
http://www.IXsystems.com

http://www.IXsystems.com/Athena

http://www.IXsystems.com/Athena

4
BSD 3/2010

Olga Kartseva
Editor in Chief

Editor in Chief:
Olga Kartseva

olga.kartseva@software.com.pl

Contributing:
Jan Stedehouder, Rob Somerville, Marko Milenovic, Petr

Topiarz, Paul McMath, Eric Vintimilla, Matthias Pfeifer, Theodore
Tereshchenko, Mikel King, Machtelt Garrels, Jesse Smith

Special thanks to:
Marko Milenovic, Worth Bishop and Mike Bybee

Art Director:
Agnieszka Marchocka

DTP:
Ireneusz Pogroszewski

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

National Sales Manager:
Ewa Łozowicka

ewa.lozowicka@software.com.pl

Marketing Director:
Ewa Łozowicka

ewa.lozowicka@software.com.pl

Executive Ad Consultant:
Karolina Lesińska

karolina.lesinska@bsdmag.org

Advertising Sales:
Olga Kartseva

olga.kartseva@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

The editors use automatic DTP system

Mathematical formulas created by Design Science MathType™.

Dear Readers!

Happy Easter !
I hope you had great time during this
holidays!

Today we have two very important messages
for you!

First one! We are opening new section in our
magazine: Questions from Readers!
Feel free to send your questions concerning
BSD to our team so that they could appear in
the next issues of our magazine.
I hope you will like this idea and participate in
it!

In second message I want to ask you to do
us a favor and answer a short questionnaire
concerning our magazine. This will certainly
help us to improve our magazine and make it
more interesting than ever before!

You can find the questionnaire in your e-mail
boxes attached to your newsletter.
If you are not subscribed to our newsletter,
please do this, or contact our team directly
editors@bsdmag.org.

Thank you and enjoy your reading!

mailto:olga.kartseva@software.com.pl
mailto:pawel@software.com.pl
mailto:ewa.lozowicka@software.com.pl
mailto:ewa.lozowicka@software.com.pl
mailto:karolina.lesinska@bsdmag.org
mailto:olga.kartseva@software.com.pl
http://www.bsdmag.org
mailto:editors@bsdmag.org
mailto:editors@bsdmag.org

Contents

5
www.bsdmag.org

tools and packages for your network to be able to access the
Internet. It has also the services to filter the traffic requests to
the web and block sites which are not appropriate according
to your corporate IT rules. In short, all you need is a Firewall
plus services that will make your network secure and easy to
manage in terms of network configurations.

The Squid and the Blowfish
Daniele Mazzocchio

We have grown so much accustomed to Internet access on
our work computers, that we can hardly imagine what people
ever did all day long on their workplace before! By providing
access to a virtually endless amount of information, the Internet
has quickly turned into an essential working tool. So essential
that most companies can’t do without it anymore. But besides
providing a huge amount of information, the Internet has
also turned into the main virus vehicle (togetherwith e-mail)
and doesn’t exclusively provide content in line with corporate
policies. That’s why a proxy server is often as necessary as the
Internet connection itself.

let’s talk
Hosting Environment Network and Firewall
Redundancy with the BSDs
Chris Buechler

With many large websites and hosting providers relying on BSD
operating systems to power their businesses, it only makes sense
that many smaller providers take the same path.

Comparison of FreeBSD And OpenBSD: Not
One Cake But The Two Ones
Jurai Sipos

The purpose of this article is to highlight some differences between
the two BSD operating systems – FreeBSD and OpenBSD. It is
because there is a significant lack of such information, as BSD
systems somewhat keep hidden in seclusion. To help readers
understand what the term BSD means, some terminological and
historical aspects are presented too.

interview
Introducing Beastie to Strangers
Jesse Smith

When PC-BSD 8 first came out back in February, I installed the
operating system on two of my machines and was very impressed
with the new release. It was fast, powerful, flexible and worked well
with my hardware. Not only was I thrilled with the latest release
from the PC-BSD team, but I wanted to share my experience with
others. I had visions of an army of Beasties peacefully invading
homes, public access terminals, schools and businesses. And
while I felt this BSD product had earned a place on my desktop
machine, I was curious to see how other people would react to it
– not just people in the IT field or people who were already open
source enthusiasts, but everyday Joe and Jane Users.

get started
Modern FreeBSD Install
Slawomir Wojtczak (vermaden)

All these years sysinstall(8) was helping us to install FreeBSD
with most needed options. Today it is not anymore up to the
task with new filesystems and technologies like gjournal(8) and
more important ZFS, swap and full disk encryption with geli(8)
or RAID1/RAID0 redundancy/speed increase with gmirror(8)
and gstripe(8). Currently sysinstall(8) only supports installation
on UFS filesystem with optional SoftUpdates. This article will
show You how to create more modern FreeBSD installation
without using sysinstall(8)

X11 without dbus/hald and with three kings
Slawomir Wojtczak (vermaden)

FreeBSD Handbook suggests (check section 5.4.2 Configuring
X11), that running sysutils/hal (hald) and devel/dbus daemons
is mandatory to have working x11/xorg ...
nothing further from the truth.

how-to’s
Converting a FreeBSD Port Using PBI Builder
Dru Lavigne

This is an excerpt from the “Becoming a Developer” chapter
of the recently released book, The Definitive Guide to PC-BSD.
The Definitive Guide is meant to be so, taking the reader from
complete PC-BSD novice to advanced, PC-BSD power user. This
means that some of the concepts used in later chapters are
covered in detail in earlier chapters. The book is available with a
companion DVD of PC-BSD 8.0 from the FreeBSD Mall

BSD File Sharing – Part 2. SAMBA
Topiaz Petr

Last time I wrote about NFS on different BSD’s. This time I
am going to dedicate this article of the series to SAMBA Why
SAMBA? Well, while samba is far from being a reliable well
secured tool for sharing, it definitely is very usable in terms of
sharing files with various versions of MS Windows.

Running VirtualBox OSE with VNC under
FreeBSD 8.0
Rob Somerville

VirtualBox is a type 2 hypervisor that sits directly on top of the
host-server OS and is suitable for server, desktop and embedded
applications. It will run most OS’s as guest with few exceptions, and
like Vmware * there are many pre-built VM’s available.

FreeBSD Firewall with Transparent Proxy
Server, DHCP Server and Name Server
Joshua Ebarvia

If you need Internet-sharing to be available to share allow
your network to access the web using only one public IP
Address, you need to setup a gateway. FreeBSD has all the

06

11

14

22

28

48

32

18

52

56

http://www.bsdmag.org

6 BSD 4/2010

get started Modern FreeBSD Install

7www.bsdmag.org

Modern FreeBSD
Install

All these years sysinstall(8) was helping us to install FreeBSD with most needed
options.

Slawomir Wojtczak (vermaden)

Today it is not anymore up to the task with new filesystems
and technologies like gjournal(8) and more important
ZFS, swap and full disk encryption with geli(8) or RAID1/
RAID0 redundancy/speed increase with gmirror(8) and

gstripe(8). Currently sysinstall(8) only supports installation on
UFS filesystem with optional SoftUpdates. This article will show
You how to create more modern FreeBSD installation without
using sysinstall(8).

This article assumes, that You would want to create fresh
installation of FreeBSD, using one or three harddisks, ZFS
filesystem cat be used on systems with, for example 768 MB
RAM (which will require a lot of tunning in /boot/loader.conf),
but 2 to 4 GB of RAM will be best for this king of setup. Also i386
architecture is not welcome here, since ZFS works a lot more
reliably on amd64, but You may of course use i386 FreeBSD
variant on system with 512 MB as well, with some heavy

tweaking, but You may be facing occasional kernel panics.
I would even say that i386 with small amount of RAM can be
treated as testing sandbox for this kind of setup (like under
VirtualBox with virtual harddisks). This setup will need these
requirements:

• 64bit CPU
• 2-4 GB RAM
• 1/3 disks
• DVD/USB boot support

This install method will put / on UFS filesystem w/o
SoftUpdates (can be later mounted read only), 2-3 GB of
swap space, /tmp filesystem mounted on swap with mdmfs(8)
and all other filesystems like /usr and /var mounted on ZFS
pool. Mounting /tmp on swap makes sense cause swap
is random small chunks of data often kept there for short
period of time, same for /tmp filesystem. Many other well
known UNIX systems also use that by default , like Solaris
or AIX for example. It will not require rebuilding anything,
just simple setup on plain MBR partitions (as opposite to

Listing 1. The layout of system with 1 harddisk

MBR SLICE 1 | / | 512 MB | UFS

 | SWAP | 2 GB |

 | /tmp | 512 MB | mdmfs(8)

------------+------+------------------

MBR SLICE 2 | /usr | REST | ZFS

 | /var | REST | ZFS

Listing 2. The redundancy planning for system with 3 disks

[DISK0] [DISK1] [DISK2]

[/] < RAID1 > [/] < RAID1 > [/]

[SWAP0] [SWAP1] [SWAP2]

[Z] < RAID5 > [F] < RAID5 > [S]

Listing 3. The layout for single disk for system with 3 disks

MBR SLICE 1 | / | 512 MB | UFS

------------+------+--------+---------

MBR SLICE 2 | SWAP | 1 GB |

 | /tmp | 512 MB | mdmfs(8)

------------+------+--------+---------

MBR SLICE 3 | /usr | REST | ZFS

 | /var | REST | ZFS

6 BSD 4/2010

get started Modern FreeBSD Install

7www.bsdmag.org

Listing 4. The whole procedude, described as simple as possible

1.0. I assume that disk for installation would be ad0

(while ad0/ad1/ad2 for system with 3 disks)

1.1. Boot *-dvd-* from DVD or *-memstick-* from pendrive

On first two screens select options as described below.

Country Selection --> United States

Fixit --> CDROM/DVD (for *-dvd-* image)

 USB (for *-memstick-* image)

1.2. Create your temporary working environment

fixit# /mnt2/bin/csh

setenv PATH /mnt2/rescue:/mnt2/usr/bin:/mnt2/sbin

set filec

set autolist

set nobeep

1.3. Load needed modules

kldload /mnt2/boot/kernel/geom_mbr.ko

kldload /mnt2/boot/kernel/opensolaris.ko

kldload /mnt2/boot/kernel/zfs.ko

1.4. Create/mount needed filesystems

This section is split across two versions, for system with 3 disks on the left side and for the system with dingle

drive on the other.

DISKS: 3 | DISKS: 1

cat > part << __EOF__ | # cat > part << __EOF__

p 1 165 63 512M | p 1 165 63 2560M

p 2 165 * 1024M | p 2 159 * *

p 3 159 * * | p 3 0 0 0

p 4 0 0 0 | p 4 0 0 0

a 1 | a 1

__EOF__ | __EOF__

 |

fdisk -f part ad0 | # fdisk -f part ad0

fdisk -f part ad1 |

fdisk -f part ad2 | # cat > label << __EOF__

 | # /dev/ad0s1:

kldload /mnt2/boot/kernel/geom_mirror.ko | 8 partitions:

gmirror label rootfs ad0s1 | a: 512m 0 4.2BSD

gmirror insert rootfs ad1s1 | b: * * swap

gmirror insert rootfs ad2s1 | __EOF__

 |

bsdlabel -B -w /dev/mirror/rootfs | # bsdlabel -B -w ad0s1

 | # bsdlabel ad0s1 | tail -1 >> label

glabel label swap0 ad0s2 | # bsdlabel -R ad0s1 label

glabel label swap1 ad1s2 | # glabel label rootfs ad0s1a

http://www.bsdmag.org

8 BSD 4/2010

get started

9www.bsdmag.org

Modern FreeBSD Install

glabel label swap2 ad2s2 | # glabel label swap ad0s1b

 |

newfs /dev/mirror/rootfsa | # newfs /dev/label/rootfs

zpool create basefs raidz ad0s3 ad1s3 ad2s3 | # zpool create basefs ad0s2

zfs create basefs/usr | # zfs create basefs/usr

zfs create basefs/var | # zfs create basefs/var

mkdir /NEWROOT | # mkdir /NEWROOT

mount /dev/mirror/rootfsa /NEWROOT | # mount /dev/label/rootfs /NEWROOT

zfs set mountpoint=/NEWROOT/usr basefs/usr | # zfs set mountpoint=/NEWROOT/usr basefs/usr

zfs set mountpoint=/NEWROOT/var basefs/var | # zfs set mountpoint=/NEWROOT/var basefs/var

1.5. Actually install needed FreeBSD sets

setenv DESTDIR /NEWROOT

cd /dist/8.0-RELEASE

cd base

./install.sh (answer ‘y’ here)

cd ..

cd manpages

./install.sh

cd ..

cd kernels

./install.sh generic

cd ..

cd /NEWROOT/boot

rm -r kernel

mv GENERIC kernel

1.6. Provide basic configuration needed to boot new system

DISKS: 3 | DISKS: 1

cat > /NEWROOT/etc/fstab << __EOF__ | # cat > /NEWROOT/etc/fstab << __EOF__

#dev #mount #fs #opts #dump #pass | #dev #mount #fs #opts #dump #pass

/dev/mirror/rootfsa / ufs rw 1 1 | /dev/label/rootfs / ufs rw 1 1

/dev/label/swap0 none swap sw 0 0 | /dev/label/swap none swap sw 0 0

/dev/label/swap1 none swap sw 0 0 | __EOF__

/dev/label/swap2 none swap sw 0 0 |

__EOF__ |

 |

cat > /NEWROOT/boot/loader.conf << __EOF__ | # cat > /NEWROOT/boot/loader.conf << __EOF__

zfs_load=”YES” | zfs_load=”YES”

ahci_load=”YES” | ahci_load=”YES”

geom_mirror_load=”YES” | __EOF__

__EOF__ |

... and part that is same for both ways in that section.

cat > /NEWROOT/etc/rc.conf << __EOF__

zfs_enable=”YES”

__EOF__

8 BSD 4/2010

get started

9www.bsdmag.org

Modern FreeBSD Install

1.7. Unmount filesystems and reboot

cd /

zfs umount -a

umount /NEWROOT

zfs set mountpoint=/usr basefs/usr

zfs set mountpoint=/var basefs/var

zfs set mountpoint=none basefs

zpool export basefs

reboot

As the last command says, we will be restarting out system now and booting into newly installed one (but not yet

configured), so after reboot remove installation media that You used for install process (USB/DVD).

2.0. At boot loader select boot into single user mode

4. Boot FreeBSD in single user mode

Enter full pathname of shell or RETURN for /bin/sh: /bin/csh

% /rescue/zpool import -D

% exit

2.1. Login as root without password

login: root

password: (just hit ENTER)

2.2. Set root password

passwd

2.3. Set hostname

echo hostname=\”HOSTNAME\” >> /etc/rc.conf

2.4. Set timezone and date/time

tzsetup

date 201001142240

2.5. Mount /tmp on swap

cat >> /etc/rc.conf << __EOF__

tmpmfs=”YES”

tmpsize=”512m”

tmpmfs_flags=”-m 0 -o async,noatime -S -p 1777”

__EOF__

2.6. Move termcap into /etc (instead of useless link on crash)

rm /etc/termcap

mv /usr/share/misc/termcap /etc

ln -s /etc/termcap /usr/share/misc/termcap

http://www.bsdmag.org

10 BSD 4/2010

get started

GPT partitions which FreeBSD also
supports). It will also enable new AHCI
mode for harddisks which increases
performance by about 33%.

FreeBSD's base system consists of
files spread across / and /usr, but with
just / You have access to most important
core of the base system which will be
more then enought for recovery with all
needed tools under /rescue (only in case
when something wrong will happen with

ZFS pool). You will need amd64/i386
-dvd- disk or *-memstick-* image for
this installation, unfortunelly *-disk1-*
will not do since it does not contain livefs
system.

Here is layout of system with 1
harddisk: see Listing 1.

Redundancy planning for system with
3 disks: see Listing 2.

... and here layout for single disk for
system with 3 disks: see Listing 3.

Here is the whole procedude,
described as simple as possible (see
Listing 4).

You can now add your users, services
and packages as usual on any FreeBSD
system, have fun ;)

2.7. Add latest security patches

freebsd-update fetch

freebsd-update install

2.8. [OPTIONAL] Make all changes to configuration in /etc, then set / to be mounted read-only

DISKS: 3 | DISKS: 1

 #dev #mount #fs #opts #dump #pass | #dev #mount #fs #opts #dump #pass

+/dev/mirror/rootfsa / ufs ro 1 1 | +/dev/label/rootfs / ufs ro 1 1

-/dev/mirror/rootfsa / ufs rw 1 1 | -/dev/label/rootfs / ufs rw 1 1

 /dev/label/swap0 none swap sw 0 0 | /dev/label/swap none swap sw 0 0

 /dev/label/swap1 none swap sw 0 0 |

 /dev/label/swap2 none swap sw 0 0 |

2.9. [ONLY FOR i386] Tune the ZFS filesystem

cat > /boot/loader.conf << __EOF__

vfs.zfs.prefetch_disable=0 # enable prefetch

vfs.zfs.arc_max=134217728 # 128 MB

vfs.zfs.vdev.cache.size=8388608 # 8 MB

vm.kmem_size=536870912 # 512 MB

vm.kmem_size_max=536870912 # 512 MB

__EOF__

2.10. Reboot and enjoy modern install of FreeBSD system

shutdown -r now

3.1. After reboot finish installing security updates

freebsd-update install

Now You have complete basic FreeBSD installation using all newest available features/technologies like ZFS filesystem,

AHCI mode that enables Native Command Queuing, small and compact / filesystem without need to fsck(8) anymore (if you

mount it read only). If you chosen to use read only /, then this little listing will make adding changes to it easier.

mount -w /

(...) [make changes on /]

mount -r /

�����������������

http://www.webhostingbuzz.com

12 BSD 4/2010

get started X11 without dbus/hald and with three kings

13www.bsdmag.org

X11 without dbus/hald
and with three kings

FreeBSD Handbook suggests (check section 5.4.2 Configuring X11), that running
sysutils/hal (hald) and devel/dbus daemons is mandatory to have working x11/xorg ...
nothing further from the truth.

Slawomir Wojtczak (vermaden)

X11 do not require them to run as usual, its just that
FreeBSD supports two ways of handling mouse and
ketboard for X11, the hald/dbus way and without them
using good old moused(8) daemon. This guide will

show You how to have X11 on Your FreeBSD using the second
of mentioned methods. I would also add information how to
disable [CAPS LOCK] key and bring back the working three kings
behaviour, which means that You would be able to kill X11 with
[CTRL] – [ALT] – [BACKSPACE] combination.

Install FreeBSD along with x11/xorg or add it by package

root# pkg_add -r xorg

Enable and start moused(8) daemon

root# echo moused_enable=\"YES\" >> /etc/rc.conf

root# /etc/rc.d/moused start

Generate new X11 config

root# X -configure

Move config to its proper place.

root# mv /root/xorg.conf.new /usr/local/etc/X11/xorg.conf

Add needed options in sections ServerFlags and InputDevice
See Listing 1.

Disabling the CAPS LOCK key
To disable it, you need to also add ctrl:nocaps to XkbOptions line,
so in the end it will look like that one below.

