1ot 213
SCE_TUIE eeiieiitiiee ettt eeet et e eee e e e e e ee b aa e e e e eee b aaeeee e abaraeeeaaatareeeeea bbb aaeeeanbareeeeeanarreeeeeennres 213
e o <=1 1 0) 4 < IS U TSRS 213
<o <] NPT PPN 213
SICS weeeeurreeenureeeattee ettt e e b te e e bt e e e atee s bt e e e e bt e e e b b ee e bt ee e u b et e e at e e s nb e e e a b et e e aat e e sabbee e abee e e bt e e e bt e e e aabeeeebaeeenbeeeanreeean 373
STl S TSRS 373

X/Open Curses, Issue 7 397

SATEQ vttt 376
search path for TERMccccoooiiiiiiiniiiiiiii s 377
SEEAD vttt ettt ettt et e ete et e eat e be et et e et s e bt e b et e ebeeteebeeatenteeateteerbeeteenreateenrenreen 363
SEEAL 1ottt e ettt e et e eteeteeateebeeat et e et e e bt et e bt e beeteenteeateteenteete et eeteenreeteenrenteen 363
SO e ettt ebe e taeebe e bbeeae e baeebe e baeebeebaeeabeebaeeteeebaenteeenres 363
SEECCIAT() ¢ttt ettt bbbt bbbt b e bt e et e a et b e bt bbb e ben 219
S ettt ettt ettt ettt ettt et e eaeeteeateeteeat et e etb e bt et eeteebe et e eteeateteeateereerteetsebeateenrenteen 363
TS £ OO 62
] Tl 0 =) OO 220
settable SCrolling rZION........c.cuiiiiiii s 356
SEEUPTEIIIL ..ottt bbbt 73
SEEUPLEIIII() ..ot 221
LT o1 U1 o (<) 0 4 DOUUURT NPT P TP 73
SEE_CUTEETII() veutententenieitete ettt ettt ettt et et et b e b bt e bbb e st et et et e st et et enteatebeebeebeebesbeseenben 217
SEE_TETTII() vttt ettt ettt sttt et e a et h e bt e bt bbb bt e b b et ea b ea b et ea e e a e st e beeh e e b b sbeben 218
T 0 OO 359
T OO OO PO 358
SRAAEA TEXE .ottt ettt e et te e e e e e be e e be e beestbe e ba e e et e e baeetae e beeeaaeebaesabeebaeeareebaenareents 5
SAAOW ...ttt ettt e et e et e e ae e te e e be e ta e et e e baeeaae e baeebe e beeeabeebeesabeeraeeaeeeraentreentes 372
SNAAOWING ... 372
SRALL .. ettt e be e e b e e bae e be e beeebeeebaeeabeebeeetbe e baeeraeebaesabeebaentreenreenrreents 4
sharing definition in terminfo ..o 366
SROULA ettt e e e be e et e e bae e be e beestbeeebaeeabe e baeetbe e beeeaaeeabaesabeebeeetreebeenareenns 4
SIZNALS ..t 13-14
SIMILAT EEITNINAL ..ottt ettt et e et e eb e e teeetbe e baeebeenbeesabeeseesaseesaessseenssensseenses 366
single-byte character

fUNCHON NAMMIIIE ..o 25
15318 0 4 U USURPPPRRNE 372
slash

TN EETIIUINIEO .ttt ettt ettt et ettt ete et e etteeseeaeeeteenseeseenseeseeseeasenseessenseensenseenseereenseersenseensen 350
SIK_AEETOLF() 1euvevetenirtetieie ettt ettt et ettt bbb st e st be st b e st s b e st ebe st et entesenteneaseneasenen 222
13 =X 5 o) o H RO 222
] =N 5 =< RS 222
LY S U s S o) & SO TSSOSO ROTRR 222
13 =X 5 (o) RO 222
3 =X < PR 222
31 S <Y) RO 222
13 1 <l (o) TR 222
13 1SV SRR 222
31 =Y <1< (RO 222
SIK MOUETEITESI ...ttt ettt e et e et e e et e eae e sabeeteesatseaessassesneesnneennes 222
LY =) .4 1<) o AT 222
] S (<) 10 L <R 222
3 ST TR 222
13 S 0 15 o] o KRR 222
3 S VT RO 222
SIIM ettt ettt et ebe e e b e e b e e tae e b e ebeeebaeeaeeeabeeebaeaaae e baeebe e teeeabeebaeeabeebaenareereenrreentes 370
SITLACS +vveeeeeueurreeeeesanrreeeeeassrsseessasssseessassssssssssasssssssessssssssseessessssseessssssssessesssssssssessssssssseesssssssseessensnsseesesssnnse 358
SINIDID / 1/ T /] ettt ettt ettt et ettt et et e ete et e eaeebeeatere et e eteerenteenreeteens 371
SITLCUIP 1.vteveutetestetet ettt ettt ettt se et as et e s ekt b b et e b e te b e ae b et e b e se e b e ab e b e ab e b e s b e b e b e bbb e be b e b b e e b b e ab b e bbbttt et b aes 356
SITUALC 1.ttt ettt ettt e e et e et e et e e e tt e e be e e ta e et e e etae e baetaeeba e bt eeabeebaeatae e baeeabeebaeeabeetaeeabeebaentreebaenrreenres 357
SIG[D/1/T/ Pt 371