Section "InputDevice"

 Identifier "keyboard0"

 Driver "kbd"

 Option "XkbOptions" "terminate:ctrl_alt_bksp,ctrl:

nocaps"

EndSection

Basic client configuration

user% cat > ~/.xinitrc << __EOF__

xterm &

twm

__EOF__

Of course twm is only for testing purposes, you can replace it with
some more modern window manager like openbox/fluxbox/pekwm.
If You do not prefer black console text login, then use slim light
graphical login manager, it is as simple as that.

Start X11 with some custom options

user% xinit -- -dpi 75 -nolisten tcp

Example full xorg.conf config
See Listing 2.

Light and simple graphical login manager [OPTIONAL]
After You add slim with pkg_add -r slim it will also require a line
like ttyv8 /usr/local/bin/slim xterm on secure in /etc/ttys file
and slim_enable="YES" line in /etc/rc.conf file. Then You will just
have to start it with /usr/local/etc/rc.d/slim start.

12 BSD 4/2010

get started X11 without dbus/hald and with three kings

13www.bsdmag.org

Listing 1. Add needed options in sections ServerFlags and InputDevice

root# vi /usr/local/etc/X11/xorg.conf

Section „ServerFlags”

 (...)

 Option „DontZap” „off”

 Option „AllowEmptyInput” „off”

 Option „AutoAddDevices” „off”

EndSection

Section „InputDevice”

 (...)

 Option „XkbOptions” „terminate:ctrl_alt_bksp”

EndSection

Following options are needed to have working X11 without

hald/dbus daemons.

Section „ServerFlags”

 (...)

 Option „AllowEmptyInput” „off”

 Option „AutoAddDevices” „off”

EndSection

... and following for ‘three kings’ terminate keyboard

shrtcut.

Section „ServerFlags”

 (...)

 Option „DontZap” „off”

EndSection

Section „InputDevice”

 (...)

 Option „XkbOptions” „terminate:ctrl_alt_bksp”

EndSection

Listing 2. Example full xorg.conf config

Section „ServerFlags”

 Option „DontZap” „off”

 Option „AllowEmptyInput” „off”

 Option „AutoAddDevices” „off”

EndSection

Section „InputDevice”

 Identifier „keyboard0”

 Driver „kbd”

 Option „XkbOptions” „terminate:ctrl_alt_bksp,ctrl:

nocaps”

EndSection

Section „ServerLayout”

 Identifier „xorg0”

 Screen 0 „screen0” 0 0

 InputDevice „mouse0” „CorePointer”

 InputDevice „keyboard0” „CoreKeyboard”

EndSection

Section „Module”

 Load „dbe”

 Load „dri”

 Load „extmod”

 Load „glx”

EndSection

Section „InputDevice”

 Identifier „mouse0”

 Driver „mouse”

 Option „Protocol” „auto”

 Option „Device” „/dev/sysmouse”

 Option „ZAxisMapping” „4 5 6 7”

EndSection

Section „Monitor”

 Identifier „monitor0”

 Option „DPMS”

EndSection

Section „Device”

 Identifier „gfx0”

 Driver „intel”

 Option „DPMS”

EndSection

Section „Screen”

 Identifier „screen0”

 Device „gfx0”

 Monitor „monitor0”

 SubSection „Display”

 Modes „1440x900”

 EndSubSection

EndSection

Section „Files”

 ModulePath „/usr/local/lib/xorg/modules”

 FontPath „/usr/local/lib/X11/fonts/misc/”

 FontPath „/usr/local/lib/X11/fonts/TTF/”

 FontPath „/usr/local/lib/X11/fonts/OTF”

 FontPath „/usr/local/lib/X11/fonts/Type1/”

 FontPath „/usr/local/lib/X11/fonts/100dpi/”

 FontPath „/usr/local/lib/X11/fonts/75dpi/”

EndSection

http://www.bsdmag.org

14 BSD 4/2010

how-to’s Converting a FreeBSD Port Using PBI Builder

15www.bsdmag.org

Converting a FreeBSD
Port Using PBI Builder

This is an excerpt from the “Becoming a Developer” chapter of the recently released
book, The Definitive Guide to PC-BSD.

Dru Lavigne

The Definitive Guide is meant to be so, taking the reader
from complete PC-BSD novice to advanced, PC-BSD
power user. This means that some of the concepts used
in later chapters are covered in detail in earlier chapters.

The book is available with a companion DVD of PC-BSD 8.0 from
the FreeBSD Mall.

Chapters 9 and 10 introduced you to FreeBSD ports and
packages and gave some insight into the work port maintainers
go through so that the package and port “just work.” PBI Builder
simplifies the process of converting an existing FreeBSD port into
a PBI, which means anyone can create a PBI without needing
much (if any) previous development experience. If you have a bit
of time to spare, like to learn new things, and are interested in
seeing as much software as possible available to the PC-BSD
community, try your hand at creating a PBI with PBI Builder. The
more PBIs that are available, the better it is for everyone because
it ensures that even brand new PC-BSD users can safely install
and keep up to date about the software that they need.

Information about and the download for PBI Builder can be
found at http://www.pcbsd.org/ content/view/45/30/. PBI Builder is
a command-line utility that requires you to edit a few configuration
variables that are used when the PBI is built. PBI Builder automates
the entire build process: the creation of the build sandbox, fetching
the source for the port and all its dependencies, building everything
that is needed, and converting the results into the PBI.

PBI Builder uses a large archive that contains the system
source and world environment used by PC-BSD. It provides all
the libraries needed to ensure that the resulting PBI works on the
version of PC-BSD that matches the version of PBI Builder.

Tip
The file /pbi-build/docs/HOWTO-MODULES is well worth reading
because it fully explains all the files contained in the archive and

the PBI creation process. If you’re curious about what commands
are executed when building a PBI, read through the scripts in
/pbi-build/scripts/. You can also find some examples in /pbi-
build/docs/module-examples.

Building Your First PBI
Before building your PBI:

• Check that a PBI for that software doesn’t currently exist at
pbidir.com or pbibuild.pcbsd.com.

• Check that the Pbi-dev mailing list isn’t currently testing
a PBI for that software.

• Check to see if a module already exists at http://
trac.pcbsd.org/browser/pbibuild/modules

• Search for the software at freshports.org. Some of the
FreshPorts details for that software come in handy when you
configure your PBI module.

• Download and untar the PBI Builder archive according
to the instructions in the Using the PBI Builder (http://
wiki.pcbsd.org/index.php/Using_the_PBI_Builder) document.

Now that your system is ready for building PBIs, download the
PBI module template.

cd /pbi-build/modules

 # fetch http://www.pcbsd.org/files/templates/module-

template.tgz

 # tar xzvf module-template.tgz

Create a directory structure for your module that represents the
port’s category and name. Copy the contents of the template
directory to your new directory. We use the example of creating
a module named /pbi-build/modules/irc/conspire.

http://www.pcbsd.org/
http://trac.pcbsd.org/browser/pbibuild/modules
http://trac.pcbsd.org/browser/pbibuild/modules
http://wiki.pcbsd.org/index.php/Using_the_PBI_Builder
http://wiki.pcbsd.org/index.php/Using_the_PBI_Builder
http://www.pcbsd.org/files/templates/module-template.14
http://www.pcbsd.org/files/templates/module-template.14
http://www.pcbsd.org/files/templates/module-template.14

14 BSD 4/2010

how-to’s Converting a FreeBSD Port Using PBI Builder

15www.bsdmag.org

mkdir -p irc/conspire

cp -R template/* irc/conspire/

ls -F irc/conspire

build.sh kmenu-dir/ overlay-dir/

preportmake.sh

copy-files mime-dir/ pbi.conf

Most PBIs can be successfully built
after modifying a few lines in pbi.conf
and kmenu-dir/0mymenu. This section
shows you how to make those changes,
and the next section demonstrates more
advanced configurations.

To successfully configure your module,
you must modify the following variables in
the pbi.conf file.

• PROGNAME: The name of the PBI.
This should be the same name
as the FreeBSD port. Don’t include
the version number unless there is
already another PBI for a different
version.

• PROGWEB: The Main Web Site URL
for the port as listed at Freshports.

• PROGAUTHOR: Most software is
maintained by a project rather than
an individual. Examples of suitable
values are The Mozilla Foundation (for
Firefox) or the BitchX team (for bitchx).

• PROGICON: Check the pkg-plist in the
CVSWeb for the port to find the path to
the png file representing the icon for
the application. If there is more than
one, look for the png with the same
name as the port. If there is no png
for the software, check the software’s
website to see if it has an icon
image. If there is an image available,
download the image, convert it to png
if it is in another format, save the png
to the module’s overlay-dir directory,
and provide only the name of the png.

• PBIPORT: The full path to the port to
be built.

Here is an example of the changes made
to /pbi-build/modules/irc/conspire/
pbi.conf: see Listing 1.

Next, you must modify the first three
variables in kmenu-dir/0mymenu.

• ExePath: The path to the executable
that should start when the application
is launched. You can find the correct

path name at Freshports. Click the
CVSWeb link for the port, and then
click the pkg-plist. The binary has bin
somewhere in the path. If there are
multiple binary paths, select the binary
that seems the most reasonable
name for the application.

• ExeIcon: The same path you used in
PROGICON= in pbi.conf. This allows
the icon to show in the KDE menu.

• ExeDescr: A short (2 – 3 words)
description that shows up in the KDE
menu.

The example for /pbi-build/modules/

irc/conspire/kmenu-dir/0mymenu looks
like this:

ExePath: bin/conspire

ExeIcon: share/pixmaps/conspire.png

ExeDescr: IRC Client

When you finish making your changes,
ensure that the system is connected to the
Internet because you require connectivity
to build the underlying port.

You’re now ready to cd into the /pbi-
build directory and start the pbibuld.sh
script. Include the name of the module
you wish to build. If you don’t provide any
arguments, the script builds every module
that exists in the modules directory. The
script provides some messages as the
build progresses, as seen in the following
example: see Listing 2.

If you want to watch the details of the
build process, you can monitor the build
log using tail -f /pbi-build/outgoing/

irc/conspire/build.log and substitute
the pathname for your PBI.

Although the PBI build process is
completely automated and should just
work, it does take time. The amount of time

Listing 1. An example of the changes made to /pbi-build/modules/irc/conspire/pbi.conf

#Program Name

PROGNAME=”conspire”

#Program Website

PROGWEB=”http://confluence.atheme.org/display/CON/Home”

#Program Author

PROGAUTHOR=”Conspire Team”

#Default Icon: (Relative to overlay-dir)

#Please only use PNG files for the program icon PROGICON=”share/pixmaps/

conspire.png”

#FreeBSD Port we want to build

PBIPORT=”/usr/ports/irc/conspire”

Listing 2. The script messages as the build progresses

cd /pbi-build

./pbibuild.sh irc/conspire

Running portsnap to update ports tree

Starting module traversal...

Copying /pbi-build/buildworld to /pbi-build/pbisandbox

Copying /pbi-build/ports to /pbi-build/pbisandbox/usr/ports

Starting build of irc/conspire

Rebuilding module irc/conspire...

Found preportmake.sh, running it...

Running port build...

SUCCESS! Build finished for irc/conspire

#

http://www.bsdmag.org
http://confluence.atheme.org/display/CON/Home%E2%80%9D

16 BSD 4/2010

how-to’s

17www.bsdmag.org

Converting a FreeBSD Port Using PBI Builder

depends upon the size of the application,
the number of dependencies, and the
speed of your build system.

When the build is finished, you
receive your prompt back and the PBI is
placed in a subdirectory of /pbi-build/
outgoing/ with the same name as the
module you built . In this example, the PBI
is found in:

/pbi-build/outgoing/irc/conspire/

conspire4.0.35-PV0.pbi.

Advanced Module Configuration
Most PBIs can be built by simply modifying
the variables mentioned in the previous
section. This section provides an overview
of the more advanced configurations that
are possible through modifying the other

variables and files that come with the
modules template.

build.sh
This script is run after all the files have
been copied to the PBI’s directory and
can contain any commands you wish to
run at that time. The PBI Module Builder
Guide (http://wiki.pcbsd.org/index.php/
PBI_Module_Builder_Guide) provides
an example that modifies the version
number.

copy-files
It is rare to need this file, but you can use it
to modify where certain files get populated
to.

kmenu-dir/0mymenu
The variables in this file control how the
application appears in the KDE menu.
Table 14-2 provides a description of each
variable.

mime-dir/00mymime
Some applications require their MIME
types to be listed to work correctly. See
the PBI Module Builder Guide for usage
examples and gotchas.

overlay-dir/
PBI builder automatically populates all the
files needed by the PBI, according to the
underlying port’s instructions. If you have
an additional file you would like to include
(for example a README for the PBI) or
a customized graphic, include it here. You
can also customize the PBI scripts that
came with this directory but should only
do so if you have a good reason to make
the change.

pbi.conf
Table 14-3 summarizes the remaining
variables in this file.

preportmake.sh
Allows you to execute commands needed
for the port to build properly. See the PBI
Module Builder Guide for an example.

If you right-click Kickoff and select
Menu Editor, you can see the settings
that come with every application in the
KDE menu. Comparing the General and
Advanced tab of an application should

Table 14-2. Variables that Control a PBI’s Appearance in the KDE Menu

Variable Description
ExePath The path to the application’s executable as listed at Freshports.

ExeIcon The path to the application’s icon as listed at Freshports or the name of the custom icon
you have created in overlay-dir/.

ExeDescr A brief description of the application.

ExeNoDesktop Set to 0 if you want a desktop icon and to 1 if you don’t.

ExeNoMenu Set to 0 if you want an icon in the KDE menu and 1 if you don’t.

ExeRunRoot Some applications require superuser access to run correctly. Set this to 1 to require

the user to enter the administrative password when the application launches.

ExeRunShell Set to 0 if the application should run in a GUI and set to 1 if the application is.

command-line based and should be executed in a Konsole session.

ExeNotify Set to 0 to disable the bouncy application loading icon and set to 1 to enable it (the
preferred setting).

ExeLink Set to 1 to open the ExePath value in Konqueror, and set to 0 to launch the ExePath
value as an executable.

ExeWebLink If the ExePath value is an URL, set to 1 to open the URL in Konqueror; otherwise, leave
it set as 0.

ExeTaskbar Places application in system tray; this feature is currently unimplemented.

ExeOwndir 0 places the application name in top level directory of KDE menu, 1 places the application
name in its own directory under the category indicated by ExeKdeCat, and 2 places the
application name in the category indicated by ExeKdeCat.

ExeKdeCat Set to one of the category names listed in Kickoff->Applications.

Figure 14-4. KDE menu settings for the conspire PBI

http://wiki.pcbsd.org/index.php/PBI_Module_Builder_Guide
http://wiki.pcbsd.org/index.php/PBI_Module_Builder_Guide

16 BSD 4/2010

how-to’s

17www.bsdmag.org

Converting a FreeBSD Port Using PBI Builder

give you a better understanding of the
effect that the variables in Table 14-3
have on the KDE menu. Figure 14-4 shows
a screenshot for the installed conspire
PBI.

Table 14-3 briefly describes the
remaining variables that can be set in
pbi.conf.

Troubleshooting
As long as there isn’t a problem with the
underlying FreeBSD port and assuming
you have followed all of the steps in
the section on Building your First PBI,
PBI Builder should just work. If the build
fails, double-check Freshports to confirm
that the port isn’t broken, forbidden, or
restricted.

If the port looks fine, check the error
message that appeared when you
received your prompt back. It contains
the number of the script that failed. The
2.1 in the following example indicates that
/pbi-build/scripts/2.1.startmake.sh
failed. Any script with a lower number is
successful, and any script with a higher
number has not run yet.

ERROR: 2.1 Build failed of irc/
conspire!!!

When PBI Builder exits, it compresses
the log of the PBI build process, so you

need to uncompress it with the bunzip2
command. Take the time to go through
the build log, starting at the end, because
this is where the error occurred. Usually,
the problem is obvious from the error. If
it is not, work your way backwards to
see what happened successfully before
the error occurred. If the error indicates
that the port build was unable to fetch
a required file, double-check your Internet
connectivity.

After you resolve the error, remove
the .lock file and rerun buildpbi.sh. The
build starts over again to ensure that your
sandbox environment is clean.

If you are stuck, send an email to the
Pbi-dev mailing list that includes the error
and enough contextual information to
enable other developers to help you figure
out what went wrong.

Testing and Submitting Your PBI
After you have a PBI, you want to test it
yourself before making it available for
others to test. From Dolphin, navigate to
your PBI, right-click it, and select Open
with PBI Launcher. The PNG for your
PBI should show in the PBI’s icon within
Dolphin. As the PBI installs, check the
initial installation screen to ensure that
the Vendor (PROGAUTHOR variable) and

URL (PROGURL variable) are displayed
correctly. After the PBI is finished installing,
start the application to make sure that the
correct binary starts. After the application
launches, try out all the screens in the
program to make sure that nothing is
missing and none of the menus causes
the application to crash. Finally, find your
PBI in Menu Editor, and make sure that
all the desired features show for the KDE
menu.

If you find a typo or need to fix
a configuration file in your module, you don’t
have to rebuild the underlying port. Simply
run /pbi-build/scripts/3.makepbi.sh
after making your configuration change.
This rerolls the PBI so you can test your
changes.

Tip pbibuild.sh creates a clean
environment every time it runs. This
means that it removes everything that
was previously built and starts over again.
If your build successfully finished, you
don’t have to rebuild to reroll the PBI with
your new configurations. You can save
a lot of time by running the 3.makepbi.sh
script.

When you are satisfied that your PBI
works correctly, create a compressed
archive of its directory. The following
example creates a compressed archive
named /conspire.tar.bz2.

cd /pbi-build/modules/irc

tar cvf /conspre.tar

bzip2 /conspire.tar

Upload the archive to a publicly available
server. If you don’t have a server of
your own, contact the leader of the PBI
development team for credentials to the
PBI ftp server. After the PBI is uploaded,
send an email to the Pbi-dev mailing list.
Your email should include a subject line
of submit module category/portname (for
example, submit module irc/conspire). The
body should contain the location where
testers can download the archive for the
module to build and test it.

Table 14-3. Remaining Variables for pbi.conf

Variable Description
PBIVERSION= Enables you to override the PBI version if the build fails to automatically detect it.

PROGLIBS= Leave at AUTO; otherwise, you have to manually populate the PBI’s directory. If you
need to override a file that is populated, use copy-files instead.

PBIUPDATE= Leave as-is as needed by the PBI build server.

OTHERPORT= If you want to include another port in your PBI (besides the dependencies listed in the
port’s Makefile), add its category and portname; this is useful for applications that have
additional plugins or skins that are available as separate ports.

MAKEOPTS= Enables you to pass make targets that are used when the PBI is built; Chapter 10
discusses targets.

BUILDKEY= Committers can temporarily change this number to force the build server to rebuild the
PBI.

PBIDISABLE
FONTLINK=

Use this if you want to use the application’s internal fonts instead of the system fonts.

PBIKEEPGL= Use this to use the applications internal libGL libraries instead of the system libraries.

PBIPRUNE* Several prune variables allow you to keep include directories, python files, perl

files, or doc files that were created during the PBI build.

BUILDINMATE= Uncomment this line if you are building an inmate file instead of a PBI.

INMATEVER= Uncomment and set a version number for the inmate; increment the number for each
later version.

http://www.bsdmag.org

18 BSD 4/2010

how-to’s BSD File Sharing – Part 2. SAMBA

19www.bsdmag.org

BSD File Sharing
– Part 2. SAMBA
Last time I wrote about NFS on different BSD's. This time I am going to dedicate this
article of the series to SAMBA.

Petr Topiarz

Why SAMBA? Well, while samba is far from being
a reliable well secured tool for sharing, it definitely
is very usable in terms of sharing files with various
versions of MS Windows.

As samba is supported by all unices I have come across,
I find it rather important for any network administrator to
be able to configure it and make it work. This can be very
beneficial in situations such as when a person visits your
office or home and now has the ability to connect to your
network shares regardless of the operating system they are
running on their laptop. Samba is also a very easy way to
share printers.

First I am going to describe the way in which we setup
a simple samba server with various BSD systems, then I will try
to give you an account of some of the other samba features that
can be used to extend its usability and finally I will show how to
access a samba share.

Starting samba on BSD
With all the BSD's variants, samba comes as a third-party
package in ports/pkgsrc. The currently used version is version
3 or 3.3 depending on your BSD system. After installing the
package you need to configure your system to start Samba
automatically on boot-up as well as configure your shares and
determine who may access them.

NetBSD
Install samba:

cd /usr/pkgsrc/net/samba

make install clean

Edit /etc/inetd.conf and uncomment the next two lines:

netbios-ssn stream tcp nowait root /usr/pkg/sbin/smbd

netbios-ns dgram udp wait root /usr/pkg/sbin/nmbd

add the following lines to /etc/rc.conf:

smbd=YES

nmbd=YES

samba=YES

copy starting scripts to its place:

cp /usr/pkg/share/examples/rc.d/samba /etc/rc.d/

#cp /usr/pkg/share/examples/rc.d/smbd /etc/rc.d

#cp /usr/pkg/share/examples/rc.d/nmbd /etc/rc.d/

reboot and samba is up and running.
You can restart samba daemons any time:

/etc/rc.d/samba restart

OpenBSD
Install samba:

cd /usr/ports/net/samba

make install clean

Edit /etc/rc.local and add these lines:

if [-x /usr/local/libexec/smbd]; then

 echo -n ' smbd'

 /usr/local/libexec/smbd

fi

if [-x /usr/local/libexec/nmbd]; then

18 BSD 4/2010

how-to’s BSD File Sharing – Part 2. SAMBA

19www.bsdmag.org

 echo -n ' nmbd'

 /usr/local/libexec/nmbd

fi

reboot and samba is up and running.

You can manually restart samba any
time:

kill -HUP `cat /var/run/smbd.pid`

kill -HUP `cat /var/run/nmbd.pid`

Listing 1. Configuring SAMBA

$ cat /etc/samba/smb.conf

[global]

 workgroup = BSD

 server string = clipper

 smb passwd file = /etc/smbpasswd

 encrypt passwords = yes

 load printers = yes

 printing = cups

 printcap name = cups

 show add printer wizard = Yes

 use client driver = yes

[HP-Laser]

 comment = HP LaserJet 2300L

 path = /var/spool/samba/printing

 printer = HP-Laser

 public = yes

 writable = no

 printable = yes

[HP-PSC]

 comment = HP PSC 1510

 path = /var/spool/samba/printing

 printer = HP-PSC

 public = yes

 writable = no

 printable = yes

[print$]

 comment = Printer Drivers

 path = /etc/samba/drivers

 browseable = no

 guest ok = no

 read only = yes

 write list = root

[shared]

 comment = shared space

 browseable = yes

 path = /home/samba

 public = yes

 readonly = no

 writable = yes

 create mask = 0777

FreeBSD
Install samba:

cd /usr/ports/net/samba3

make install

Add the following lines to the /etc/rc.conf
file:

nmbd_enable="YES"

smbd_enable="YES"

reboot and samba is up and running.
You can restart samba daemons any

time:

/usr/local/etc/rc.d/samba restart

Configuring samba
With NFS, the file /etc/exports is used for
share configuration, similarly the Samba
equivalent is a file called smb.conf. The
file smb.conf is often stored in /etc/samba
or simply in /etc. I use the same smb.conf
file on various Linux distros as well as on
OpenBSD and NetBSD. After checking
FreeBSD man page I found out that
the same smb.conf file would work with
FreeBSD as well. This one is very simple,
and it's main feature is that it makes the
shares easily discoverable and usable
to anyone (to an attacker as well, of
course). It is suitable for non-important
public shares on well secured nets see
(Listing 1).

The above file will work well on most
systems. Now we will look at the file
structure. The first paragraph with the
global options tells us very basically
what we want the group and server to
be called and how it appears when
viewed via samba browsers. Next it
specifies where the system should look
for samba user passwords. This is a very
important option, as it can cause a lot of
trouble if incorrectly changed by you or
an application. Next there is information
about using cups for printing. The following
paragraphs define the printers we use at
our company. One of the most important
variables, is the path to the spooler, that
can vary on different systems. The section
called [print$] defines a directory where
you can place window drivers that can be
loaded should a connecting system be

http://www.bsdmag.org

20 BSD 4/2010

how-to’s
missing a specific printer driver for one of
your printers. Finally there is the [shared]
section that tells us the (path) where the
shared files are and that they are fully
accessible to anyone.

Configuring Samba can probably be
easier when using an administration tool
such as SWAT. However I never use it.
I prefer editing config files on my own. If
you are one of the people who prefer using
graphical configuration tools, have a look
at the following url: http://samba.org/
samba/docs/man/Samba-HOWTO-
Collection/SWAT.html

Security
Now I believe many people would like to
make their shares a little more secure,
or at least not so easily accessible by
anyone who plugs in a cable. There
are security features in samba that
can assist in securing your shares, for
example setting a variable security =

user will make the share accessible by
specific samba share users only. Setting
up a samba share password is done
easily. Here is an example of adding
a system user david to the samba
password list:

smbpasswd -a david

the system will then prompt you for
a password, accept it and save it in the file
defined in the global options section. After
choosing the security = user feature you
have to add a line to your samba shares,
similar to this:

 valid users = david liz

The line above will allow users david
and liz to access the chosen samba

share. Of course there can be various
shares defined in the smb.conf with
different security options. There are
more security options and features
available in the Samba configuration.
You can decide whether read only or
read-write access is given to the user or
public, you can pick a domain, a group
of users to access the share and so on.
However there is one interesting fact to
realize:

SAMBA IS VERY INSECURE – and
to prove it , hackers offer a tool for
everyone to try out. It is called smbsniff,
and its description is as follows:
Smbsniff is a LanManager packet
sniffer that will write to your disk all the
files shared and the documents printed
in a LanManager (understand samba)
environment.

Accessing samba
Windows machines will find your shares
via the network environment icon on their
desktops. Unix desktop environments
such as Gnome and KDE have integrated
samba clients in their file browsers. The
same is true for Mac. Samba shares
can also be accessed and mounted
in a command line environment. The
command line samba client uses smbfs
to access the share. The commands are
rather easy:

To see which shares are available on
a given host, run:

smbclient -L host

You can also browse the content from
a windows machine with NetBSD
smbclient:

smbclient //host/shared_name_resource

• http://wiki.netbsd.se/How_to_set_up_a_Samba_Server
• http://www.freebsd.org/doc/handbook/network-samba.html
• https://calomel.org/samba.html
• http://www.samba.org/
• http://www.hsc.fr/ressources/outils/smbsniff/
• http://www.openunix.eu/

And a lot of practice … :-)

Sources

Then you can also mount the chosen
share on your machine as if it was a part
of your local filesystem:

mount_smbfs -W workgroup -u david

//host/share /mnt/samba

The above example will try to mount
a remote share to your local directory /
mnt/samba. While accessing the remote file
system it will give the user name of david
and workgroup work group.

Of course the host in the examples
above is a name or IP address of
a machine in your network.

Summary
Samba is a way to share your files and
printers with MS Windows, Mac, Linux or
other BSD's. Samba is a universal and
very practical tool for everyday file sharing
and printer sharing. However samba
is insecure and it is not recommended
for production, important, or confidential
shares especially in a large network
environments.

http://samba.org/
http://wiki.netbsd.se/How_to_set_up_a_Samba_Server
http://www.freebsd.org/doc/handbook/network-samba.html
https://calomel.org/samba.html
http://www.samba.org/
http://www.hsc.fr/ressources/outils/smbsniff/
http://www.openunix.eu/

http://www.bsdmag.org

22 BSD 4/2010

how-to’s Running VirtualBox OSE with VNC under FreeBSD 8.0

23www.bsdmag.org

Running VirtualBox
OSE with VNC under
FreeBSD 8.0
VirtualBox is a type 2 hypervisor that sits directly on top of the host-server OS and is
suitable for server, desktop and embedded applications. It will run most OS's as guest
with few exceptions, and like Vmware * there are many pre-built VM's available.

Rob Somerville

While VirtualBox is generally very stable, there are
a few gotcha's that are specific to certain versions
and hardware configurations which are covered
later in this article. A VirtualBox enterprise support

license is available from Oracle* for a number of platforms, but
at the time of writing there was no specific offering for the BSD
community, so we will be using the VirtualBox Open Source
Edition for this installation. There seems to be little functional
difference between the two products other than support for VNC
and USB in the enterprise version.

Installation requirements
While VirtualBox will itself require little in way of disk space (and
will run in 512Mb of RAM) depending on the size of your VM
images, and the types of VM you intend to roll out will play a large
part in dictating what hardware you will require. If more than 4GB
of RAM will be required, the 64 bit version of FreeBSD would be
preferred rather than the i386 version FreeBSD 8.0 which was
used for this setup. All tests were carried out on a 2.6 GHZ dual
core AMD 64 with 2GB of RAM and 80GB of storage.

In this example once FreeBSD was installed the server
was run headless and all updates etc. were carried out
via SSH. A working internet connection will be required for
patching/downloading packages etc. For this installation, we
will be using BlackBox as the Window Manager and Tightvnc
for accessing the desktop, but due to inherent security issues
with VNC based applications, it is recommended that the
Tightvnc traffic is run through a secure tunnel in a production
environment.

Packages or Ports?
Depending on how bleeding edge you want your installation to
be, and if you have the time available, VirtualBox should install

OK from ports, but there have been problems in the past that
are documented at http://wiki.freebsd.org/VirtualBox. For this
install I used packages and the server was up and running with
multiple VM's in under 90 minutes using some pre-prepared
ISO's.

Part 1 – Commissioning VirtualBox
Perform a clean basic FreeBSD install, with no ports or
packages. You can use DHCP as the IP address for the server
if preferred. Enable SSH, and create a guest account with
membership of the wheel group. Ensure Internet connectivity
is present. During testing, I used a script file to load the
drivers when needed, but if you prefer they can be added to
loader.conf – see Improving this configuration at the end of
this article.

If running headless, login with the guest account and su to
root. Patch the box:

 freebsd-update fetch

 freebsd-update install

Install the required packages and check for vulnerabilities. If you
want to run VirtualBox headless, install TIGHTVNC:

 pkg_add -r xorg blackbox virtualbox

 pkg_add -r tightvnc

 pkg_add -r portaudit

 /usr/local/sbin/portaudit -Fda

Modify RC.CONF to support Xorg and VirtualBox.

 # Added for VirtualBox support

http://wiki.freebsd.org/VirtualBox

22 BSD 4/2010

how-to’s Running VirtualBox OSE with VNC under FreeBSD 8.0

23www.bsdmag.org

 dbus_enable="YES"

 hald_enable="YES"

Add PROCFS support for VirtualBox in
/etc/fstab

 # Added for VirtualBox support

 proc /proc procfs rw 0

0

Create a test VBOXload script in /usr/
local/sbin: see Listing 1.

To allow an unprivileged user to mount
CDROM in VirtualBox add the following to
/etc/devfs.conf:

 # Added for VirtualBox support

 perm cd0 0666

 perm xpt0 0666

 perm pass0 0666

If you intend to run VirtualBox at the server
console edit /home/vboxuser/.xinitrc:

 exec blackbox

If you want to run headless, now is the
time to SSH into the box with your guest
account. Add a custom user vboxuser and
ensure they join the vboxusers group

 su

 adduser

Next we need to configure vncserver for
the vboxuser account:

 su vboxuser

 vncserver

When prompted enter your password and
say n to view only password.

Edit /home/vboxuser/.vnc/xstartup
script to support BlackBox:

 #!/bin/sh

 xrdb $HOME/.Xresources

 blackbox &

Restart vncserver on the host to pull in the
changes:

 vncserver -kill :1

 vncserver

Create a directory for ISO images:

 mkdir /home/vboxuser/.VirtualBox/ISO

Either copy some ISO's across to the
newly created directory or roll your own
from an OS CD/DVD. Insert the OS of

your choice into the CDROM drive then fall
back to your root account:

 exit

 cd /home/vboxuser/.VirtualBox/ISO

 dd if=/dev/acd0 of=image.iso bs=2048

chown vboxuser:vboxuser image.iso

Listing 1. Creating a test VBOXload script
 #!/bin/sh

 # NOTE: Under certain circumstances VirtualBox KM’s can cause the server

to panic.

 #

 # KM’s should be OK with later releases, but until stable & tested I

 # prefer to manually load the modules on new machines.

 # See http://wiki.freebsd.org/VirtualBox

 #

 # You cannot create a VM from CDROM media over a VNC session using this

 # script – load the drivers via loader.conf if you want to do this.

 echo Loading VirtualBox kernel module support ...

 kldload atapicam

 kldload vboxdrv

 kldload vboxnetflt

 kldload vboxnetadp

 Make it executable:

 chmod 550 /usr/local/sbin/VBOXload

Figure 1. A Microsoft NT4 virtual machine ready to run

http://www.bsdmag.org
http://wiki.freebsd.org/VirtualBox

24 BSD 4/2010

how-to’s

25www.bsdmag.org

Running VirtualBox OSE with VNC under FreeBSD 8.0

Repeat as necessary for each distribution,
remove the CD/DVD and reboot to pick up
the RC.CONF and DEVFS changes:

 reboot

Part 2 – Testing VirtualBox
Note: You can install the O/S software
from CDROM with a VirtualBox session
run from the server console provided
you run VirtualBox as the root user
– as a security measure X will not
allow you to run VirtualBox as root via
VNC. Alternatively, load the drivers from
loader.conf at boot time rather than
using the VBOXload script and log in
via VNC as vboxuser. If you decide to
use the root account to load CDROM's
from the server console, change the
default hard disk and machine folders in
VirtualBox to a mounted filesystem with
sufficient space for your disk images to
expand – the root partition on FreeBSD
is ~ 496Mb by default which is not
sufficient capacity.

To access Blackbox on the server
at 192.168.0.130 from another host use
xvncviewer (or the client of your choice):

 xvncviewer 192.168.0.130:1

Alternatively login to the server console as
vboxuser and type startx.

Once your remote VNC session is
established, run an xterm session by
right-clicking on the Blackbox desktop
and selecting xterm. Load the VBOXload
script as root and check that the
atapicam and 3 vbox kernel modules
are loaded:

 su name_of_your_guest_account

 su

 VBOXload

 kldstat

 exit

 exit

If all the modules are loaded successfully,
run VirtualBox from your xterm session:

 VirtualBox

You should be greeted by the registration
screen (See Step 1)

Part 3 – Building Virtual
Machines
VM's can be built from virtually any OS
provided the processor architecture is
supported e.g. you cannot run an OS
designed for a SPARC * box on an i386
version of Virtualbox, but you can run
FreeBSD i386 under an 64 bit Intel or

AMD environment. BSD, Linux, Minux,
FreeDOS and the various offerings from
Microsoft *, Sun * (OpenSolaris) and
Apple * (i386) should run without any
problem.

Novell Netware * seems to have
problems though, but I didn't have a copy
to test to confirm this.

Figure 2. NT4 install screen

Figure 3. NT4 in glorious 16 colours using the stock video support

24 BSD 4/2010

how-to’s

25www.bsdmag.org

Running VirtualBox OSE with VNC under FreeBSD 8.0

Step 1. Initial registration screen

Step 2. VirtualBox GUI with no VM's loaded

Step 3. Creating a new VM

Step 4. Naming and selecting the guest OS and
version

Step 5. Allocating memory to the guest OS

Step 6. Creating a new hard disk image

Step 7. Disk wizard

Step 8. Selecting dynamic or fixed size storage

Step 9. Location and selecting size of virtual hard disk

Step 10. Disk wizard summary

Step 11. Virtual Machine summary

Step 12. A newly created VM in the GUI – No valid
boot device available

http://www.bsdmag.org

26 BSD 4/2010

how-to’s
Key points to note when building VM's:

1. Ensure the VM meets the minimum
(or maximum!) requirement of the
target OS for memory, disk space
etc. For instance NT4 * baulked at the
8GB default partition that VirtualBox
provides.

2. Ensure you have enough storage on
your VM host. On older hard disks, at
8GB per chunk space can be eaten
up quickly. While the VM may start OK,
if you have chosen dynamic storage,

the image grows according to the
demands of the OS and this can lead
to capacity issues.

3. Most OS's play well with the default
hardware provided by VirtualBox, but
sometimes video drivers may need
to be tweaked with older OS's (NT4 is
an example). This caveat also applies

to some versions of Windows 7 * that
do not recognise the network card,
but this was not found in the later
versions I tried

4. Guest additions are not mandatory,
all the VM's shown in Figure 5 were
installed without them. Your mileage
may vary though.

Figure 4. Booting the guest VM from CDROM

Figure 5. Windows Server 2003, Windows 7 and BackTrack 4 VM's running simultaneously

Step 13. Selecting the CDROM as the boot device for
new VM

Step 14. Choosing an ISO image

Step 15. ISO image selected

27www.bsdmag.org

Running VirtualBox OSE with VNC under FreeBSD 8.0

5. To build your VM using an ISO image,
follow the diagrams in Steps 1 – 15. If
you want to use the vendor supplied
CDROM, refer to Figure 4.

Improving this configuration
When you are happy with the way
VirtualBox performs, add support at
boot by adding these lines to /boot/

loader.conf:

 atapicam_load="YES"

 vboxdrv_load="YES"

 vboxnetflt_load="YES"

 vboxnetadp_load="YES"

You will no longer need to run VBOXload
prior to loading VirtualBox after a reboot.

It would be trivial to autostart VBOXload
and vncserver via an rc script at boot, but
this would probably be undesirable unless
a firewall was installed on the server to
limit access to the vncsession to certain
clients. As VNC traffic is not encrypted
(with the exception of the password),
and the password is effectively limited to
8 characters, al least an SSL tunnel or
equivalent form of encryption would be
required in a production environment.

At time of writing, the guest additions
were not available from the website (so
could not be downloaded via VirtualBox),
but they are available as a separate port
from the freshports website.