398 Technical Standard 2009

Index

5 043 @ o 4 OO OO OO OO OO 370
20 11 OO 357
SITHKX ottt et nenene 360
SITUIL ..ot nenene 360
20 01 4 OO 365
20 015 €O 358
SINUL. e 358
528 0 () OO 365
3 01 Lo OO 376
STITTIYLQ 1.vtviuteristeteteseetest et e st et e st et et et e s e ke b e te b et e b e te e b e te e b e tb e b e ss e b e as e b e e b ek e b e b e b ke b e be b et e b e R b e s b e b e bbbt b et b aes 376
space

USE TN EEIININEO ..t 337
space character

1eSUltNG FeNAItION. ..ot e 21
spacing complexX ChATACTET ..ot 17
SPACINgG Of ChATACTETS.ouiieciiict e 366
SPpecial CRATACTETS.cviviriiiiciiicici et 20
SPECIAL KOS .evtiiettt ettt 360
SPECIAl INOAE ..ttt 356
special Mode Of AEVICE ... 377
Speed Of PIINHNGcvovviviiiiiiiiii s 376
SPINNL. o 374
SPITIV .ttt a e a e b ettt 374
SSIINL 1. 372
SSUDINL .. 372
SSUPTIXL...tiuietiatetit ettt ettt ettt se etttk bbbt b be b te b et s b e s b e e b e bbbk ek bt e bt bR b s bbb bbbttt et b aes 372
STACK N EETTIINTO ..o e 354
SEANIAEIIA () vttt ettt et e b e bbb b b st b e b et et et et e a e st e bt e bt eb bt besbeben 224
STANAOUL ...t s 224
STANAOUL TNOAE. ... 358
517V 0 (o) SRRSO 56
SEATE_COLOT() +nvententeietet ettt ettt ettt b e bt bbb b st et et et et et et eat e st ebeebeebeebesbeseenben 225
STALUS TN 361
S ST ettt ettt ettt ettt e et e et e et e e e e e e be e ta e e be e bee e b e ebae e ba e taeeabeebbeebeeteeebeeeteeeareeetreenreens 14, 226
Straddling Character ... 20
SENEG CAPADILILY «.vcvvvviien e 338
String, PArametrizedoooiiiiiiiiii s 354
SUDCS e 372
SUDPAG oot 15,184
SUDPAA()« 227
SUDSCIIPE «vvvtttctect ettt ettt 372

characters available..... ..o e 372
SUDWITL oo 80
SUDWITI() 1ttt ettt ettt ettt et b e bt e bt s bt e bt b e b e s e e b e b et entent et eat e st ebeebeebeebesbesbenben 228

OVEIVIEW ..eiiiniiiiiiiiieiiet ettt b bbb a et a s b st s st s s b s bbbt a st r st en s ebene e 14
SUDWINIAOW ettt ettt ettt et e e te e e ae e tee e beebaeeabeessseeaseessseensaeseeebaeesseenseessseenseens 14, 379

character straddling border ..o 20
10 4 OO 370
SUPCS . cttutetiutetet ettt ettt ettt ettt et d etk b bbbt b et bt L e bR ek k bbbk bbbt b e R b e s bbbt bbbt b aes 372
SUPETSCIIPT vttt 372

characters available..... ..o e 372
SWIAIN 1. e 372

X/Open Curses, Issue 7 399

SWIECH oo 364
SYNChronOus termMINAL.......coiiiiiiiii e 27
SYIICOK() ettt et nenene 229
SYSEIM INEETTACESvviviiiiii s 305
BAD oo 360

EIAYS ..ttt ettt ettt 361

EXPATNISIONL 1.ttt ettt ettt ettt 355

SPECIAL PLOCESSINIEZvvvivittittitcitetctctt ettt 21

USE TN EEIININEO .. 337
D STOP vttt ettt 27
EDC ot 360
Tektronix

model of color SPecification..........ccoiiiiiiiiiiiiii s 363
Tektronix 4025

COMMANA CRATACTETuiuiiiiiiciciciecccee et nen 364
Tektronix 4025 (EXAMPIE)ccoouiviiiiiiiiiiiiicii s 355
Teleray

AeStrUCHVE tab ..o 365
Teleray 1061 (EXAIMNPLE)cvvuiviiiiiriiiiiiii s 358
BETTIIALETS() oottt ettt ettt b e b bt s bbbt b et et et et et ea e a e bt ebe e bt e b b seeben 230
EETTINAL. ... s 15
terminal @MUIATOTc.oiiiiii e e 363
terminal-independence ... 1,337
BEIIIUIIIEO ..o 337
TERMINFO ..ot 377
terminfo

FOTINAL .. 337
EEIININOLOZY ...vvivivei s 4
EETTINATIIE() vttt ettt ettt ettt ettt et e st e st e bt e bt e bt s bt e b e b e b e st e b et et em b e st et enteateseebesbeebesbesbenben 231
thread-Safetyccvviiiiiii 13
HRIOUGNPUL ..o s 376
LG et b e s b bbbttt ea e besaeabes 328
HZELILAZ () e rvveeeeiceecee e 232
FLGEITIUINL 1ottt sttt 232
FLGOESET vttt 232
tilde, inability to diSPlaycccceviviiiiiiiiii 365
HIIN@OUL ... 195
BIIMEOUE() cevenvententetet ettt ettt et et et et b e b e bt s bt e bbb e st et et et e st et et eat e st ebeebeebeebesbeseenben 235
BIPATINL ottt b bbbt 232
EIPATTIL() cooviienicir e 236
top and left @dge.......c.vueiiici e 353
EOUCRL. s 379
EOUChEd .. s 14
EOUCHIINE ... 141
BOUCIIITIE() ettt b bbbttt et et eat st e bt e bt sbe b sbesbeben 237
BOUCIIWII ...ttt ettt e bt e et e e baeette e beeetbeeseessbeensaesassebaessseenbeessseenseesaseenseenenes 141, 237
EPATIN ..ottt 232
EPATII() vt 238
EPUE e 330
EPUES() ¢ 239
ETUNCALION .o 19
ESL o 361