Virtualbox

• http://wiki.freebsd.org/VirtualBox
• http://www.virtualbox.org/

Downloadable VM images – treat all
downloads as untrusted or sandbox
accordingly

• http://virtualboximages.com/
• h t tp : / / source fo rge .ne t /p ro jec ts/

virtualboximage/files/
• http://virtualboxes.org/

* All trademarks and copyrights
acknowledged

Further reading

a d v e r t i s e m e n t

http://www.rootbsd.net
http://wiki.freebsd.org/VirtualBox
http://www.virtualbox.org/
http://virtualboximages.com/
http://virtualboxes.org/

28 BSD 4/2010

how-to’s FreeBSD Firewall

29www.bsdmag.org

FreeBSD Firewall with
Transparent Proxy Server,
DHCP Server and Name Server
If you need Internet-sharing to be available to
share allow your network to access the web using
only one public IP Address, you need to setup
a gateway.

Joshua Ebarvia

FreeBSD has all the tools and packages for your network
to be able to access the Internet. It has also the services
to filter the traffic requests to the web and block sites
which are not appropriate according to your corporate

IT rules. In short, all you need is a Firewall plus services that
will make your network secure and easy to manage in terms of
network configurations.

I will assume that you have a fully functional machine running
FreeBSD 8.0 with two network interfaces, one with public IP
address and the other one with a private IP address. Here is
what your setup may look like see Figure 1.

I will not go on to details on installing FreeBSD and setting up
both it's interface cards. Let's start!

Getting and updating the Ports Collection
The FreeBSD ports collection contains the list of packages that can
be installed into Freebsd. If you don't have it yet, do the following:

 # portsnap fetch

 # portsnap extract

If you want to update it because you already have it,

 # portsnap update

To learn more about the Ports Collection, read the FreeBSD
Handbook

Setting up PF
PF will be our firewall for our setup. It is included in the FreeBSD
base installation, but it is not enabled by default. There are two
ways to enable it, using kldload and recompiling your kernel.
I prefer the latter.

To enable PF in the kernel, you have to include the lines in the
/usr/src/sys/[$ARCH]/conf/GENERIC where $ARCH may be i386,
amd64 or whatever architecture you use. Use your favorite text
editor to add the entries below at the end of the file.

device pf

device pflog

device pfsync

options ALTQ

options ALTQ_CBQ

options ALTQ_RED

options ALTQ_RIO

options ALTQ_HFSC

options ALTQ_PRIQ

options ALTQ_NOPCC

After making changes, you have to recompile your kernel and
reboot your system.

 # cd /usr/src

 # make buildkernel KERNCONF=GENERIC

 # make installkernel KERNCONF=GENERIC

 # reboot

Take note that the FreeBSD source tree should be available for you
to be able to build your customized kernel. The entire operation
time depends on your hardware, just be patient and wait.

Next, we have to create our /etc/pf.conf or the so called
firewall rules to enable traffic from the entire network accessing
the web to go the proxy server first for filtering. Your minimal
pf.conf may look like this see Listing 1.

The above configuration file allows the clients to access the web,
ftp sites, and https sites. Take note that only access to the web goes

Operating System: FreeBSD 8.0-RELEASE
Name Server: DNSMasq 2.52
DHCP Server: ISC DHCP Server 3.1
Proxy Server: Squid 3.1
URL Redirector: SquidGuard 1.4 using the black list of
www.shallalist.de
Firewall: PF (OpenBSD Packet Filtering)

http://www.shallalist.de

28 BSD 4/2010

how-to’s FreeBSD Firewall

29www.bsdmag.org

to the proxy server first. Https should not be
redirected. The following entries should also
be appended to your /etc/rc.conf

gateway_enable=”YES”

pf_enable="YES"

pf_rules="/etc/pf.conf"

pflog_enable="YES"

Make sure to restart PF every after
changing your /etc/pf.conf by

 # /etc/rc.d/pf restart

or

 # pfctl -e -f /etc/pf.conf

To learn more about PF, visit http://
www.openbsd.org/faq/pf/.

Installing and configuring
DNSMasq
DNSMasq is a lite name server. It has been
said that it works on a thousand clients very
well. DNSMasq will serve as our resolver for
name resolution and IP address lookups.

To install it, navigate to the Ports
Collection (You need root privileges)

 # cd /usr/ports/dns/dnsmasq

 # make install clean

By default, it has a sample config file at
/usr/local/etc/. Make a copy of it and
name it dnsmasq.conf. You don't have to
make changes to it unless it is necessary.

To start DHCP server, you have to
add dnsmasq_enable=”YES” to your /etc/
rc.conf. and

 # /usr/local/etc/rc.d/dnsmasq start

You may change start to stop or restart,
depending on what operation you want.

Installing and configuring ISC
DHCP Server
In your network, you want to have an
automatic configuration of your clients'
networking device. This is the job of
a DHCP server. We will be using ISC DHCP
Server to set the ipv4 address, default
gateway, DNS server, and netmask of the
client inside the network.

To install ISC DHCP Server, navigate
to the Ports Collection (you need root
privileges)

 # cd /usr/ports/net/isc-dhcp31-server

 # make install clean

A sample configuration file is included in the
installation and is located at /usr/local/
etc/ directory. You may want to copy it so that
when you mess things up, you have a file to
work with. The configuration file of the DHCP
server is named dhcpd.conf and should be
located at /usr/local/etc/dhcpd.conf. The
entries there are straightforward, but for
a simple setup, your file may look something
like this see Listing 2.

The domain-name specifies the
domain name that will be given to the
clients. The domain-name-servers may
be one or more IP addresses, separated
by a whitespace. In our case, we want our
gateway to be also the DNS server used
by the clients in the network. The lease-
times are in seconds. Then we define the
subnet. With an entry of 192.168.0.10 to
192.168.0.100, meaning only addresses in
that range will be given to the clients.

To start DHCP server, you have to add
dhcpd_enable=”YES” to your /etc/rc.conf.
Then

 # /usr/local/etc/rc.d/dhcpd start

You may change start to stop or restart,
depending on what operation you want.

To learn more about ISC-DHCP, visit
http://www.isc.org/software/dhcp.

Installing and configuring Squid
and SquidGuard
In a typical network setting, a system
administrator would setup a proxy server
in which clients within the network will

use to access the web and it's services.
Squid is a caching proxy for the web.
It is capable of optimising the clients'
connection to the web by caching and
reusing frequently visited web pages. Not
just that, it can also act as a transparent
proxy, meaning you don't have to setup all
your clients' browser to enter details such
as the IP Address or hostname and ports
for a specific proxy server to use.

With Squid, you will be able to do
a transparent proxy that will eliminate your
work on manually setting all the clients'
broswers to a specific proxy server.

Another important thing about Squid
is it's site blocking/redirecting feature.
Although you can setup Squid to block
sites using its configuration file and a text
file containing the desired sites to block, it
is generally recommended to use another
program for that purpose. Here comes
SquidGuard. It will be the redirection
program that will be used by squid.

To install Squid and SquidGuard,
navigate to the ports collection directory
(you need to have root privileges)

cd /usr/ports/www/squid31

./configure --enable-pf-transparent

make && make install

cd /usr/ports/www/squidguard

./configure

make && make install

The key configuration files used by Squid
and SquidGuard are squid.conf and
squidGuard.conf respectively and are
located at /usr/local/etc/squid/ directory.
There you will find a sample configuration file
for each. You may want to make a copy of it
first so that when you mess things up, you'll
be having a default config file to work on.

To configure Squid as a transparent
proxy and use SquidGuard, you have to

Figure 1.

�������

��������
���������

��������
���������

�������
������

�������
����������������

������
��

������
��

http://www.bsdmag.org
http://www.openbsd.org/faq/pf/
http://www.openbsd.org/faq/pf/
http://www.isc.org/software/dhcp

30 BSD 4/2010

how-to’s

31www.bsdmag.org

FreeBSD Firewall

edit /usr/local/etc/squid/squid.conf.
Use your favorite text editor for this.

The sample configuration file supplied is
straightforward. You just have to add and edit
a few lines to make transparent proxy and

blocking work. First you have to add your
network in the acl list. Find the line # INSERT
YOUR OWN RULE(S) HERE TO ALLOW ACCESS

FROM YOUR CLIENTS. Right after it insert your
network using something like this,

 acl my_network src 192.168.0.0/24

 http_access allow my_network

You have to change the network address
to fit your needs. my_network is the name
given to your acl or the access control list.

Next, you have to look for the line http_
port 3128. You have to change it to

 http_port 127.0.0.1:3128 transparent

Port 3128 is the default port used by squid
and the word transparent is needed to use
Squid in transparent mode.

You have to add other options to make
things a little bit hidden. At the end of the
configuration file, append the following lines:

 forwarded_for off

 visible_hostname localhost

 cache_mgr administrator@your.domai

n.com

forwarded_for off makes your private IP
address invisible to the outside world

visible_hostname specifies your proxy
servers hostname to the outside world

cache_mgr specifies the email address
of the administrator

To make SquidGuard the program for
redirection, append this line at the end.

 url_rewrite_program /usr/local/

bin/squidGuard -c/usr/local/etc/squid/

squidGuard.conf

This specifies the path of squidGuard
command and its configuration file.

It is recommended to change
the sample black list that came with
SquidGuard. I recommend the black list
from http://www.shallalist.de. To download
it use the fetch command and extract it to
/var/db/squidGuard

 # fetch http://www.shallalist.de/

Downloads/shallalist.tar.gz

 # gzip -d shallalist.tar.gz

 # tar -xvf shallalist.tar

You will have a directory named BL after
extracting the archive. You have to move all
the contents of BL to /var/db/squidGuard

 # mv BL/* /var/db/squidGuard

Listing 1. Minimal pf.conf

int=”em1” #internal interface change the device to fit your setup

ext=”em0” #internal interface change the device to fit your setup

lan=$int:network

gw=”127.0.0.1”

tcp_services = „{www, ftp-proxy, ftp-data, ftp}”

udp_services = „{ domain, ntp}”

icmp_types = „{ echoreq, unreach }”

www=”{ 80:83, 1080, 8080:8081, 8088, 11523}”

nat-anchor „ftp-proxy/*”

rdr-anchor „ftp-proxy/*”

#-----NAT on $ext on traffic from $int to $ext

nat on $ext from $lan to any -> $ext

Redirect ftp traffic to ftp-proxy

rdr on $int inet proto tcp from $lan to any port ftp -> $gw port ftp-proxy

Redirect all www traffic to squid proxy server

rdr on $int inet proto tcp from $lan to any port $www -> $gw port 3128

Blocks all in and out traffic and logs them via pflog0

block log all

This is needed for FTP proxy

anchor „ftp-proxy/*”

antispoof quick for {lo $int}

Allow ping IN and OUT

pass inet proto icmp all icmp-type $icmp_types

#-------------Squid Transparent Proxy----

pass in on $int inet proto tcp from $lan to $gw port 3128

pass out on $ext inet proto tcp from $gw to any port 3128

#------------- HTTPS Access ----

pass in on $int inet proto {tcp, udp} from $lan to any port https

pass out on $ext inet proto {tcp, udp} from $lan to any port https

#-------------FTP Access -------

pass in on $int inet proto {tcp, udp} from $lan to any port ftp:ftp-proxy

pass out on $ext inet proto {tcp, udp} from $ext to any port ftp:ftp-proxy

#------------------Make udp services work----

pass inet proto {tcp, udp} from $lan to $gw port $udp_services

mailto:administrator@your.domai
http://www.shallalist.de
http://www.shallalist.de/

30 BSD 4/2010

how-to’s

31www.bsdmag.org

FreeBSD Firewall

There are lots of categories/directories on
your black list. You need to compile them in
order for SquidGuard to use them. But it takes
time, depending on your system. So, suppose
we just want to block all that is in porn
and adv, we have to compile it. But before
compiling it, we have to edit the configuration
file of SquidGuard which is /usr/local/etc/
squid/squidGuard.conf. Use your favorite text
editor. Your minimal configuration file should
look like this see Listing 3.

The dest block specifies the name
of the category you want to block. The
name should correspond to the directory
inside /var/db/squidGuard. The acl block
specifies which ones to pass and which
ones to block, in our case the !porn and
!adv means that all of the sites on the
domainlist and urllist of dest porn and
adv are blocked. The all keyword means

that everything else not included in porn
and adv is allowed. The redirect line
specifies the address where the client will
be redirected when accessing the blocked
sites. You may change it to any address
you want.

You have to compile the files inside the
/var/db/squidGuard/porn and adv

 # squidGuard -C all

After compiling you will see two new
additional files namely urls.db and
domains.db. Make sure they are executable
and that it is owned by squid

 # cd /var/db/squidGuard/porn

 # chmod g+x *.db

 # chown squid:squid *.db

 # cd /var/db/squidGuard/adv

 # chmod g+x *.db

 # chown squid:squid *.db

Here are the steps to test Squid and
SquidGuard.

Make sure that you have the squid_
enable=”YES” in your /etc/rc.conf

To launch Squid, you can change start
with stop or restart.

 # /usr/local/etc/rc.d/squid start

To check if Squid uses Squidguard,

 # ps ax | grep squid

and you will see five (5) lines similar to this

 67913 ?? S 0:04.99 (squidGuard) -c

/usr/local/etc/squid/squidGuard.conf

To check if the redirector is working try an
entry from the domains in adv

 #echo "http://ads.inet.co.th / - -

GET" | squidGuard -c /usr/local/etc/

squid/squidGuard.conf

 http://www.wheredoyouwant2meredirect

.sample.com -/- - GET

If the redirector is working you will see
the URL of the one you have specified
in your squidGuard.conf. If you change
http://ads.inet.co.th to let say http://
www.google.com, then the output should
be a blank line meaning that access
www.google.com is allowed.

You can learn more about Squid at http://
www.squid-cache.org/ and Squidguard at
http://www.squidguard.org/.

Remember that every change in the
squid.conf or the squidguard.conf needs
the service squid to be restarted. You may
do so by

 # squid -k reconfigure

or

 # /usr/local/etc/rc.d/squid restart

The former is recommended as it doesn't
stop the service and applies the new
changes on the fly.

Your gateway is ready to go.

Listing 2. Configuration file of the DHCP server

option domain-name "my_network.intranet";

option domain-name-servers 192.168.0.1;

default-lease-time 18000;

max-lease-time 36000;

authoritative;

ddns-update-style none;

log-facility local7;

subnet 192.168.0.0 netmask 255.255.255.0{

 range 192.168.0.10 192.168.0.100;

 option routers 192.168.0.1;

}

Listing 3. Minimum configuration file

SAMPLE CONFIG FILE FOR SQUIDGUARD

dbhome /var/db/squidGuard

logdir /var/log

dest porn {

 domainlist porn/domains

 urllist porn/urls

}

dest adv{

 domainlist adv/domains

 urllist adv/urls

}

acl {

 default {

 pass !porn !adv all

 redirect http://www.wheredoyouwant2meredirect.sample.com

 }

}

http://www.bsdmag.org
http://ads.inet.co.th/--GET
http://ads.inet.co.th/--GET
http://www.wheredoyouwant2meredirect
http://ads.inet.co.th
http://www.google.com
http://www.google.com
http://www.google.com
http://www.squid-cache.org/
http://www.squid-cache.org/
http://www.squidguard.org/
http://www.wheredoyouwant2meredirect.sample.com

32 BSD 4/2010

how-to’s The Squid and the Blowfish

33www.bsdmag.org

The Squid and
the Blowfish
We have grown so much accustomed to Internet access on our work computers, that
we can hardly imagine what people ever did all day long on their workplace before!

Daniele Mazzocchio

By providing access to a virtually endless amount
of information, the Internet has quickly turned into
an essential working tool. So essential that most
companies can't do without it anymore. But besides

providing a huge amount of information, the Internet has also
turned into the main virus vehicle (together with e-mail) and
doesn't exclusively provide content in line with corporate policies.
That's why a proxy server is often as necessary as the Internet
connection itself.

The main benefits of web proxying are:

• content filtering: the proxy can be configured to filter out virus
files, ad banners and requests to unwanted websites;

• network bandwidth conservation: cached pages are served
by the proxy itself, thus saving bandwidth and offering faster
access times;

• authentication: Internet access can be authorized (and
filtered) based on username/password, IP address, domain
name and much more.

The following is the list of the pieces of software we will use:

• OpenBSD http://www.openbsd.org/ – a robust, security-
oriented operating system, with only two remote holes in the
default install, in a heck of a long time!;

• Squid http://www.squid-cache.org/ – a caching proxy for the
Web supporting HTTP, HTTPS, FTP, and more;

• SquidGuard http://www.squidguard.org/ – a combined filter,
redirector and access controller plugin for Squid;

• ClamAV http://www.clamav.net/lang/pl/ – a fast and easy-to-
use open-source virus scanner;

• SquidClamav http://www.darold.net/projects/squidclamav/
– an open source (GPL) anti-virus toolkit for UNIX;

• AdZapper http://adzapper.sourceforge.net/ – a redirector for
squid that intercepts advertising (banners, popup windows,
flash animations, etc), page counters and some web bugs
(as found).

The choice of using free software prevented me from using
DansGuardian (http://dansguardian.org/), an Open Source web
content filter, running on many OSes and filtering the actual content
of pages based on many methods including phrase matching,
PICS filtering and URL filtering. Fine and dandy, but it is not free for
commercial use (http://dansguardian.org/?page=copyright2).

A good knowledge of OpenBSD is assumed, since we won't
delve into system management topics such as OS installation
and base configuration, packages/ports installation or PF
syntax.

Squid
Squid is a a full-featured HTTP/1.0 proxy and it offers a rich
access control, authorization and logging environment to
develop web proxy and content serving applications.

Installation
Let's start with the location of the cache server in the network:
according to the documentation (http://www.deckle.co.za/squid-
users-guide/Squid_Configuration_Basics#DMZ), the most
suitable place is in the DMZ; this should keep the cache server
secure while still able to peer with other, outside, caches (such
as the ISP's).

The documentation also recommends setting a DNS
name for the cache server (such as cache.mydomain.tld or
proxy.mydomain.tld) as soon as possible: a simple DNS entry
can save many hours further down the line. Configuring client
machines to access the cache server by IP address is asking

http://www.openbsd.org/
http://www.squid-cache.org/
http://www.squidguard.org/
http://www.clamav.net/lang/pl/
http://www.darold.net/projects/squidclamav/
http://adzapper.sourceforge.net/
http://dansguardian.org/
http://dansguardian.org/?page=copyright2
http://www.deckle.co.za/squid-users-guide/Squid_Configuration_Basics#DMZ
http://www.deckle.co.za/squid-users-guide/Squid_Configuration_Basics#DMZ
http://www.deckle.co.za/squid-users-guide/Squid_Configuration_Basics#DMZ

32 BSD 4/2010

how-to’s The Squid and the Blowfish

33www.bsdmag.org

for a long, painful transition down the
road.

Squid installation is as simple as it
can be; you only have to add the Squid
package. Available flavors are ldap
(allowing for LDAP authentication) and
snmp (including SNMP support) (see
Listing 1).

Base configuration
Squid configuration relies on several
dozens of parameters, and thus can
quickly turn into a very tricky task.
Therefore, the best approach is probably
starting with a very basic configuration
and then tweaking the options, one by
one, to meet your specific needs, while

still making sure that everything keeps
working as expected.

Actually, only a few parameters need
to be set to get Squid up and running
(theoretically, you could even run Squid
with an empty configuration file): for all the
options you don't explicitly set, the default
values are assumed. Anyway, at least one
setting must certainly be changed: the
default configuration file denies access
to all browsers; and this may sound a bit
...too strict!

Our first configuration will be very
simple: we will place our proxy server in
the DMZ (172.16.240.0/24, below is the
network layout) and allow only requests
from the LAN (172.16.0.0/24). No ISP's
parent proxy is taken into account (see
Figure 1).

The main Squid configuration file is
/etc/squid/squid.conf. Let's have a look
at it.

The http_port option sets the port(s)
that Squid will listen on for incoming HTTP
requests. There are three forms: port
alone (e.g. http_port 3128), hostname
with port (e.g. http_port proxy.kernel-

panic.it:3128), and IP address with port
(e.g. http_port 172.16.240.151:3128); you
can specify multiple socket addresses,
each on a separate line. If your Squid
machine is multi-homed and directly
accessible from the internet, it is strongly
recommended that you force Squid to
bind the socket to the internal address.
This way, Squid will only be visible from the
internal network and won't proxy the whole
world! Squid's default HTTP port is 3128,
but many administrators prefer using a
port which is easier to remember, such
as 8080.

http_port 3128

The cache_dir parameter allows you to
specify the path, size and depth of the
directories where the cache swap files
will be stored. Squid allows you to have
multiple cache_dir tags in your config file.

cache_dir ufs /var/squid/cache 100

16 256

The above line sets the cache directory
pathname to /var/squid/cache, with

Listing 1. Installation

export PKG_PATH=/path/to/your/favourite/OpenBSD/mirror

pkg_add squid-x.x.STABLExx-snmp.tgz

squid-x.x.STABLExx-snmp: complete

--- squid-x.x.STABLExx-snmp -------------------

NOTES ON OpenBSD POST-INSTALLATION OF SQUID x.x

The local (OpenBSD) differences are:

configuration files are in /etc/squid

sample configuration files are in /usr/local/share/examples/squid

error message files are in /usr/local/share/squid/errors

sample error message files are in /usr/local/share/examples/squid/errors

icons are in /usr/local/share/squid/icons

sample icons are in /usr/local/share/examples/squid/icons

the cache is in /var/squid/cache

logs are stored in /var/squid/logs

the ugid squid runs as is _squid:_squid

Please remember to initialize the cache by running „squid -z” before

trying to run Squid for the first time.

You can also edit /etc/rc.local so that Squid is started automatically:

 if [-x /usr/local/sbin/squid]; then

 echo -n ‘ squid’; /usr/local/sbin/squid

 fi

#

Listing 2. Base Configuration

Define the access log format

logformat squid %ts.%03tu %6tr %>a %Ss/%03Hs %<st %rm %ru %un %Sh/%<A %mt

Log client request activities (‘squid’ is the name of the log format to

use)

access_log /var/squid/logs/access.log squid

Log information about the cache’s behavior

cache_log /var/squid/logs/cache.log

Log the activities of the storage manager

cache_store_log /var/squid/logs/store.log

http://www.bsdmag.org

34 BSD 4/2010

how-to’s

35www.bsdmag.org

The Squid and the Blowfish

a size of 100MB and 16 first-level
subdirectories, each containing 256
second-level subdirectories. The cache
directory must exist and be writable by the
Squid process and its size can't exceed
80% of the whole disk. For further details,
please refer to the documentation (http:
//www.deckle.co.za/squid-users-guide/
Squid_Configuration_Basics#Where_to_
Store_Cached_Data).

The cache_mgr parameter contains the
e-mail address of the Squid administrator,
which will appear at the end of the error
pages; e.g.:

cache_mgr webmaster@kernel-panic.it

The cache_effective_user and cache_

effective_group options, allow you to
set the UID and GID Squid will drop its
privileges to once it has bound to the
incoming network port. The package
installation has already created the _squid
user and group.

cache_effective_user _squid

cache_effective_group _squid

The ftp_user option sets the e-mail
address that Squid will use as the
password for anonymous FTP login.
It's a good practice to use an existing
address:

ftp_user webmaster@kernel-panic.it

The following options set the paths to
the log files; the format of the access log
file, which logs every request received
by the cache, can be specified by using
a logformat directive (please refer to
the documentation (http://devel.squid-
cache.org/customlog/logformat .html)
for a detailed list of the available format
codes): see Listing 2.

And now we come to one of the most
tricky parts of the configuration: Access
Control Lists. The simplest way to restrict
access is to only accept requests from
the internal network. Such a basic access
control can be enough in small networks,
especially if you don't wish to use features
like username/password authentication or
URL filtering.

ACLs are usually split into two parts:
acl lines, starting with the acl keyword
and defining classes, and acl operators,
allowing or denying requests based on
classes. Acl-operators are checked from
top to bottom and the first matching wins.
Listing 3 is a very basic ruleset.

Starting Squid
Now our cache server is almost ready
for a first run, just one last step to go.
We first need to create the cache-
swap directories where Squid will store
cached pages. The squid -z command
will create all the required directories,
according to the cache_dir parameter in
squid.conf (see above), as the user and
group specified by the cache_effective_
user and cache_effective_group
parameters.

/usr/local/sbin/squid -z

2009/05/15 18:04:35| Creating Swap

Directories

#

We are now ready to start Squid. Starting
it in debug mode (-d 1 flag) and in
foreground (-N flag) will make it easier
to see if everything is working fine (see
Listing 4).

Once you get the Ready to serve
requests message, you should be able to
use the cache server. Once it is up and
running, Squid reads the cache store: Figure 1. No ISP’s parent proxy is taken into account

http://www.deckle.co.za/squid-users-guide/
mailto:webmaster@kernel-panic.it
mailto:webmaster@kernel-panic.it
http://devel.squid-cache.org/customlog/logformat.html
http://devel.squid-cache.org/customlog/logformat.html
http://devel.squid-cache.org/customlog/logformat.html

34 BSD 4/2010

how-to’s

35www.bsdmag.org

The Squid and the Blowfish

the first time you should see all zeros,
as above, because the cache store is
empty.

Now, to make sure everything is
working fine, we will configure our
browser to use our fresh new proxy and
we will try to access our favourite web
site. In the /var/squid/logs/access.log
file, you should see something like: see
Listing 5.

For a detailed description of each
field in the access.log file, please
refer to the documentation (http:
//www.deckle.co.za/squid-users-guide/
Star t ing_Squid#Access. log_basics) .
Anyway, TCP_MISS means that the
requested page wasn't stored in the
cache (either it was not present or it had
expired); TCP_HIT, instead, means that the
page was served from the cache. The
second field is the time (in milliseconds)
that Squid took to service the request: as
you can see, it is much shorter when the
page is cached. The page size is the fifth
field: cached pages may be a little larger
because of the extra headers added by
Squid.

If everything is working fine, we can
stop Squid:

/usr/local/sbin/squid -k shutdown

and configure the system to start it on
boot.

/etc/rc.local

if [-x /usr/local/sbin/squid]; then

 echo -n ' squid'

 /usr/local/sbin/squid

fi

You may also wish to start Squid through
the RunCache script, which automatically
restarts it on failure and logs both to the
/var/squid/squid.out file and to syslog.
Just remember to background it with an &,
or it will hang the system at boot time.

Further Squid configuration
In many cases, the basic configuration
we've seen in the previous chapter can
be sufficient for accelerating web access
and protecting the network, but Squid can
do much more. Below are a just few of the
many things Squid can do.

More on Access Control Lists
Though most people implement only
very basic access control, Squid's
access system is very powerful and
flexible, allowing for in-depth filtering
of access to cache resources. So far
we have mainly dealt with ACLs that
filter based on source IP address or
destination port , but there are many
other ACL types. In this paragraph,
we will take a brief look at the main
ones, just to get an idea of what Squid
ACLs can do; for a more detailed and
comprehensive description of Squid
ACLs, please refer to the documentation
(http://www.deckle.co.za/squid-users-
guide/Access_Control_and_Access_
Control_Operators).

A Squid ACL is made up of at least
four fields: the acl keyword, followed by
a (possibly descriptive) unique name,

the ACL type and one or more decision
strings. Thus, the overall syntax of Squid
ACLs looks like:

acl name type (string|"filename")

[string2] [string3] ["filename2"]

An ACL containing multiple decision
strings will return true if any of the decision
strings matches (i.e. decision strings are
ORed together). To avoid cluttering the
configuration file with hundreds of ACL
lines, you can specify the full pathname
of a file (in double quotes) containing the
decision strings one per line.

Listed below are the most commonly
used ACL types:

• Source/Destination IP address –
Filtering based on source IP address
(src type) or destination IP address

Listing 3. Base Configuration. Basic Ruleset

Classes

acl all src all # Any IP address

acl localhost src 127.0.0.0/8 # Localhost

acl lan src 172.16.0.0/24 # LAN where autorized clients

reside

acl manager proto cache_object # Cache object protocol

acl to_localhost dst 127.0.0.0/8 # Requests to localhost

acl SSL_ports port 443 # https port

acl Safe_ports port 80 21 443 # http, ftp, https ports

acl CONNECT method CONNECT # SSL CONNECT method

Only allow cachemgr access from localhost

http_access allow manager localhost

http_access deny manager

Deny requests to unknown ports

http_access deny !Safe_ports

Deny CONNECT to other than SSL ports

http_access deny CONNECT !SSL_ports

Prevent access to local web applications from remote users

http_access deny to_localhost

Allow access from the local network

http_access allow lan

Default deny (this must be the last rule)

http_access deny all

http://www.bsdmag.org
http://www.deckle.co.za/squid-users-guide/
http://www.deckle.co.za/squid-users-guide/Access_Control_and_Access_Control_Operators
http://www.deckle.co.za/squid-users-guide/Access_Control_and_Access_Control_Operators
http://www.deckle.co.za/squid-users-guide/Access_Control_and_Access_Control_Operators
http://www.deckle.co.za/squid-users-guide/Access_Control_and_Access_Control_Operators

36 BSD 4/2010

how-to’s

37www.bsdmag.org

The Squid and the Blowfish

(dst type). Both the traditional "IP/
Netmask" and CIDR "IP/Bits" notations
are allowed. E.g.: see Listing 6.

• Source/Destination Domain – Squid
can allow/deny requests to or from
specific domains (dstdomain and
srcdomain types, respectively). If you
want to deny access to a site, don't
forget to also deny access to its IP
address, or the rule will be easily
bypassed. E.g.: see Listing 7. Regular
expressions can also be used for
checking the source domain (srcdom_
regex type) and destination domain
(dstdom_regex type) of a request. E.g.:
see Listing 8.

• Words in the requested URL – Squid
can use regular expressions to filter
URLs matching specific patterns (url_
regex type); if you don't care about the
URL-type and the hostname, you can
use the urlpath_regex type instead
(Listing 9).

• Current day/time – Squid can allow/
deny access to specific sites by time.
The syntax is: acl name time [day-

list] [start_hour:minute-end_hour:

minute] where day-list is a list of
single characters representing the
days that the acl applies to (Sunday,
Monday, Tuesday, Wednesday,
THhursday, Friday, SAturday). E.g.:

acl workhours time MTWHF 08:00-18:00

acl weekend time SA

acl morning time 07:00-13:00

• Destination port – Squid can filter
based on destination ports. E.g:

acl SSL_ports port 443 563

acl Safe_ports port 80 21 443 563 70

210 280 488 591 777 1024-65535

• Protocol (FTP, HTTP, SSL) – The proto
acl type allows Squid to allow/deny
access based on the request protocol.
E.g.:

acl www proto HTTP SSL

acl ftp proto FTP

• Method (HTTP GET, POST or
CONNECT) – The method ACL type
allows you to restrict access based

Listing 4. Starting Squid

/usr/local/sbin/squid -d 1 -N

2009/10/30 18:05:19| Starting Squid Cache version 2.7.STABLE6 for i386-

unknown-openbsd4.6...[...]

2009/10/30 18:05:19| Accepting HTTP connections at 0.0.0.0, port 3128, FD 10.

2009/10/30 18:05:19| Accepting ICP messages at 0.0.0.0, port 3130, FD 11.

2009/10/30 18:05:19| Accepting SNMP messages on port 3401, FD 12.

2009/10/30 18:05:19| WCCP Disabled.

2009/10/30 18:05:19| Ready to serve requests.

2009/10/30 18:05:22| Done scanning /var/squid/cache (0 entries)

2009/10/30 18:05:22| Finished rebuilding storage from disk.

2009/10/30 18:05:22| 0 Entries scanned

2009/10/30 18:05:22| 0 Invalid entries.

2009/10/30 18:05:22| 0 With invalid flags.

2009/10/30 18:05:22| 0 Objects loaded.

2009/10/30 18:05:22| 0 Objects expired.

2009/10/30 18:05:22| 0 Objects cancelled.

2009/10/30 18:05:22| 0 Duplicate URLs purged.

2009/10/30 18:05:22| 0 Swapfile clashes avoided.

2009/10/30 18:05:22| Took 5.1 seconds (0.0 objects/sec).

2009/10/30 18:05:22| Beginning Validation Procedure

2009/10/30 18:05:22| Completed Validation Procedure

2009/10/30 18:05:22| Validated 0 Entries

2009/10/30 18:05:22| store_swap_size = 0k

2009/10/30 18:05:22| storeLateRelease: released 0 objects

Listing 5. Starting Squid. Acces to Website

/var/squid/logs/access.log

1242419601.435 6735 172.16.0.13 TCP_MISS/200 11810 GET http://www.kernel-

panic.it/ – DIRECT/62.149.140.23 text/html1242419849.536 14 172.16.0.13

TCP_HIT/200 11820 GET http://www.kernel-panic.it/ – NONE/- text/html

[...]

Listing 6. Further Squid Configuration

„Traditional” notation

acl myNet1 src 192.168.0.0/255.255.255.0

Address range with CIDR notation

acl myNet2 src 172.16.0.0-172.16.2.0/24

Filtering on destination address

acl badNet dst 10.0.0.0/24

Listing 7. Further Squid Configuration

Match a specific site

acl badDomain dstdomain forbidden.site

Match the IP address of „forbidden.site”

acl badDomainIP dst 1.2.3.4

http://www.kernel-panic.it/
http://www.kernel-panic.it/
http://www.kernel-panic.it/
http://www.kernel-panic.it/

36 BSD 4/2010

how-to’s

37www.bsdmag.org

The Squid and the Blowfish

on the request HTTP method, i.e. GET
(used for downloading), POST (used for
uploading) and CONNECT (used for SSL
data transfers). E.g.:

Deny CONNECT to other than SSL ports

acl connect method CONNECT

http_access deny connect !SSL_ports

It is very important that you stop CONNECT
type requests to non-SSL ports. The
CONNECT method allows data transfer
in any direction at any time, regardless
of the transport protocol used. As a
consequence, a malicious user could
telnet(1) (http://www.openbsd.org/cgi-
bin/man.cgi?query=telnet&sektion=1)t
o a (very) badly configured proxy, enter
something like: see Listing 10.

• Browser type – The browser acl
type allows you to specify a regular
expression that can be used to allow/
deny access based on the User-Agent
header. E.g.:

Deny access to MS Internet Explorer

acl MSIE browser MSIE

http_access deny MSIE

• Username/Password pair – User
authentication allows you to track
Internet usage and collect per-user
statistics. The simplest authentication
scheme is the basic scheme, with
username/password pairs stored in a
file. To create this file, you can use the
htpasswd(1) (http://www.openbsd.org/
cgi-bin/man.cgi?query=htpasswd&sek
tion=1)command:

/usr/bin/htpasswd -c /etc/squid/

squid.passwd danix

New password: dAn1x

Re-type new password: dAn1x

Adding password for user danix

#

Authentication parameters are set using
the auth_param tag; then, to actually
activate authentication, you need to make
use of ACLs based on login name in http_
access (proxy_auth or proxy_auth_regex)
or external_acl_type with %LOGIN used in
the format tag. E.g.: see Listing 11.

Listing 8. Further Squid Configuration

Match domains containing the word „sex” and a „.com” TLD (the match is case

insensitive because of the ‘-i’ flag)

acl badSites dstdom_regex -i sex.*\.com$

Listing 9. Further Squid Configuration

Match the most common video files extensions

acl movies urlpath_regex -i \.avi$ \.mpg$ \.mpeg$ \.wmv$ \.asf$ \.mov$

Match JPG images from URLs containing the word „sex”

acl sexImg url_regex -i sex.*\.jpg$

Listing 10. Further Squid Configuration

$ telnet bad.proxy.tld 3128

Trying 1.2.3.4...

Connected to bad.proxy.tld.

Escape character is ‘^]’.

CONNECT telnet.server.tld:23 HTTP/1.1

and end up connected to the remote server, as if the connection was

originated by the proxy.

Listing 11. Further Squid Configuration

Configure traditional (basic) proxy authentication

auth_param basic program /usr/local/libexec/ncsa_auth /etc/squid/squid.passwd

Number of authenticator processes to spawn

auth_param basic children 5

Realm to be reported to the client

auth_param basic realm Squid proxy-caching web server

Usernames are case insensitive

auth_param basic casesensitive off

Credentials time to live

auth_param basic credentialsttl 12 hours

Using REQUIRED will accept any valid username

acl AUTH proxy_auth REQUIRED

Don’t require authentication to localhost

http_access allow localhost

Only allow authenticated requests coming from the LAN

http_access allow AUTH lan

Default deny

http_access deny all

http://www.bsdmag.org
http://www.openbsd.org/cgi-bin/man.cgi?query=telnet&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=telnet&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=telnet&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=htpasswd&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=htpasswd&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=htpasswd&sektion=1

38 BSD 4/2010

how-to’s

39www.bsdmag.org

The Squid and the Blowfish

• SNMP Community – Squid can
restrict SNMP queries based on the
requested SNMP community. E.g.: see
Listing 12.

Http-accelerator mode (reverse proxy)
According to the documentation (http://
www.deckle.co.za/squid-users-guide/

Acce le ra to r_Mode#When_ to_use_
Accelerator_Mode), enabling Squid's
Accelerator Mode can be useful only in
a limited set of circumstances:

• accelerating a slow server;
• replacing a combination cache/web

server with Squid;

• transparent caching;
• protecting an insecure web server.

Besides these cases, enabling the
accelerator mode is strongly discouraged.
The configuration is very simple; below is
a sample configuration of a Squid server
accelerating requests to a slow web
server (see Listing 13).

Transparent caching
Transparent caching means having a
filtering device, such as a router or a
firewall, silently redirecting web traffic
to the cache server. Clients ignore the
presence of the proxy between them and
the web server and think they're talking
directly to the server.

As a consequence, transparent
caching doesn't require any
configuration on the client side, thus
making maintenance much easier and
faster. On the other hand, however, a
transparently intercepting proxy can't use
authentication or transparently proxy the
HTTPS protocol.