400 Technical Standard 2009

Index

TVI 912 (€XAMPLE) ..o 358
EYPEANEAA() .vvviviiiic s 240
TLC tneteenteeeite ettt ettt e ettt ettt s bt a e et e b et e bt e a e et e bt SR bt e Rt e e at e e bt e e Ra e e b e e e bt e bt e s aa e et e e san e neesnneeabe e nneeanes 358
ULttt bttt a et a bRt en et en et ea e et et e st R b e st e st b e st s enteben e et entesenteseaseneabenen 358
UNICETL() ettt ettt e b e b bbbttt e b et et ea b et ea e ea e bt e bt eb e e b e be b eben 241
UNAEIINEA -ttt ettt ettt sttt e et e e e be st e be st e b et ebe e e b et ese st eseste st ssenesseneebeneene 5
UNAETTNE CUTSOT ...ttt ettt b bbbt et e st et et eat e st e bt e bt ebeebesbesbeben 358
UNAEIHNING. ...ttt bbb bbb 358
UNGEECI() 1oeviviritititctit ettt ettt ettt 242
UNGEE_WCR .ottt 242
uniqueness of terminfo aliaSeS ... 337
UNSPECIFIEA ... 5
UIUEIC ettt ettt ettt ettt ettt ettt e bttt e bt e s b e e sb e et e s bt et e e b e e b e e b e e bt e st e e b e e st e eb e e et sae et e eae e b e enne b e eanenbeeas 335
UNEOULCRIWITY .ttt ettt et ettt e bt e bt bt e b b e s b e st et et et emtea b et eateateneebeebeebesbesbenben 141
UNEOUCRIWITI() 1ttt ettt ettt et et et et b e bt e b bt s bbb e s b et et et e st e st et eneenteseebeebeebesbeseenben 243
update

5ets toUChed flag.........ccoviviiii s 14
TS et iuieeite et ettt et e st e e st e e bt et st e s a e et e b e e et e e e e st e bt s bt Rt e R et e bt e e Ra e e e e e bt e bt esaa e et e e san e e neeenneeabeesnneeanes 366
user preference fOr Use Of AEVICE ... 377
TISE_ETIV() ettt ettt et et e et e b b e st e bt et et et et et e st e st eae e bt e bt e bt e bt eb e b e bt et e b et et enten b et ea e e st e bt e bt eheebeebesbeben 244
UELIEIES ettt ettt et b bt bbb b st b et et et e b et e st e st e bt e bt eb e b e s besaeben 323
variability in PIint rate ... 376
VAriabIe-WiIAth fONEc.eeuiieiiieiiie ettt ettt be e ene 366
vertical bar

USE AN EETTINIILO 1.ttt ettt ettt ettt sttt et st et s te e et et et et e b et esesenessenessenessenesseneas 337
vi

USE Of TEITNIILO ..ttt ettt ettt sttt et st et et e et e st e b et es et esessenessenessenesseneas 337
72 o E= X1 o () ISPt 245
VIAEO @EITDUEE ..ottt ettt et et e b et sae bbb sbesbenbenaens 16
video enhancement, tUITL Off.........cc.ooiiiiiiieiieeeeceee ettt ettt et e ete et ereebeeteeseereeseeseens 358
VIAPULS 1ottt 245
A7 1o I L v RO 245
VIA_PULS 1ot 245
VATEUAL tEIMNINAL. ...ttt sttt ettt ettt bbbt 364
VISIDIE DLttt bbbt s ettt n bbbt e e be e ene 358
VIO ettt b ettt et ettt e h e bbbt bbb bt e b et et et et ene s 116
VHNIE() tatetet ettt ettt ettt et b e b bbb bt bbbttt et et e a et et a e bbbt be e 247
A7 1 TS AN 117
VNI SEL() neutentetetetete ettt ettt h bbbt b bt bbbttt et et e a ettt b b bbb e 248
VD@ etitietiiettt ettt ettt h ettt b e bbb bbb R b bbb bbbt bbbttt 355
Vet et ettt ettt ettt ettt et ettt ettt ettt s et e Rt b e Rt Aea e A en e s e At e s ea b e R e A b e st b e Rt e Rt b e At b e At b e At e st e Rt e st b e st be st ebe st ebentebentene 364
VT100

delayed LINe WIAPcoiiiiiiicicc e 365

lIN@ AFaWING . ..cvieieiiiee s 361

SCIOLING T@GIOMeviieii e 356

STATUS LINE.. ettt b bbbttt ettt ettt b bt b e s ae b b ee 361
VW_PTINEW()ittt bbb 249
VW _SCATIW ()uteutemtemteuteuteueeuteieeteetesbestestebebe st et ea b et e st esteateateb e eb e e bt s bt bt bt s b et e b e s et ea b et entente st eneebeebeebesaenbenbenee 250
W ettt et e e ettt et e bt e e e bt e e e bt e e s bt e e e e a bt e e uba e e e ba e e e a bt e e aaaeeeabe e e e bt e e s na e e e a bt e e ea bt e e e ba e e e bt e e eeubaeeeabaeeebbeeeanraeeanreeean 251
TV ATHEEX 1ottt ettt sttt ettt et b et e b et b et Rt e st e ae et e s et eneebe e be e beneeseneene 25
W PTEEIX ot 24
WAAACR 1ttt ettt ettt b et b et et ae st bt ne et n et et be et et be e beneene 36

X/Open Curses, Issue 7 401

A7z Lo L [al o T () IO OO OO OO 255
WAAACIIISET 1.ttt ettt et ettt et e v e ete e s e e st easeeaeeteessenseensenseensenteenseeteenseeseenseens 37,256
WAAACRSET c..cvteieeietieeieteteee ettt ettt es et e st eseere et e ebeebeebesbesbasbessesbessessassassessassessaseasessassessensensesans 37
WAAACRSET() 1vtveeieieieieet ettt ettt ettt et e et et et et ese b e st b e s e b e s e beneeseneebeneeseneens 256
WAAAINSEE 1..tivteiietieeieteteteee ettt et et et e st e st esbesseseeseeseebeebe et eeb e be b essessessessassessassassasaaseasassassessensesesans 38
WAAANSEE() teveverenirieieieietet ettt ettt ettt ettt ettt e st b e st b e st ben e e b e st e b entese st ese s esebeneebeneeseneeseneesensens 257
WAANIWSET 1.ttt ettt ettt e st e st ereesaeseeseeseebeebeesesb e besbessessessessassassassassessaseaseasessessensensesans 40
IWAAANWSET() c- vttt ettt ettt ettt ettt ettt et e st b e st be st beseebentesensese s eseseseseseebeneeseneesensesensens 258
IWAAA ST ottt ettt et ettt e e e te e et e e b e ete e b e eteereeaeebeereeere et eeteenaeateenreeteenreeteenreens 38, 257
WAAAWSET .ottt ettt ettt ettt e e et e et et e e b e ete e s e eteeaseebeenteessenseenseeseensenteenseeteenseeseenreens 40, 258
0= o Lo B Vel o WSRO ORI 33
A7z Lo Lo I 73 el o1 () OO OO TP O TSRS 253
7= o Lo B Vel a1 4 V=] u oSSR RO SRRSO 34
WAAA_WERNSIT()ttt ettt ettt et e e st se st e s e be s e beneeseneebeneeneneens 254
VN2 Yo Lo B Vel 1< 5 SO SRR 34,254
WALETORE oottt et ettt etaebeete et e et e ebe et e e b e be b e b e s b e s b erbesbesteraeteetaereesaetaebeeteebebeaens 43
IWATETOFE() 1ttt ettt ettt ettt ettt ettt et b et b e st b e st b et e b et e bt ene et e st b et be st b e st ebe e ebeneene 260
L7 2= 1 o) o WSS TPSPRRRRE 43, 260
7= o T APPSR TPSSRRRRE 43, 260
WAHT_ZOt. oo 41
WALT_GET() cvovivivieierereee s 259
WATET _OFf oottt et ettt e e et t e et e e e ab e et e e ae e et e e at e et e e nat e et e e nrteenreeraas 41, 259
A 7£= 11 5 S o) o VTP USURURUPPRTPRt 41, 259
2= 1 1 8 ST TR USURUUUPPRTPRt 41, 259
WDKE oo s 46
WDKEA() i 261
WDKEASEL ..o 46,261
WDKEINA oo 48
WDKGINA() v 262
WDKEINASEL ..o 48,262
R4 01} 4 L=3 TSR P 50
WDOTAET() 1ottt ettt ettt et b e bt bt s bbbt s b et et e b et et et enteat e st et e bt e b e bt sae et e b e 263
L7 0103 e Ly 1= AP 52
WDOTAET_SEL() ettt ettt ettt h bbbt b bttt b et et e et et e st et et ebeeb e besaeebesbe e 264
WECRZAL oo 60
WECRGAL() cvveveveriiiieieece s 265
R 1= TSRS 61
IWECLEAT() caeenenetet ettt ettt et e a et e a e bt e b e bt s bbb s b et et et et et et et e a e bt et eh e bt bt sbe et e b e 266
R o) oo | TSP 64
WCITEODOE() 1ttt et ettt st b e sttt e et et et e bt e e ebe e b e b s et e b e 267
R V=T) ISP 65
WCITEOEOL()ttt ettt h bbbt b sttt e et et e st e bt et eae e bt besbe et be e 268
WECOCTOT_SEE() cuveuteuteiteieieeieet ettt ettt et b bbbt b bbb b et et e et et eat e bt et eueebeebesuesbesbeee 269
L7 £e0) Lo ST PR RRS 41
WCUTSYIICUD .vtuvevtetentetistetist ettt ettt ettt et b st et as b e s s e b s s b ek e s b et e b e be b e be b e s e b e ae b e ab e b e b et s b e be b e be b e se b e se et e st e eba e 229
WCULSTIICUP () vevvvrereriiiiiieieteteteie et s s 270
R £=1 TG o SRR 76
IWAELEIN() ettt b bt bbbt sttt b et ettt e e st et et eb e bbbt be e 271
R 1] 1Y o TSP 77
IWAELEEEIN() ..ottt ettt st b e sttt et e et e st et et e bbb sae et be e 272
ATl oYl o V- U TSP 86
WECHOCIAT() -ttt ettt et b e bbbt bbbt b et et et e b et e st et et sbeeb e bt s b benbe e 274