Before configuring Squid, we will
need to enable web traffic redirection
on our firewalls (the involved firewalls
are those between the LAN, where
clients reside, and the DMZ, where the
cache server is placed). Below are
some sample rules for the pf.conf(5)
(http://www.openbsd.org/cgi-bin/man.
cgi?query=pf.conf&sektion=5) file: see
Listing 14.

Squid configuration is quite simple:

/etc/squid/squid.conf

Port on which connections are

redirected

http_port 3128 transparent

SNMP
SNMP is a set of protocols for network
management and monitoring. If you
installed the snmp flavor of the Squid
package, the proxy will be able to serve
statistics and status information via
SNMP.

SNMP configuration is rather simple:
see Listing 15.

You can test whether SNMP is working
with the snmpwalk program (snmpwalk (http://
net-snmp.sourceforge.net/docs/man/

Listing 12. Further Squid Configuration

Address of the cache administrator

acl snmpManager src 172.16.0.100

Non-sensitive information

acl SNMPPublic snmp_community public

Allow any request from the cache administrator

snmp_access allow snmpManager

Clients on the LAN can only query non-sensitive information

snmp_access allow SNMPPublic lan

Default deny

snmp_access deny all

Listing 13. Http-accelerator mode (reverse proxy)

/etc/squid/squid.conf

In accelerator mode, Squid usually listens on the standard www port

http_port 80 accel vhost

Do the SSL work at the accelerator level. To create the certificates, run:

openssl req -x509 -newkey rsa:2048 -keyout squid.key -out squid.crt \

-days 365 -nodes

https_port 443 cert=/etc/ssl/squid.crt key=/etc/ssl/private/squid.key

Accelerated server address and port

cache_peer 172.16.1.217 parent 80 0 no-query originserver

Do not rewrite ‘Host:’ headers

url_rewrite_host_header off

Process multiple requests for the same URI as one request

collapsed_forwarding on

Allow requests when they are to the accelerated machine AND to the

right port

acl webSrv dst 172.16.1.217

acl webPrt port 80

acl all src 0.0.0.0/0.0.0.0

http_access allow webSrv webPrt

http_access allow all

always_direct allow webSrv

http://www.deckle.co.za/squid-users-guide/Accelerator_Mode#When_to_use_Accelerator_Mode
http://www.deckle.co.za/squid-users-guide/Accelerator_Mode#When_to_use_Accelerator_Mode
http://www.deckle.co.za/squid-users-guide/Accelerator_Mode#When_to_use_Accelerator_Mode
http://www.deckle.co.za/squid-users-guide/Accelerator_Mode#When_to_use_Accelerator_Mode
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se
http://net-snmp.sourceforge.net/docs/man/Listing12.FurtherSquidConfiguration#AddressofthecacheadministratoraclsnmpManagersrc172.16.0.100#Non-se

38 BSD 4/2010

how-to’s

39www.bsdmag.org

The Squid and the Blowfish

snmpwalk.html) is part of the NET-SNMP
http://net-snmp.sourceforge.net/ project).
E.g.: see Listing 16.

Please refer to the documentation
(http://wiki.squid-cache.org/Features/
Snmp?action=show&redirect=SquidFa
q/SquidSnmp#head-edb6affeb8aa43
64a710048e20f0ce125e5b8244) for a
detailed explanation of the output from the
snmpwalk command.

Content filtering
with SquidGuard
SquidGuard (http://www.squidguard.org/)
is a combined filter, redirector and access
controller plugin for Squid. We will use it
to block access to specific categories of
unwanted sites, based on IP addresses,
URLs and regular expressions. SquidGuard
comes with a very comprehensive list of
commonly-banned web sites, divided into
categories such as porn, drugs, ads and
so on, making configuration rather simple
and fast.

Installation
SquidGuard is available through
OpenBSD's packages and ports system
(http://www.openbsd.org/faq/faq15.html)
and requires the installation of the
following packages:

• db-x.x.x.tgz
• squidGuard-x.x.x.tgz

The installation places a copy of the
blacklists tarball (blacklists.tar.gz) in
/usr/local/share/examples/squidguard/

dest/. We will extract it into the /var/
squidguard/db directory:

cd /usr/local/share/examples/

squidguard/dest/

mkdir -p /var/squidguard/db

tar -zxvC /var/squidguard/db -f

blacklists.tar.gz

[...]

Configuration
SquidGuard's configuration file is /etc/

squidguard/squidguard.conf; it is logically
divided into six sections (please refer to the
documentation (http://www.squidguard.org/
Doc/) for a more in-depth look at
squidGuard's configuration options):

Listing 14. Transparent Caching

/etc/pf.conf

[...]

LAN interface

lan_if = rl1

Cache server and port

cache_srv = proxy.kernel-panic.it

cache_port = 3128

Transparently redirect web traffic to the cache server

rdr on $lan_if proto tcp from $lan_if:network to any port www -> \

 $cache_srv port $cache_port

[...]

Listing 15. SNMP Configuration

/etc/squid/squid.conf

By default, Squid listens for SNMP packets on port 3401, to avoid

conflicting

with any other SNMP agent listening on the standard port 161.

snmp_port 3401

Address to listen on (0.0.0.0 means all interfaces)

snmp_incoming_address 0.0.0.0

Address to reply on (255.255.255.255 means the same as snmp_incoming_

address)

Only change this if you want to have SNMP replies sent using another

address

than where Squid listens for SNMP queries.

snmp_incoming_address and snmp_outgoing_address can’t have the same value

since they both use port 3401.

snmp_outgoing_address 255.255.255.255

Configuring access control is strongly recommended since some SNMP

information is confidential

acl all src 0.0.0.0/0.0.0.0

acl lan src 172.16.0.0/24

acl snmpManager src 172.16.0.100

acl publicCommunity snmp_community public

snmp_access allow snmpManager

snmp_access allow publicCommunity lan

snmp_access deny all

Listing 16. SNMP Configuration

snmpwalk -c public -v 1 proxy.kernel-panic.it:3401 .1.3.6.1.4.1.3495.1.1

SNMPv2-SMI::enterprises.3495.1.1.1.0 = INTEGER: 356

SNMPv2-SMI::enterprises.3495.1.1.2.0 = INTEGER: 744

SNMPv2-SMI::enterprises.3495.1.1.3.0 = Timeticks: (540791) 1:30:07.91

#

http://www.bsdmag.org
http://net-snmp.sourceforge.net/
http://wiki.squid-cache.org/Features/Snmp?action=show&redirect=SquidFaq/SquidSnmp#head-edb6affeb8aa4364a710048e20f0ce125e5b8244
http://wiki.squid-cache.org/Features/Snmp?action=show&redirect=SquidFaq/SquidSnmp#head-edb6affeb8aa4364a710048e20f0ce125e5b8244
http://wiki.squid-cache.org/Features/Snmp?action=show&redirect=SquidFaq/SquidSnmp#head-edb6affeb8aa4364a710048e20f0ce125e5b8244
http://wiki.squid-cache.org/Features/Snmp?action=show&redirect=SquidFaq/SquidSnmp#head-edb6affeb8aa4364a710048e20f0ce125e5b8244
http://www.squidguard.org/
http://www.openbsd.org/faq/faq15.html
http://www.squidguard.org/Doc/
http://www.squidguard.org/Doc/

40 BSD 4/2010

how-to’s

41www.bsdmag.org

The Squid and the Blowfish

• Path declarations – Specify the path
to the logs and blacklists directories:

logdir /var/squidguard/log
dbhome /var/squidguard/db

• Time space declarations
– SquidGuard allows you to have
different access rules based on time
and/or date. A short example will

probably best illustrate the flexibility of
these rules (Listing 17).

• Source group declarations –
SquidGuard allows you to filter based
on source IP address, domain and
user (users credentials are passed
by Squid along with the URL); e.g.: see
Listing 18.

• Destination group declarations – One
of the main features of SquidGuard is

certainly its ability to filter based on
destination address or domain. And
this is where the pre-built databases
we extracted before come in handy.
The domainlist parameter specifies
the path to a file containing a list of
domain names (later on, we will see
how to create the db files to speed
up SquidGuard startup time): this
must be a relative path rooted in
the directory specified by the dbhome
parameter. Similarly, the urllist and
expressionlist parameters specify
the (relative) path to files containing a
list of URLs and regular expressions
respectively. E.g.: see listing 19.

• Access control rule declarations
– Finally, we can combine all the
previous rules to build Access Control
Lists: see Listing 20.

The redirect rule declares the URL where
to redirect users requesting blocked
pages. SquidGuard can include some
useful information in the URL by expanding
the following macros:

• %a: the IP address of the client.
• %n: the domain name of the client or

unknown if not available.
• %i: the user ID or unknown if not

available.
• %s: the matched source group or

unknown if no groups were matched.
• %t: the matched destination group or

unknown if no groups were matched.
• %u: the requested URL.
• %p: the path and the optional query

string of %u but without the leading /.
• %%: a single %.

Now that squidGuard is configured,
we can build the Berkeley DB files for
domains, URLs and regular expressions
with the command:

squidGuard -u -C all

chown -R _squid /var/squidguard/

You can test that squidGuard configuration
is working properly by simulating some
Squid requests from the command line;
squidGuard expects a single line on stdin
with the following format (empty fields are
replaced with -):

Listing 17. SquidGuard Configuration

time workhours {

 weekly mtwhf 08:00-18:00

}

time night {

 weekly * 18:00-24:00

 weekly * 00:00-08:00

}

time holidays {

 date *.01.01 # New Year’s Day

 date *.05.01 # Labour Day

 date *.12.24 12:00-24:00 # Christmas Eve (short day)

 date *.12.25 # Christmas Day

 date *.12.26 # Boxing Day

}

Listing 18. SquidGuard Configuration

src admin {

 ip 172.16.0.12 # The administrator’s PC

 domain lan.kernel-panic.it # The LAN domain

 user root administrator # The administrator’s login names

}

src lan {

 ip 172.16.0.0/24 # The internal network

 domain lan.kernel-panic.it # The LAN domain

}

Listing 19. SquidGuard Configuration

dest porn {

 domainlist blacklists/porn/domains

 urllist blacklists/porn/urls

 expressionlist blacklists/porn/expressions

 # Logged info is anonymized to protect users’ privacy

 log anonymous dest/porn.log

}

40 BSD 4/2010

how-to’s

41www.bsdmag.org

The Squid and the Blowfish

URL client_ip/fqdn user method urlgroup

and returns the configured redirect URL (if
the site is blocked) or an empty line; for
example: see Listing 21.

If everything is working as expected, we
can configure Squid to use squidGuard as
the redirector, by editing a few parameters
in the /etc/squid/squid.conf file see
Listing 22.

Virus scanning with
SquidClamav
SquidClamav (http://www.darold.net/
projects/squidclamav/) is a ClamAV
antivirus redirector for Squid. It will help
us filter out malicious software from web
traffic.

Installation
We already covered the installation
procedure of the Clam AntiVirus (http:
//www.clamav.net) in a previous document
(http://www.kernel-panic.it/openbsd/mail/
mail6.html#mail-6.2), so we won't dwell on
this topic now and proceed directly to the
installation of SquidClamav. We will assume
that ClamAV resides on the same machine
as Squid, though you may wish to create a
separate antivirus server, possibly serving
both the cache and the mail server.

SquidClamav relies on the cURL (http:/
/curl.haxx.se/) library to download the files
to scan, so we need to add the following
packages first:

• libiconv-x.x.tgz

• gettext-x.x.x.tgz
• libidn-x.x.tgz

• curl-x.xx.x.tgz

Then we can download (http://
www.darold.net/projects/squidclamav/),
extract and compile the SquidClamav
tarball: see Listing 23.

Configuration
The configuration file is /etc/

squidclamav.conf. SquidClamav can be
configured to scan or ignore requests
based on regular expressions. The regex
and regexi keywords allow you to specify
the files you want to scan (the former is
case-sensitive while the latter is not). E.g:
see Listing 24.

Listing 20. SquidGuard Configuration

acl {

 admin within workhours {

 # The following rule allows everything except porn, drugs and

 # gambling sites during work hours. ‘!’ is the NOT operator.

 pass !porn !drugs !gambling all

 } else {

 # Outside of work hours drugs and gambling sites are still blocked.

 pass !drugs !gambling all

 }

 lan {

 # The built-in ‘in-addr’ destination group matches any IP address.

 pass !in-addr !porn !drugs !gambling all

 }

 default {

 # Default deny to reject unknown clients

 pass none

 redirect http://www.kernel-panic.it/error.html&ip=%a&url=%u

 }

}

Listing 21. SquidGuard Configuration

echo „http://www.blocked.site 1.2.3.4/- user GET -” | squidGuard \

> -c /etc/squidguard/squidguard.conf -d

[...]

2008-12-14 09:57:04 [27349] squidGuard ready for requests (1197622624.065)

http://www.kernel-panic.it/error.html&ip=1.2.3.4&url=http://www.blocked.site

1.2.3.4/- user GET

2008-12-14 09:57:04 [27349] squidGuard stopped (1197622624.067)

echo „http://www.good.site 1.2.3.4/- user GET -” | squidGuard \

> -c /etc/squidguard/squidguard.conf -d

[...]

2008-12-14 10:30:24 [12046] squidGuard ready for requests (1197624624.421)

2008-12-14 10:30:24 [12046] squidGuard stopped (1197624624.423)

Listing 22. SquidGuard Configuration

/etc/squid/squid.conf

Path to the redirector program

url_rewrite_program /usr/local/bin/squidGuard

Number of redirector processes to spawn

url_rewrite_children 5

To prevent loops, don't send requests from localhost to the redirector

url_rewrite_access deny localhost

and reload Squid configuration:

squid -k reconfigure

http://www.bsdmag.org
http://www.darold.net/projects/squidclamav/
http://www.darold.net/projects/squidclamav/
http://www.clamav.net
http://www.kernel-panic.it/openbsd/mail/mail6.html#mail-6.2
http://www.kernel-panic.it/openbsd/mail/mail6.html#mail-6.2
http://www.darold.net/projects/squidclamav/
http://www.darold.net/projects/squidclamav/
http://www.kernel-panic.it/error.html&ip=%a&url=%u
http://www.blocked.site
http://www.kernel-panic.it/error.html&ip=1.2.3.4&url=
http://www.blocked.site
http://www.good.site

42 BSD 4/2010

how-to’s

43www.bsdmag.org

The Squid and the Blowfish

The abort and aborti keywords,
instead, tell SquidClamav to skip checking
files matching specific paterns. You may
also use the whitelist keyword to ignore
a given URL or domain.E.g.: see Listing
25.

The content keyword allows virus
scanning based on the request content
type. E.g.:

Scan all files with a media type of

"application"

content ^.*application\/.*$

Listing 26 is a sample configuration file.

As you can see, the squidguard
parameter allows you to chain
SquidClamav with another redirector,
typically squidGuard; the chained
program is called before the antivirus
scanner.

Now we only have to modify the value
of the url_rewrite_program parameter in
Squid's configuration file:

/etc/squid/squid.conf

url_rewrite_program /usr/local/bin/

squidclamav

and reload Squid.

squid -k reconfigure

Note: to scan a file, SquidClamav needs
to download it first; so make sure your
Squid ACLs allow localhost to access
the web:

/etc/squid/squid.conf

http_access allow localhost

You can check that everything is working
fine by trying to download the Eicar (http://
eicar.org/anti_virus_test_file.htm) anti-virus
test file. In the log file, you should get
something like: see Listing 27.

Listing 23. Virus Scanning with SquidClamav

$ tar -zxvf squidclamav-x.x.tar.gz

[...]

$ cd squidclamav-x.x

$ env LDFLAGS=-L/usr/local/lib/ CPPFLAGS=-I/usr/local/include/ ./configure

[...]

$ make

[...]

$ su

Password:

$ make install

[...]

cp squidclamav.conf.dist /etc/squidclamav.conf

touch /var/log/squidclamav.log

chown _squid /var/log/squidclamav.log

Listing 24. Virus Scanning with SquidClamav

Check against the ClamAV antivirus all files with case insensitive

extension .exe, .com or .zip

regexi ^.*\.exe$

regexi ^.*\.com$

regexi ^.*\.zip$

Listing 25. Virus Scanning with SquidClamav

Don't virus scan .gif, .png and .jpg images and .html and .htm documents

aborti ^.*\.gif$

aborti ^.*\.png$

aborti ^.*\.jpg$

abort ^.*\.html$

abort ^.*\.htm$

Don't virus scan trusted web sites

whitelist www.kernel-panic.it

http://eicar.org/anti_virus_test_file.htm
http://eicar.org/anti_virus_test_file.htm
http://www.kernel-panic.it

42 BSD 4/2010

how-to’s

43www.bsdmag.org

The Squid and the Blowfish

Ad Zapping with AdZapper
AdZapper (http://adzapper.sourceforge.
net/) is a redirector for squid that
intercepts advertising (banners, popup
windows, flash animations, etc), page
counters and some web bugs (as
found). It will help users to get rid of
those annoying popup windows, flash
animations and malicious cookies and
will help you save bandwidth and cache
resources.

We will make use of three scripts:

• squid_redirect, which performs the
actual ad zapping;

• zapchain, which chains multiple
redirectors together (this is necessary
because Squid accepts only one
redirector_program);

• wrapzap which is a very simple
wrapper script that sets environment
variables useful to the redirector and
then runs it.

Installation
The installation procedure is
very simple. Download (http://
adzapper.sourceforge.net/#download)
and extract the tarball, then copy the
squid_redirect, wrapzap and zapchain
scripts to /usr/local/bin, or wherever
you prefer.

tar -zxvf adzap-xxxxxxxx.tar.gz

[...]

cd adzap-xxxxxxxx/scripts

cp squid_redirect wrapzap zapchain

/usr/local/bin/

The zaps directory contains the images
that will replace the zapped ads: copy
them to where the web server can find
them. They're not really works of art, so
feel free to customize them.

scp -r ../zaps root@www.kernel-

panic.it:/var/www/icons/

Configuration
AdZapper configuration takes place in
the wrapzap script; below is a sample
configuration script: see Listing 28.