402 Technical Standard 2009

Index

L7 LTe (Lo T T4 o =) RPN 85
WECHO_WECRAT() cututeiteitetteteeieeteet ettt ettt b bbbt b bt bbb et et et et et e st et et eaeeb e besaeebesbeee 273
TWETASE «vveeeeeuerrreeeeesiuureeeeeasnsaaeesesesssseeesssssssseesssssssseesssnsssssssssesssssssessssssssseesssssssseessensssseessssssnssseeennns 61, 88, 266
WEEtDKGINA ..o s 48, 262
WERECHL ..ot 102
WEZEECH() o 276
WEERINSTT e bbb 107
WZEENSET()it 278
WL WL oo 105
WZETN_WSET() 1ot 277
WERESIT (oo 107, 278
WEZEE_WCR oo 94
WEZEE_WCR() it 275
WERE WSET 1o s 105, 277
WHNIINE_SEE() -euveuirienieteieteietete ettt ettt ettt ettt b et be st b et e b et ese s ese s esebeneebeneebeneesaneeseneene 280
IWHITIE .ttt bbbttt et a e bt e bt e bbbt bt bbb et et et et et et ene s 116
IWHIITIE() ¢ttt ettt h bbbt bbbt et e st e et et e a et et ea e bt bt s he et be e 279
A7 a1 g LI T<] SRR 117
TWEAICS 1ttt ettt e et e ettt e et eete e taeebeeetae e beesabeebeesaba e beeatbeebaeatae e beeeabeebaesabeebaeatreebaeeareents 368, 372
WAAE CRATACEET ..ttt bbbttt ettt et a e eb e b bbb e 372
WAAE CRATACEETSeutiiiiieei ettt bbbttt et ettt eb e bt s bt e b b e s be st et e benteneen 3
WA TINOAE ...ttt bbbt st b bt sttt et e et et e st et et eb e bt bt s ae b b ee 377
wide-character code (C language)ocoerurueiiiiieieiiccie e 379
wide-character SN ..o e 379
Width Of Character, VATIADIEc.ooviiuiiiieieeeeeeeeeete ettt ettt et e ete et e reeaeebsesesteenseeseens 366
IWELLL ettt h bbbt b b st sttt e et et et ea e bt e bt bt b e b e bt et bentenean 5
IWETICR .ttt ettt et b e b e bt s bbb s b ettt e b e et et e st et et e h e bt bt s ae et be e 123
IWETICRI() 1ttt ettt et et b e b e bt s bbb bt e b et et et et et e st et et e a e bt bt s ae et e b e 283
IWETICRIISET 1.ttt ettt h bbbt b bt bbbt e e e et et e st et et e bt e bt besbesbenbe e 124
WITICRTISET() cutententeitet ettt ettt b bbbt b bt st b et et e et et e st e bt et ebeeb e e bt sbesbeebeee 284
IWATICIISET .ttt ettt et et et e e st eebe e s et e ebeestseebaessee e baessseenseesebeensaenssseseennneents 124,284
IWETIA. ottt ettt ettt e h bt e h e bt bbbt bt b bbbt e st et e a e e bt et e h e bt bt sbe et e b ee 356
IWITMAOW .ttt ettt et e eete e et e e beeetaeebeestbeessa e teeeabeesseeabeessseeaseessseesseeseesnseeseeaes 14, 356, 380

CLIPPING vttt 14

current Or SPECIfied ... 24

L= <3 LI 14

tOUChEd flag......cooviviiiiiiii s 14
WINAOW baCKGIOUNA ...t s 18
WINAOW hierarchy ... 380
WINAOW PLOPEILY w.vvviiiiiciicc s 17
WINAOW TENATHION ..ttt sttt et et et e et eb e bt e bt sbeebesbesbesbenbenaens 18
IWITIIUSET ettt ettt et b et b et e bt e st s bt et e e bt et sbe et sbe e bt eae e bt eate b e e s e bt e nenbeeas 128
IWETITISET() vttt ettt ettt ettt e a et e e bt e b s bt s bt b e b st et et et et et et et ent e bt et e bt eb e b sbe et e b e 285
IWITIIW ST ettt sttt et et b e ettt b et b et e s bt et e ebe et e sbee bt sbee bt smaebeemnebeennenbeeanenneens 130
IWETITIWSET() ¢ttt ettt ettt sttt ettt et et e a et e a e bt e b e bt s bt b e b e s b et et et et et et e st emt e st eaeebeeb e e bt sbenbenbenee 286
IWETISCIL 11ttt ettt b bt b e s bbbt s bt e b et et et et et eat e st et e bt eb e bt s bt e b e 134
IWETISCIL() ettt ettt et e b bbbt b b b et et et et et et et e st e bt et e bt b e bt bbb e 289
WITISAEIIN 1.ttt ettt b et b et b et e b et ese b ese b e s e b e st beneebeneebeneeseneene 135
WINISAEIIN() 1ottt ettt ettt ettt ettt bt b et b et e b et e se s ese b esebeneebeneeseneebeneesensene 290
IWETISETEITN ettt ettt b bbbt b b s b et e b et et et et et ent e bt et eaeebeebesbe st e be e 136
IWITISETEITI() ettt ettt ettt b e bbbt b bt s b et e b e b et et et et e st e bt e st eaeebeebesae et e nbe e 291
IWITUSTASEY .ttt ettt ettt et ettt e b et s bt et e e b et sbe et sbee bt eae e bt e st e b e e b e beeanenbeens 137