Now we only have to update the url_
rewrite_program in Squid's configuration
file:

Listing 26. Virus Scanning with SquidClamav

/etc/squidclamav.conf

IP address and port of the Squid proxy

squid_ip 127.0.0.1

squid_port 3128

Path to the log file

logfile /var/log/squidclamav.log

URL where to redirect a request when a virus is found. SquidClamav will

append the original URL and the virus name to this URL.

redirect http://www.kernel-panic.it/viruswarn.php

Disable virus scanning if the requested file hits squid cache

trust_cache 1

Timeout when downloading files

timeout 60

Set this to ‘1’ for more verbose logging

debug 0

Set this to ‘1’ to force virus scan of URLs whose content-type can’t be

determined by libcurl

force 1

Set this to ‘1’ to show time statistics of URL processing

stat 0

Don’t follow more than 10 redirects

maxredir 10

Uncomment to make cURL pretend to be Internet Explorer

#useragent Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

IP address and port of the clamd daemon

clamd_ip 127.0.0.1

clamd_port 3310

Uncomment if you’re using the unix socket to communicate with clamd

#clamd_local /tmp/clamd

Check rules

aborti ^.*\/cgi-bin\/.*$

aborti ^.*\.pdf$

aborti ^.*\.html$

aborti ^.*\.css$

aborti ^.*\.xml$

abortcontenti ^.*application\/json.*$

regexi ^.*\.exe

regexi ^.*\.zip

regexi ^.*\.gz

content ^.*application\/.*$

whitelist www.kernel-panic.it
Call another redirector (usually squidGuard) before the antivirus scanner

squidguard /usr/local/bin/squidGuard

http://www.bsdmag.org
http://adzapper.sourceforge.net/
http://adzapper.sourceforge.net/
http://adzapper.sourceforge.net/#download
http://adzapper.sourceforge.net/#download
mailto:root@www.kernel-panic.it:/var/www/icons/
mailto:root@www.kernel-panic.it:/var/www/icons/
mailto:root@www.kernel-panic.it:/var/www/icons/
http://www.kernel-panic.it/viruswarn.php
http://www.kernel-panic.it

44 BSD 4/2010

how-to’s

45www.bsdmag.org

The Squid and the Blowfish

Listing 27. Virus Scanning with SquidClamav

/var/log/squidclamav.log

[...]

Fri May 15 19:26:49 2009 [29028] DEBUG received from Clamd: stream: Eicar-Test-Signature FOUND

Fri May 15 19:26:49 2009 [29028] LOG Redirecting URL to: http://www.kernel-panic.it/viruswarn.php?url=http://

www.eicar.org/download/eicar.com.txt&source=192.168.1.14/-&user=-&virus=stream:+Eicar-Test-Signature+FOUND

Fri May 15 19:26:49 2009 [29028] DEBUG End reading clamd scan result.

Fri May 15 19:26:49 2009 [29028] DEBUG Virus found send redirection to Squid.

Listing 28a. Ad Zapping wit AdZapper. Configuration

/usr/local/bin/wrapzap

#!/bin/sh

squidclamav=/usr/local/bin/squidclamav

zapper=/usr/local/bin/squid_redirect

Setting ZAP_MODE to „CLEAR” will cause the zapper to use transparent images,

thus completely hiding ads. This may, however, hide useful markup.

ZAP_MODE=

Base URL of the directory containing the replacement images

ZAP_BASE=http://www.kernel-panic.it/icons/zaps

ZAP_BASE_SSL=https://www.kernel-panic.it/icons/zaps

The following variables contain the path to extra pattern files.

ZAP_PREMATCH patterns are consulted before the main pattern list. Use it to

prevent overzapping by some erroneous patterns in the main pattern file.

ZAP_PREMATCH=

ZAP_POSTMATCH patterns are consulted after the main pattern list. Use it to

add extra patterns

ZAP_POSTMATCH=

ZAP_MATCH patterns are consulted instead of the main pattern list. Use it to

fully customize AdZapper

ZAP_MATCH=

Should you use Apache2 instead of Squid, set this to „NULL”

ZAP_NO_CHANGE=

Placeholder images names. „Clear” versions have „-clear” appended to the root

portion of the file name; e.g. „ad.gif” becomes „ad-clear.gif”.

STUBURL_AD=$ZAP_BASE/ad.gif

STUBURL_ADSSL=$ZAP_BASE_SSL/ad.gif

STUBURL_ADBG=$ZAP_BASE/adbg.gif

STUBURL_ADJS=$ZAP_BASE/no-op.js

STUBURL_ADJSTEXT=

STUBURL_ADHTML=$ZAP_BASE/no-op.html

STUBURL_ADHTMLTEXT=

STUBURL_ADMP3=$ZAP_BASE/ad.mp3

STUBURL_ADPOPUP=$ZAP_BASE/closepopup.html

http://www.kernel-panic.it/viruswarn.php?url=
http://www.eicar.org/download/eicar.com.txt&source=192.168.1.14/-&user=-&virus=stream:+Eicar-Test-Signature+FOUND
http://www.eicar.org/download/eicar.com.txt&source=192.168.1.14/-&user=-&virus=stream:+Eicar-Test-Signature+FOUND
http://www.kernel-panic.it/icons/zaps
https://www.kernel-panic.it/icons/zaps

44 BSD 4/2010

how-to’s

45www.bsdmag.org

The Squid and the Blowfish

Listing 28b. Ad Zapping wit AdZapper. Configuration

STUBURL_ADSWF=$ZAP_BASE/ad.swf

STUBURL_COUNTER=$ZAP_BASE/counter.gif

STUBURL_COUNTERJS=$ZAP_BASE/no-op-counter.js

STUBURL_COUNTERHTML=$ZAP_BASE/no-op-counter.html

STUBURL_WEBBUG=$ZAP_BASE/webbug.gif

STUBURL_WEBBUGJS=$ZAP_BASE/webbug.js

STUBURL_WEBBUGHTML=$ZAP_BASE/webbug.html

Set this to „1” to use the rewrite facility to get the printer-friendly

version of some pages

STUBURL_PRINT=

export ZAP_MODE ZAP_BASE ZAP_BASE_SSL ZAP_PREMATCH ZAP_POSTMATCH ZAP_MATCH ZAP_NO_CHANGE

export STUBURL_AD STUBURL_ADSSL STUBURL_ADJS STUBURL_ADHTML STUBURL_ADMP3 \

 STUBURL_ADPOPUP STUBURL_ADSWF STUBURL_COUNTER STUBURL_COUNTERJS \

 STUBURL_COUNTERHTML STUBURL_WEBBUG STUBURL_WEBBUGJS STUBURL_WEBBUGHTML \

 STUBURL_PRINT STUBURL_ADHTMLTEXT STUBURL_ADJSTEXT

Exec the real zapper (chained with SquidClamav)

exec /usr/local/bin/zapchain „$zapper” „$squidclamav”

Listing 29. Appendix. Server-side Configuration

remote# pkg_add stunnel-x.xx.tgz

[...]

remote# openssl req -x509 -newkey rsa:2048 -keyout /etc/ssl/private/stunnel.key \

> -out /etc/ssl/stunnel.crt -days 365 -nodes

[...]

remote# chmod 600 /etc/ssl/private/stunnel.key

Listing 30. Appendix. Server-side Configuration

/etc/stunnel/stunnel.conf

cert = /etc/ssl/stunnel.crt

key = /etc/ssl/private/stunnel.key

chroot = /var/stunnel/

setuid = _stunnel

setgid = _stunnel

pid = /var/run/stunnel.pid

socket = l:TCP_NODELAY=1

socket = r:TCP_NODELAY=1

[https]

accept = 443

connect = 22

TIMEOUTclose = 0

http://www.bsdmag.org

46 BSD 4/2010

how-to’s

47www.bsdmag.org

The Squid and the Blowfish

/etc/squid/squid.conf

redirect_program /usr/local/bin/

wrapzap

and reload Squid.

squid -k reconfigure

Now ads should magically disappear
from web sites!

Appendix

Tunneling through Squid
So you have finally configured your proxy
server, allowing only requests to a few
standard ports, blocking blacklisted sites,
ads and viruses. The HTTP CONNECT method
is restricted to the standard HTTPS port. Your

LAN firewalls rules are very strict and block
everything but requests to port 3128 of the
proxy. Therefore, you feel pretty confident that
users won't be able to do anything on the
Internet you didn't explicitly allow.

But Squid is an ugly beast, and if
you don't pay very close attention to its
configuration (and log files), your users
could end up getting around most of
your blocking rules. Let's have a look at a
practical example.

Stunnel (http://www.stunnel.org/) is
a program that allows you to encrypt
arbitrary TCP connections inside SSL. It
is mainly used to secure non-SSL aware
daemons and protocols (like POP, IMAP,
LDAP, etc) by having Stunnel provide the
encryption, requiring no changes to the
daemon's code.

Basically, Stunnel establishes an
encrypted and persistent connection
between two separate machines. One
machine acts as the server and forwards
any connection Stunnel receives to
a user-defined port. The other machine
acts as the client, binding to an arbitrary
port and forwarding any connection
it receives on that port to the server
machine.

We will use Stunnel and Squid to
bypass firewall rules and ssh(1) to
a remote server (e.g. your home computer)
from a local computer in the corporate
LAN. The OpenBSD ports and packages
archives include a few similar tools for
tunneling network traffic through proxy
servers, such as:

• Corkscrew (http://www.agroman.net/
corkscrew/), a tool for tunneling
ssh(1) through HTTP proxies;

• gotthard (http://www.nazgul.ch/
dev.html), a daemon which tunnels
ssh(1) (http://www.openbsd.org/cgi-
bin/man.cgi?query=ftp&sektion=1)ses
sions through an HTTPS proxy;

• httptunnel (http://www.nocrew.org/
software/httptunnel/), which creates a
bidirectional virtual data connection
tunnelled in HTTP requests.

However, Stunnel is probably the most
versatile and comprehensive tunneling
solution, since it can forward any type
of network traffic (not only ssh(1) http:
//www.openbsd.org/cgi-bin/man.cgi?q
uery=ftp&sektion=1) and provides an
additional SSL cryptography layer, thus
protecting clear text protocols such as
telnet(1) (http://www.openbsd.org/cgi-
bin/man.cgi?query=telnet&sektion=1) or
ftp(1) http://www.openbsd.org/cgi-bin/
man.cgi?query=ftp&sektion=1.

Server-side configuration
The remote computer will necessarily have
to act as the server. Install stunnel (http://
www.stunnel.org/) from the packages and
create the SSL certificate: see Listing 29.

Then configure Stunnel to bind
to port 443 (HTTPS) and forward
incoming connections to port 22 (ssh).
The configuration file is /etc/stunnel/

stunnel.conf: see Listing 30.

Listing 31. Appendix. Client-side Configuration

local$ tar -zxvf stunnel-4.05.tar.gz

[...]

local$ patch -p0 < connect-proxy.mwald.patch

[...]

local$ cd stunnel-4.05

local$./configure

[...]

local$ ln -s /usr/sbin/openssl /usr/bin/openssl

local$ make

[...]

local$ su

Password:

local# make install

[...]

local#

Listing 32. Appendix. Client-side Configuration

/etc/stunnel/stunnel.conf

chroot = /var/stunnel

setuid = _stunnel

setgid = _stunnel

pid = /var/run/stunnel.pid

client = yes

[https]

accept = 1443

connect = web-proxy:3128

httpsproxy_dest = stunnel-server:443

httpsproxy_auth = username:password

http://www.stunnel.org/
http://www.agroman.net/corkscrew/
http://www.agroman.net/corkscrew/
http://www.nazgul.ch/dev.html
http://www.nazgul.ch/dev.html
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp&sektion=1
http://www.nocrew.org/software/httptunnel/
http://www.nocrew.org/software/httptunnel/
http://www.openbsd.org/cgi-bin/man.cgi?q
http://www.openbsd.org/cgi-bin/man.cgi?query=telnet&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=telnet&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=telnet&sektion=1
http://www.openbsd.org/cgi-bin/
http://www.stunnel.org/
http://www.stunnel.org/

46 BSD 4/2010

how-to’s

47www.bsdmag.org

The Squid and the Blowfish

Now we can start it and go to work to
have some fun with our tunnel:

remote# /usr/local/sbin/stunnel

Client-side configuration
So now we come to the local computer,
which will act as the client. The SSL tunnel
needs to go through Squid to get around
the firewall rules but, by default, Stunnel
doesn't support web proxies. Fortunately,
a few patches are available that add
SSL-proxy support to Stunnel. The most
recent available (http://www.stunnel.org/
patches/desc/connect-proxy.mwald.html)
applies to Stunnel version 4.05, so
I suggest that you download (http://
ftp.bit.nl/mirror/stunnel/obsolete/4.x/) and

install this version on the client machine
see Listing 31. The patch introduces two
additional configuration parameters:
httpsproxy_dest (name or address of
the Stunnel server) and httpsproxy_auth
(proxy authentication credentials). We will
configure the client to accept connections
on an arbitrary port (e.g. 1443) and
forward them to port 443 of the remote
Stunnel server (which, in turn, will forward
them to port 22). In other words, when
you will connect to port 1443 on the local
computer, you will actually get connected
to port 22 on the remote computer.

The client configuration file looks like:
see Listing 32.

Ok, everything is ready, let's give it a
try:

local# /usr/local/sbin/stunnel

local# ssh localhost -p 1443

root@localhost's password:

remote#

As you can see, despite firewall rules
and Squid ACLs, we have successfully
connected to the remote computer. Once
the tunnel is up, you could even do the
opposite and connect from the remote
server to the local client by simply opening
a reverse ssh from the local client:

local# ssh -NR 2443:localhost:22 -p

1443

This way, every connection received by
the remote server on port 2443 will be
forwarded to port 22 of the local client:

remote# ssh localhost -p 2443

root@localhost's password:

local#

You could even allow X11 forwarding on
the remote server and have your whole
remote graphical environment available
on the local machine (for instance to surf
the web with no proxy filters).

Anyway, this paragraph only meant
to point out how much careful Squid
configuration must be. Usually, however,
the stricter your corporate policy, the more
determined your users will be to evade it.

By the way, using whitelists is probably
the best solution to prevent tunneling, but,
if they are too restrictive, get ready to get
your car keyed by a crowd of angry users!

• OpenBSD http://www.openbsd.org/, the secure by default operating system
• Squid http://www.squid-cache.org/, a full-featured Web proxy cache designed to run on

Unix systems
• Squidguard http://www.squidguard.org/, an ultrafast and free filter, redirector and

access controller for Squid
• ClamAV http://www.clamav.net/, a GPL anti-virus toolkit for UNIX
• SquidClamav http://www.darold.net/projects/squidclamav/, a Clamav Antivirus

Redirector for Squid
• AdZapper http://adzapper.sourceforge.net/, a redirector for squid that intercepts

advertising, page counters and some web bugs
• DansGuardian http://dansguardian.org/, true web content filtering for all
• Stunnel http://www.stunnel.org/, the universal SSL wrapper
• HTTP Connect-style proxy patch for Stunnel http://www.stunnel.org/patches/desc/

connect-proxy.mwald.html
• Corkscrew http://www.agroman.net/corkscrew/, a tool for tunneling ssh(1) http://

www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1 through HTTP proxies
• gotthard http://www.nazgul.ch/dev.html, a daemon which tunnels ssh(1) http://

www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1 sessions through an HTTPS proxy
• httptunnel http://www.nocrew.org/software/httptunnel/, a tool for creating a bidirectional

virtual data connection tunnelled in HTTP requests

References

• The Squid Documentation Project http://squid-docs.sourceforge.net/
• Squid Frequently Asked Questions http://old.squid-cache.org/Doc/FAQ/FAQ.html
• Squid Wiki http://wiki.squid-cache.org/
• Squid configuration manual http://www.visolve.com/squid/index.htm
• Squid-Book oltre le FAQ (Italian only) http://www.merlinobbs.net/Squid-Book/HTML/

index.html
• Configuring squidGuard http://www.squidguard.org/config/
• Meeting the Challenges of Web Content Filtering http://www.squidguard.org/config/

Bibliography

Daniele Mazzocchio a Unix system
administrator from Italy, working for a
major telco where he manages HP/UX,
Solaris, Tru64 and Linux machines. He is
a BSD user since 2003 and maintain the
www.kernel-panic.it website, which contains
various documents on OpenBSD. He also
maintains BowlFish, a script for installing
OpenBSD on embedded devices, and he is
currently working on py-PF, a Python module
for managing Packet Filter.

About the Author

http://www.bsdmag.org
http://www.stunnel.org/patches/desc/connect-proxy.mwald.html
http://www.stunnel.org/patches/desc/connect-proxy.mwald.html
http://ftp.bit.nl/mirror/stunnel/obsolete/4.x/
http://ftp.bit.nl/mirror/stunnel/obsolete/4.x/
http://www.openbsd.org/
http://www.squid-cache.org/
http://www.squidguard.org/
http://www.clamav.net/
http://www.darold.net/projects/squidclamav/
http://adzapper.sourceforge.net/
http://dansguardian.org/
http://www.stunnel.org/
http://www.stunnel.org/patches/desc/
http://www.agroman.net/corkscrew/
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1
http://www.nazgul.ch/dev.html
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh&sektion=1
http://www.nocrew.org/software/httptunnel/
http://squid-docs.sourceforge.net/
http://old.squid-cache.org/Doc/FAQ/FAQ.html
http://wiki.squid-cache.org/
http://www.visolve.com/squid/index.htm
http://www.merlinobbs.net/Squid-Book/HTML/
http://www.squidguard.org/config/
http://www.squidguard.org/config/
http://www.kernel-panic.it

48 BSD 4/2010

let’s talk Hosting Environment Network and Firewall Redundancy with the BSDs

49www.bsdmag.org

Hosting Environment
Network and Firewall
Redundancy with the BSDs
With many large websites and hosting providers relying on BSD operating systems
to power their businesses, it only makes sense that many smaller providers take the
same path.

Chris Buechler

I n these smaller environments, BSD systems are also
frequently relied upon to perform all of the routing,
firewalling and load balancing for the environment. This
article covers the network and firewall redundancy and

load balancing options available with the BSDs, from the
author's experience implementing such solutions in numerous
environments around the world ranging from a partial rack to
a few dozen rack cabinets.

Overview
As a summary of the type of environment being discussed here,
this is generally where you are renting a small portion of a large
colocation facility, and building a hosting environment. This can
be to offer hosting services to customers, or for your company's
own web sites, email and other services. The colocation provider
brings a network drop or two into your cabinet, and the remaining
infrastructure is up to you to design and implement. This article
is about the process of designing that infrastructure and where
various capabilities of the BSD operating systems can be
employed to create a highly available network while minimizing
cost.

For public IP assignments from the provider, unless you are
working with a very small environment, you will usually get two IP
blocks. One /29 or /30 block for the WAN side of your firewall(s),
and a larger block that gets routed to an IP in your WAN block
for use inside the firewall. This will be covered further in the next
section.

Various levels of redundancy in each portion of the network
will be discussed. The level of which to use in your environment
will depend on your availability requirements, and budget.
Some of the practices to enhance redundancy require doubling
of equipment such as firewalls and switches, and while this
is typically a small portion of the overall budget to build and

maintain such an environment, budgetary constraints may
guide your design decisions and lead to sacrifices in certain
areas.

Also note that being the co-founder of the pfSense project and
it being the primary firewall I help deploy, I have a considerable
bias on the firewall side towards PF, CARP and pfsync. Depending
on your BSD of choice, there are other alternatives, though PF
and friends will be the focus of this article on the firewall side.