X/Open Curses, Issue 7 403

IWETISTUSTT() c-ententententent ettt ettt ettt ettt ettt et et et ea e st e st e bt e b e bt s bt b e bt s b et e b e b et et et e st ent e st e aeebeebeebesae et enbenee 292
TWITISSET ©eeinitiiieitieeeiiteee e e et e e et e e ettt eeetaeeesteeeestsee e sbaaeassaeaasssaesassesaseseeeassaeesssaseanssaeassaeessesanssseesnssens 137,292
WATISET «evieiiiieeecitee et et ett e e ettt e ettt e eetaeeesbaeeestree e tbaaesasaeeassseesasbesaseseeeassaeesssasaansseeasaaeesreeaansseaansrans 128, 285
TWEIIS T W SET ettvveeeieeiiteee e e ettt ee e e eette et eeee bt e e e eeeeaaeaeeeeeesabaaeeeeeessasaeeeeesssaseeeeeansssasseeeessaseeeeeesasseeeeensreneeeenns 132
WITIS_TUWSET() cuteuteuteuieieteeteeie ettt ettt ettt ettt ettt et e bt e b e bt s bbb e s b et e b et et et et et emt e st e st ebeebeebesae et enbenee 287
A7 8 o T Vol o WO 133
WITIS_WCR() ettt ettt et b e bbbt bbbt e b et et et et et eat e st et e bt e bt be s bt e b e 288
TWEIIS W SET .nitieieeieeiiree e e eerite e e e eeeitte e e e e eeabeeeeeeeeabareeeeeesaseeeeeessssaseseeeasssasseeeassaseeeeeassaseseeeensssseeeeensrees 132,287
WATEW SET 1ttt e ettt e ettt e e e te e e ettt e e e tbee e tbeeesabeeeasssaesasbeeaseseeeassaeasssaseassseeassaeesseeeansseesnsrens 130, 286
A7 5 o W V] o NS 121
IWETL_WOI() ettt ettt et b bbbt b bt bbbt e b et et et e st e bt et ebe e bt bt sae et e b e 281
A7 8 o WV £e] a1 =] o o 122
WIN_WORNISTI() 1ttt ettt b e sttt ettt ettt et eb e eb b sae st be e 282
78 WV £e] 411 o PR 122, 282
AT 1 4T 't= 7 USROSt 2
TWITLOVE nutteeeuiieeeitteeaaueeenuteesueeeesaseeesusaeesasaeessteesssaeesaseeeaasseesanseeasabeesansaeesasaeeessteesansaeesasaeesasaeesansaesnsseesan 151
TWITMOVE() cvntententemtenteuteutettetteueeteeteebesbe st et et et et em s et eatesteateateb e ebeebe s bt b e bt s b et e b e b et ea s et entente st e st ebeebeebesaesbenbenee 293
WIOULTEETESI ...ttt ettt et e st b e st e b e b e b e st essessessesseseeseesasseesessessesesans 82
WIOUETEITESI) 1.ttt ettt ettt ettt ettt b et e e b et e b et ese b ese et e s e be s e beneeseneebeneesensens 294
WPTIIIEW oottt 180
WPTIIEW() covitiiiic bbb 295
WIAP t0 NEXE LN ...oviiiii s 353
A2 = o) o 4= OO OO OO OOOORROORRROINS 19
AT T =14 o USSP 205
WIEATAWINI()ittt ettt b e st b bt bbbt e et et e st et e e ebeeb b sbe st e sbe e 296
TWTEITESIL ...ttt ettt ettt et e et e ete e b e ete et e ebeenteeaeenteeabeateenseeteenreereenreereenreens 82,294
TWSCATIW eeeieevrteeeeenserreeeeeaaeseeesassanssseeessssssseessassssseesssssssssessssssssseesssssssssseesssssssseessessssseessenssssesssessnnne 181, 297
TWSCATIW() 1nteutententeuteut ettt et ete et e bbbt et e et e b e s et e st e st eateat e bt e bt e bt s bt b e bt s b et e b e b et ea s et enteat e st e st ebeebeebesaeebebenee 297
WSCEL 1.ttt ettt ettt et et e et e et et et et e s b e s b e s b e st esbese e st et e ebeebe et e b e ehe e b e b e s b e b e st esbesbertesteseertesseteebeereerebenes 215
TWSCIL() vttt ettt ettt ettt e bt e sttt e st b e st b e Rt b e st ben e b e st e st e ae s e s et e st be st be st e b et ebeneene 298
A £5LSE =T (T OO 62
WSEESCITEZ() cvvvvvrereritiieieie e 299
WL 1ttt ettt ettt ettt et e et b b e b et et ea b e st e st et b es e e Rt et s ebeete et e b e be e b e b e s b e b e s b eabesbertesteseereersetaereeteerebenne 361
R4 7=1 4 Lo <3/ T OSSPSR 224
WSTANIAEIIA () +ntenteiieiieiei ettt et h bbbt b b bbbt et e et et e st et et ebeeb b saesbe b e 300
TWSTATMAOUL....vveeeiieiie ettt ettt et et e et e e stbeebeestbeebeestseesaesssseabaessseenseesaseesaensseeseennseenns 224,300
WSYNCAOWTL ..ttt 229
WSYNCAOWTIL()ittt 301
TWSYIICUD «eviuietiietitesietest et est ettt ettt et b e be bbb et e b e s b e s e b e st e b e se e b e s s e b e b e ke b e b s b e be s b e bs b e bs e b e ss b se et ae s 229, 301
IWEITTEEOULL «.envieiieiiieeteect ettt ettt et st e et e st e et eesa b e e ba e s st e ssbaesabeenbeesabeenbaesssesnsaenssesnsaesssesnsaesssesnsannns 195
IWHITIEOUIE() 1ottt ettt et h bbbt b e bt bbb e st et et et et e st et e st eaeeb e b saesbesbeee 302
WEOUCIIN ...ttt e e et e e b e st e et e e s e esesseesseeseesseessesseessesseessensanssansenns 141
WEOUCKIII() ottt ettt b e sttt et et et e et eaeeb b saeebe b e 303
IWUIICEEL() ettt ettt et h bbbt b b s b et et e st et et e b et e st e bt et e bt ebeebesbeebenbe e 304
TWVIINIC oottt ettt et et e et e e teeetbe e baeeabeebeesabeessseeabeesssessseensaesaseenseesaseenseesaseenseennrean 116, 279
AT ATA 8 g LI T<] TR 117, 280
X/ OPEINNAIME SPACEoovviiriiiiiriii s ns 10
D=1 4| TSRS 365
DLq 11 B OO 365
D 11 LSOO 369
XIYLC . euvteeenuteeeauuteeeueeeeuteeeaabaeesaueee s steeeaabeeeeasaeesasbee e s b e e eaast e e sanb e e e a b e e e e abt e e s bt e e e abe e e e bt e e ebb e e e nbeeeeabaeeenbeeeanbeeean 358
XOFEC ottt ettt ettt ettt e bbbt e st st et b ereete et e e be et e e b e be b e b e b e s b e st esbesbertertessereereetaeteereerenras 365

404 Technical Standard 2009

Index

XOTL 1 utttteeeeeerunreeeeeeseesreeeesassesreeseeasesaeeessssssaseesssssssseeesessnssssessssssssseessessssseessensssseseesssssssseessesssssseessnssnsne 353, 365

and padding characters............coiiiii s 350
XOTUC «evveeeeeenunrreeeeanansreeeeeasssssseesaasssseessasssnsssessssssssssessssssssseessessssseessessssssssssasssssssessssssssesessssssseessensnsseeeesssnnses 365
XD et et e e a e e e bt e e ae e te e ebeeeateebe e bt e eate e baeabe e beeebeebeeeabeebaeatseeraenareentes 366
Xt ettt et ete et e ettt ete et et e et e et e e be et et e et e bt et e bt et eeateteeatebeeab et e etseateeab e bt ebe et e enreeateteentereerbeetsensenteenrenteen 365
XV 1 tiutetintetet ettt ettt ettt ettt e d bbb bbbt bt bt e b e e bk ek bbb A bbbt e bR b e bbbttt bbb aes 369
V) X PAIT ettt s 18
zero-based row /column NUMDETING........ccociuiiiiiiiicicccecee e renes 354
ZETO-WIAEN CRATACEETvicvviteeiecteeeeeteeeee ettt ettt ettt ettt et ete et e etseeteetseebeesseeseenseessensesrsenseeaeen 16
ZIETOTIY 1eeeeeueeireeeeeseuureeeeeasnsseeeseassssseessasssssaseesasasssseessssssssseessassssseessesssssessesssssssseessssssssesesssssssseessensnsseeeeensnnses 371

X/Open Curses, Issue 7 405

Index

406 Technical Standard 2009

	Contents
	Preface
	CursesI7
	1 Introduction
	1.1 This Document
	1.1.1 Relationship to Previous Issues
	1.1.2 Features Introduced in Issue 7
	1.1.3 Features Withdrawn in Issue 7
	1.1.4 Features Introduced in Issue 4

	1.2 Conformance
	1.2.1 Base Curses Conformance
	1.2.2 Enhanced Curses Conformance

	1.3 Terminology
	1.3.1 Shaded Text

	1.4 Format of Entries

	2 General Information
	2.1 Use and Implementation of Interfaces
	2.1.1 Use and Implementation of Functions
	2.1.2 Use and Implementation of Macros

	2.2 The Compilation Environment
	2.2.1 The X/Open Name Space (ENHANCED CURSES)

	2.3 Data Types

	3 Interface Overview
	3.1 Components
	3.1.1 Relationship to the XSH Specification
	3.1.2 Relationship to the XBD Specification

	3.2 Screens, Windows, and Terminals
	3.3 Characters
	3.3.1 Character Storage Size
	3.3.2 Multi-Column Characters
	3.3.3 Attributes
	3.3.4 Rendition
	3.3.5 Non-Spacing Characters
	3.3.6 Window Properties

	3.4 Conceptual Operations
	3.4.1 Screen Addressing
	3.4.2 Basic Character Operations
	3.4.3 Special Characters
	3.4.4 Rendition of Characters Placed into a Window

	3.5 Input Processing
	3.5.1 Keypad Processing
	3.5.2 Input Mode
	3.5.3 Delay Mode
	3.5.4 Echo Processing

	3.6 The Set of Curses Functions
	3.6.1 Function Name Conventions
	3.6.2 Function Families Provided

	3.7 Interfaces Implemented as Macros
	3.8 Initialized Curses Environment
	3.9 Synchronous and Networked Asynchronous Terminals

	4 Curses Interfaces
	COLOR_PAIRS
	COLS
	LINES
	add_wch
	add_wchnstr
	addch
	addchstr
	addnstr
	addnwstr
	attr_get
	attroff
	baudrate
	beep
	bkgd
	bkgrnd
	border
	border_set
	box
	box_set
	can_change_color
	cbreak
	chgat
	clear
	clearok
	clrtobot
	clrtoeol
	color_content
	color_set
	copywin
	cur_term
	curs_set
	curscr
	def_prog_mode
	del_curterm
	delay_output
	delch
	deleteln
	delscreen
	delwin
	derwin
	doupdate
	dupwin
	echo
	echo_wchar
	echochar
	endwin
	erase
	erasechar
	filter
	flash
	flushinp
	get_wch
	get_wstr
	getbegyx
	getbkgd
	getbkgrnd
	getcchar
	getch
	getmaxyx
	getn_wstr
	getnstr
	getparyx
	getstr
	getwin
	getyx
	halfdelay
	has_colors
	has_ic
	hline
	hline_set
	idcok
	idlok
	immedok
	in_wch
	in_wchnstr
	inch
	inchnstr
	init_color
	initscr
	innstr
	innwstr
	ins_nwstr
	ins_wch
	insch
	insdelln
	insertln
	insnstr
	instr
	intrflush
	inwstr
	is_linetouched
	isendwin
	keyname
	keypad
	killchar
	leaveok
	leavok
	longname
	meta
	move
	mv
	mvadd_wch
	mvadd_wchnstr
	mvaddch
	mvaddchstr
	mvaddnstr
	mvaddnwstr
	mvchgat
	mvcur
	mvdelch
	mvderwin
	mvget_wch
	mvgetch
	mvgetn_wstr
	mvgetnstr
	mvhline
	mvhline_set
	mvin_wch
	mvin_wchnstr
	mvinch
	mvinchnstr
	mvinnstr
	mvinnwstr
	mvins_nwstr
	mvins_wch
	mvinsch
	mvinsnstr
	mvprintw
	mvscanw
	mvwin
	napms
	newpad
	newterm
	newwin
	nl
	no
	nocbreak
	nodelay
	noecho
	nonl
	noqiflush
	notimeout
	overlay
	pair_content
	pechochar
	pnoutrefresh
	printw
	putp
	putwin
	qiflush
	raw
	redrawwin
	refresh
	reset_prog_mode
	resetty
	restartterm
	ripoffline
	savetty
	scanw
	scr_dump
	scrl
	scrollok
	set_curterm
	set_term
	setcchar
	setscrreg
	setupterm
	slk_attroff
	standend
	start_color
	stdscr
	subpad
	subwin
	syncok
	termattrs
	termname
	tigetflag
	timeout
	tiparm
	touchline
	tparm
	tputs
	typeahead
	unctrl
	ungetch
	untouchwin
	use_env
	vidattr
	vline
	vline_set
	vw_printw
	vw_scanw
	w
	wadd_wch
	wadd_wchnstr
	waddch
	waddchstr
	waddnstr
	waddnwstr
	wattr_get
	wattroff
	wbkgd
	wbkgrnd
	wborder
	wborder_set
	wchgat
	wclear
	wclrtobot
	wclrtoeol
	wcoclor_set
	wcursyncup
	wdelch
	wdeleteln
	wecho_wchar
	wechochar
	wget_wch
	wgetch
	wgetn_wstr
	wgetnstr
	whline
	whhline_set
	win_wch
	win_wchnstr
	winch
	winchnstr
	winnstr
	winnwstr
	wins_nwstr
	wins_wch
	winsch
	winsdelln
	winsertln
	winsnstr
	wmove
	wnoutrefresh
	wprintw
	wredrawln
	wscanw
	wscrl
	wsetscrreg
	wstandend
	wsyncdown
	wtimeout
	wtouchln
	wunctrl

	5 Headers
	<curses.h>
	<term.h>
	<unctrl.h>

	6 Utilities
	infocmp
	tic
	tput
	untic

	7 Terminfo Source Format (ENHANCED CURSES)
	7.1 Source File Syntax
	7.1.1 Minimum Guaranteed Limits
	7.1.2 Formal Grammar
	7.1.3 Defined Capabilities
	7.1.4 Sample Entry
	7.1.5 Types of Capabilities in the Sample Entry

	A Application Usage
	A.1 Device Capabilities
	A.1.1 Basic Capabilities
	A.1.2 Parameterized Strings
	A.1.3 Cursor Motions
	A.1.4 Area Clears
	A.1.5 Insert/Delete Line
	A.1.6 Insert/Delete Character
	A.1.7 Highlighting, Underlining, and Visible Bells
	A.1.8 Keypad
	A.1.9 Tabs and Initialization
	A.1.10 Delays
	A.1.11 Status Lines
	A.1.12 Line Graphics
	A.1.13 Color Manipulation
	A.1.14 Miscellaneous
	A.1.15 Special Cases
	A.1.16 Similar Terminals

	A.2 Printer Capabilities
	A.2.1 Rounding Values
	A.2.2 Printer Resolution
	A.2.3 Specifying Printer Resolution
	A.2.4 Capabilities that Cause Movement
	A.2.5 Alternate Character Sets
	A.2.6 Dot-Matrix Graphics
	A.2.7 Effect of Changing Printing Resolution
	A.2.8 Print Quality
	A.2.9 Printing Rate and Buffer Size

	A.3 Selecting a Terminal
	A.4 Application Usage
	A.4.1 Conventions for Device Aliases
	A.4.2 Variations of Terminal Definitions

	Glossary