Network Perimeter
The edge of your network in these environments will usually be
your firewall, or in my preferred deployment, a pair of redundant
firewalls running PF, CARP and pfsync. Two network drops from
the provider, one into each firewall's WAN port, protects you
from switch port failure or cabling issues on the provider's side
of the network. In the case of redundant firewalls, a /29 subnet
from the provider is most commonly used on the WAN side, with
one IP for each firewall's WAN interface, one for the provider's
router on that segment, and three remaining to be assigned as
shared CARP IPs. The CARP IPs are shared between the two
firewalls, with only the firewall having master status answering
on those IPs. The CARP IPs can be used in combination with
NAT with systems behind the firewall. In environments large
enough to justify more IP space, a second public IP subnet is
usually assigned. The second subnet, typically a /28 or larger, is
routed by the provider to one of your CARP IPs so it will always
go to the firewall currently holding master status. This second
public IP subnet is usable in a number of ways. Some people
prefer to assign public IPs directly to systems, and configure an
internal firewall interface with the second public IP subnet. If you
prefer using strictly NAT, you can use that subnet with NAT on
the firewall as well. In some environments you use a mix of both,
with the public IP subnet configured on an internal interface, but

48 BSD 4/2010

let’s talk Hosting Environment Network and Firewall Redundancy with the BSDs

49www.bsdmag.org

some of the IPs in that subnet used by the
firewall for NAT rather than being directly
assigned.

In addition to the connection to
the provider network, and one or more
connections to the internal network, the
firewalls have a connection between them
for pfsync traffic. pfsync synchronizes the
state table between the firewalls, allowing
for failover while retaining all active
connections. The pfsync traffic does not
require a dedicated interface, however
it is recommended for security and
performance reasons.

The following diagram illustrates the
basic layout of the firewall setup described
Figure 1.

Internal Network
With the network perimeter defined,
this section covers the network devices
connected inside the firewalls. For
switch redundancy, usually a minimum
of two internal switches are used, with
one firewall plugged into each switch.
Port bonding, as discussed later in this
article, can be used as well to connect
both firewalls to both internal switches for
additional redundancy. However, because
the number of interfaces on the firewalls
may be limited because of the hardware
platform in use or the expense of multi-
port NICs, and the fact that you already
have switch redundancy by being able
to fail over to the secondary firewall,
frequently port bonding is not configured
on the firewalls.

A VLAN trunk is used in most
environments as the internal network
interface of the firewalls. In combination
with 802.1Q VLAN capable switches, this
allows the firewall to carry numerous
internal networks over one physical
NIC. The switch ports are configured
as members of the appropriate VLAN
for the attached device, with the ports
to the firewalls and those connecting
a switch to another switch configured
with tagged VLANs. VLAN interfaces are
then configured on the firewalls, which are
functionally equivalent to adding another
physical interface.

The following diagram illustrates
a typical VLAN deployment. The green
lines indicate tagged VLAN trunks carrying

all VLANs. The blue and orange lines
connecting the two servers shown are

on separate VLANs, which is functionally
equivalent to having them plugged into

Figure 1. The illustration the basic layout of the firewall setup

���������������

���������� ����������

������

����������������

Firewalls

• PF – http://www.openbsd.org/faq/pf/

Books

• The following books on PF are available from Amazon and many other booksellers.
• The Book of PF: A No-Nonsense Guide to the OpenBSD Firewall
• The OpenBSD PF Packet Filter Book
• Building Firewalls with OpenBSD and PF

pfSense

• Home – http://www.pfsense.org
• Documentation – http://doc.pfsense.org
• Forum – http://forum.pfsense.org
• Book – pfSense: The Definitive Guide – http://pfsense.org/book

Port Bonding

• FreeBSD lagg(4) – http://www.freebsd.org/cgi/man.cgi?query=lagg&apropos=0&sektion
=0&manpath=FreeBSD+8.0-RELEASE&format=html

 http://www.freebsd.org/doc/handbook/network-aggregation.html
• NetBSD agr(4) – http://netbsd.gw.com/cgi-bin/man-cgi?agr
• OpenBSD trunk(4) – http://www.openbsd.org/cgi-bin/man.cgi?query=trunk&sektion=4

References

http://www.openbsd.org/faq/pf/
http://www.pfsense.org
http://doc.pfsense.org
http://forum.pfsense.org
http://pfsense.org/book
http://www.freebsd.org/cgi/man.cgi?query=lagg&apropos=0&sektion
http://www.freebsd.org/doc/handbook/network-aggregation.html
http://netbsd.gw.com/cgi-bin/man-cgi?agr
http://www.openbsd.org/cgi-bin/man.cgi?query=trunk&sektion=4
http://www.bsdmag.org

50 BSD 4/2010

let’s talk

51www.bsdmag.org

Hosting Environment Network and Firewall Redundancy with the BSDs

two different switches. All communication
between the VLANs must be routed,

usually by the firewall in networks such as
this (Figure 2).

Server Network Connectivity
Redundancy
Now with the perimeter and routing
redundancy handled, the servers can also
be accommodated. The usual one NIC
per server leaves the servers susceptible
to NIC, switch or switch port failures. Each
of the three most widespread BSDs offers
a solution here, with port bonding – lagg(4)
on FreeBSD, agr(4) on NetBSD, and
trunk(4) on OpenBSD. Sorry DragonFly
BSD fans – while ng_one2many(4)
provides somewhat similar functionality,
it's not truly comparable to lagg/agr/trunk
and DragonFly lacks anything equivalent
to those three.

Port bonding enables you to combine
multiple physical NICs into a single logical
NIC. Depending on the configuration
type chosen, this may provide only
redundancy in case of NIC or switch
failure, or increased bandwidth as well as
redundancy. The failover mode of lagg and
trunk allow for sending traffic only over
the primary NIC, and failing over to the
secondary NIC if the first loses its Ethernet
link. The loadbalance and roundrobin
modes balance outgoing traffic across all
active interfaces, and disable interfaces
if they lose link. With all of these modes,
if the NIC has a link light, the interface is
considered up. That may not always be
the case, so these methods are more
limited in their ability to detect failures.

The 802.3ad Link Aggregation Control
Protocol (LACP) standard provides a way
for the servers and switches to detect each
other and bond the ports appropriately.
This has the advantage of being able to
detect failures that the other modes will
not, since LACP requires the connected
device to communicate successfully
with the switch, while the others simply
check the NIC's link state. The downside
to LACP is it generally is not supported
across switches on low end to mid range
equipment, so it usually leaves you stuck
using a single switch.

While named differently, the
implementations in FreeBSD and
OpenBSD are essentially the same as
lagg(4) in FreeBSD is a port of trunk(4) in
OpenBSD. NetBSD's agr(4) is more limited
than lagg and trunk, as it only supports the
LACP standard. Figure 2. A firewall in networks for routing all communication between the VLANs

���������������

����������

�������

����������

������

�������

�������� ��������

������� �������

Load Balancing

• haproxy – http://haproxy.1wt.eu/
• nginx – http://nginx.org/
• pound – http://www.apsis.ch/pound/
• relayd – http://www.openbsd.org/cgi-bin/man.cgi?query=relayd&sektion=8&format=html
• slbd – http://slbd.sourceforge.net/
• Varnish – http://varnish-cache.org/

The built in server load balancer in pfSense is covered in pfSense: The Definitive Guide.
http://pfsense.org/book

References

http://haproxy.1wt.eu/
http://nginx.org/
http://www.apsis.ch/pound/
http://www.openbsd.org/cgi-bin/man.cgi?query=relayd&sektion=8&format=html
http://slbd.sourceforge.net/
http://varnish-cache.org/
http://pfsense.org/book

50 BSD 4/2010

let’s talk

51www.bsdmag.org

Hosting Environment Network and Firewall Redundancy with the BSDs

For purposes of switch redundancy,
because of the limits of LACP across
switches, the failover, loadbalance or
roundrobin modes of lagg or trunk have
most frequently been chosen in the
environments where I have assisted with
the design.

The following diagram illustrates the
above infrastructure, with server network
redundancy added in (Figure 3).

Load Balancing
With network and firewall redundancy
covered, there is a remaining gap with
service availability. If a web server or
other service has died or otherwise
malfunctioned, there are load balancing
options to direct traffic to a different

server. In other instances where a specific
application is resource intensive on the
server, the load can be distributed to
multiple internal servers, automatically
removing failed servers from the pool.

There are a number of options for
load balancing, with varying capabilities.
In smaller networks, many times the load
balancing functionality is deployed on the
firewalls. Two options that integrate into PF
are slbd and relayd. slbd is deprecated,
so for new deployments on a stock BSD,
you'll likely want to use relayd instead.
pfSense 1.2.x provides a load balancing
GUI for slbd, which works well, but is more
limited in its ability to detect failures. If the
load balancer can connect to the server
on the service's port, it is considered up,

which may not always be the case. relayd
provides enhanced service checking
capabilities. pfSense 2.0, slated for stable
release sometime in 2010, replaces slbd
with a GUI-configured relayd.

The options that integrate into PF lack
some of the more advanced capabilities
provided by other load balancing
services. Four of the most commonly
used alternatives are haproxy, nginx,
pound, and Varnish. They each provide
somewhat different capabilities, and the
best fit for your environment will depend
on your specific needs. Review the links
provided in the references section of this
article to determine which best fits your
environment. For a GUI-managed option,
pfSense offers a haproxy package.

Summary
The BSDs and related tools are a great
fit and proven solutions for building
a highly reliable and redundant network
infrastructure for hosting environments.
While specific configuration examples are
beyond the scope of this article, hopefully
the content here and references provided
will help you evaluate the solutions
available and design a solid infrastructure
for your hosting environment.

Figure 3. The illustration the above infrastructure, with server network redundancy added in

���������������

����������

�������

����������

������

�������

��������

Chris Buechler is the co-founder of the
pfSense open source firewall distribution,
and Chief Technology Officer of BSD
Perimeter LLC, the corporate arm of the
pfSense project. His most recent book
is pfSense: The Definitive Guide. Chris
and the rest of the pfSense team provide
a variety of network and security services
primarily related to BSD systems via https://
portal.pfsense.org. Chris can be reached
at cmb@pfsense.org. Thanks to Jim Pingle
(jimp@pfsense.org), the co-author of
pfSense: The Definitive Guide, for reviewing
this article.

About the Author

http://www.bsdmag.org
https://portal.pfsense.org
https://portal.pfsense.org
mailto:cmb@pfsense.org
mailto:jimp@pfsense.org

52 BSD 4/2010

let’s talk Comparison of FreeBSD And OpenBSD: Not One Cake But The Two Ones

53www.bsdmag.org

Comparison of FreeBSD
And OpenBSD:
Not One Cake But The Two Ones

The purpose of this article is to highlight some differences between the two BSD
operating systems – FreeBSD and OpenBSD.

Juraj Sipos

I t is because there is a significant lack of such information,
as BSD systems somewhat keep hidden in seclusion. To
help readers understand what the term BSD means, some
terminological and historical aspects are presented too.
There are several types of BSD Unix systems such as

FreeBSD, OpenBSD, NetBSD, and few other ones, too. These
BSD's, however, do not differ from one another in the Linux-
like fashion. Every BSD system is a cake made with different
ingredients and thus with its own taste.

Linux has one skeleton only – all its distributions use the
same kernel; this OS is comparable to a cake made with
identical ingredients but with different fruits on its top.

BSD systems are enveloped with myths some people
believe are true. A guy in a BSD forum once said that Linux
packages intended for one Linux distribution cannot be
always easily installed in other Linux distros, which is the
same complication as with OpenBSD packages, for example,
which you cannot install in FreeBSD, and that it is thus unfair to
compare Linux and BSD systems by criticizing bad installability
of Linux packages in a Linux these packages are not intended
for (end of the myth).

To understand the differences between OpenBSD and
FreeBSD, we must also get some picture about differences
between BSD systems and Linux. In the light of this, I have to
disprove the myth outlined in the above statement, because
some people think that BSD systems are like Linux. They are
not. If we look at what now the word BSD means, it is, above all,
the abbreviation of Berkeley Software Distribution and presently
this term only identifies the family of operating systems with
common history, the same way of handling particular tasks
(like compilation of a kernel), or the same terminology like, for
example, the base system, which is an installable BSD-style
OS with its kernel and system utilities such as ifconfig, mount,

chmod, etc., but without packages (like AbiWord, MPlayer, etc.).
There is not such a thing as a sole (one) BSD system.

Unlike Linux (Slackware, Ubuntu, Debian, RedHat, etc.),
FreeBSD and OpenBSD differ in their base system more
manifestly – whether it is the kernel or the system commands,
both OS's use different source codes; in addition, some
commands used for the same task are named differently,
or they exist in one system only (the sysinstall command
in FreeBSD, for example), or have the same name but both
offer a little different options. We can say the same thing if we
juxtapose NetBSD and BSD/OS. Anyone can say with certainty
that OpenBSD is not FreeBSD and that Ubuntu, Slackware, or
SuSE is Linux.

A sole member of the BSD family is OpenBSD, FreeBSD,
NetBSD – not Free BSD (although such a naming convention is
occasionally used). The word Linux is always written separately
(Slackware Linux, Debian Linux, etc.).

The above-mentioned terminological convention mirrors
the fact that Linux always consists of one body, which means
that in its environment you will always use the same system
commands – for example, modprobe to load modules into the
kernel. In FreeBSD, you will use kldload and in OpenBSD modload
– both commands, unlike modprobe, have a different source code.
There is less compatibility between OpenBSD and FreeBSD (and
between NetBSD and BSD/OS, etc.) than between Slackware
and Ubuntu Linux.

OpenBSD, FreeBSD, or NetBSD are as separate islands
– each with its own beach and climate. The common feature
of the BSD family is its organization, too – for example, the
base system, or the division of distributions into CURRENT
(developmental and unstable version), RELEASE (for normal use),
and STABLE. Every system from the BSD family is a separate
operating system under its own roof.

52 BSD 4/2010

let’s talk Comparison of FreeBSD And OpenBSD: Not One Cake But The Two Ones

53www.bsdmag.org

History
Unlike Linux, the present BSD systems
stem from the real Unix. Berkeley University
in California controlled the development of
BSD Unix.

Some very long time ago, the
company AT&T (1960-1970) had started
developing an operating system we
today know as Unix. However, at that time
the company had been prohibited from
selling software, so it licensed its code to
universities for a small fee. The universities
continued developing this source code
and exchanged patches of it, but under
coordination of Computer Science
Research Group (CSRG) at Berkeley
University. Because of this, the patches
received the name of BSD Unix (Berkeley
Software Distribution).

After many accomplishments and
troubles, in the beginning of the 1990's
the BSD code went public. It was NetBSD
that first slithered to light as a free OS
early in 1993; then followed FreeBSD
(December 1993), and finally, but much
later, OpenBSD (1995). OpenBSD
appeared as a Theo de Raadt's (the
founding member of NetBSD) protest
against the NetBSD developers.

FreeBSD vs OpenBSD
FreeBSD: is much more user-friendly for
newcomers, but some criticism appears
that it is too robust and therefore a little
less transparent. Some features that
users have been accustomed to change
more frequently over time, or rather
shift away from what this OS looked
like before. During the development
period of many years, users have come
across a number of things that more
visibly steered away from the historical
FreeBSD coastline – for example, the
kernel in older versions of FreeBSD
was in the root directory, or the syntax
in the kernel compilation file (/sys/i386/
conf/GENERIC) has kept changing more
dramatically then in OpenBSD over the
period of many years.

OpenBSD: is slimmer; if you
demand something, you will almost
always succeed (fewer problems with
unresolved library dependencies). After
many years, this OS has remained
much the same. If you download a

new version of OpenBSD, it will not
startle you (that some names of devices
changed, for example). Ports will always
install successfully. However, OpenBSD
may appear a little bit more difficult
for people who got accustomed to GUI
administration, as users must configure
everything manually (for example, by
editing scripts in /etc).

FreeBSD: installation takes place in
the text graphics with intelligible wizards.
Today, FreeBSD also has its installation
DVD (a downloadable ISO image), which
contains many binary packages such as
KDE, GNOME, etc.

OpenBSD: the user will burn the
install46.iso CD image that is available
on a number of FTP servers (the number
4.6 indicates the current version). Unless
you buy the official OpenBSD CD's or
DVD's, you must always download binary
packages separately, or install them
over the Internet. Contrary to FreeBSD,
the install46.iso image contains only the
base system. The installation process is
in a pure text (not text graphics). If you
want to manipulate your disks, you will
have to deal with cylinders – a ghostly
approach for most users. OpenBSD
will always keep you knowing that you
descended deep into the basement of
the real Unix.

FreeBSD: partitioning of disks is a
straightforward and easy job like a breeze.
Easy partitioning is available to you even
after you finished installing the system
– run the sysinstal command (a text
graphic wizard for system administration),
and then choose Do post-install
configuration of FreeBSD from the menu,
then The disk slice (PC-style partition)
editor. That's it.

OpenBSD: partitioning of disks
requires more knowledge. The system
does not have any central configuration
tool such as sysinstall in FreeBSD. You
must do all your system configurations
manually by editing the relevant scripts
(with vi or any other editor).

FreeBSD: has more applications
(packages) available than OpenBSD; the
number has exceeded 20,000, which you
may confirm at www.freebsd.org/ports
website. The FreeBSD ports tree is one of
the biggest in the BSD world.

OpenBSD: has fewer packages
and newer ones appear with delays;
OpenOffice.org was ported some years after
it had been already available in FreeBSD.

FreeBSD: has better virtualization
possibilities (as the host system); you
may use older versions of VMware and
packages such as WIN4BSD or VirtualBox.
Wine works very well, too. It smoothly runs
Microsoft Office. Linux emulation also
supports compatibility for 2.6.x kernels. In
FreeBSD, many Linux applications run like
a breeze including Skype.

OpenBSD: deployment of virtualization
strategies (with OpenBSD as the host
system) is thorny – you can only use
Qemu. Except for Qemu, there are other
emulators like DOSBox or Bochs, but
Quemu and Bochs are slow and cannot
compete with the power of VMware or
VirtualBox. However, OpenBSD supports
running FreeBSD binaries. Win32
applications run much worse under
Wine than in FreeBSD. Linux emulation
is excellent, but a little bit outdated
(compatible with Fedora Core 4). You
will run a fewer Linux applications in
OpenBSD than in FreeBSD.

FreeBSD: the base system does not
include software that underwent paranoic
security auditing. If you want to use the
Apache Web Server, you must install it
from ports (packages). In FreeBSD, the
OpenBSD Packet Filtering (PF) is available
as a kernel module.

OpenBSD: the developers put a
secure Apache Web Server into the base
system and you do not need to install
the Apache Web Server separately (from
ports). OpenBSD implements other smart
security policies, too.

FreeBSD: you do not have to set your
terminal type after you log in; history of
your shell commands is available even
after you reboot your PC. If you want to
implement some security policies (like
swap encryption), you must configure
them additionally.

OpenBSD: every time after you type
your login name and password, the
system will prompt you for a terminal type
(xterm, vt220, etc.); history of commands
is always erased after the next reboot (for
security reasons); the system comes with
security measures (like swap encryption,

http://www.bsdmag.org
http://www.freebsd.org/ports

54 BSD 4/2010

let’s talk

55www.bsdmag.org

etc.) that users do not need to employ
additionally.

FreeBSD: works with kernel modules
like Linux. The FreeBSD kernel with
modules is in the /boot/kernel directory
(modules have the *.ko extension like, for
example, snd_driver.ko). User modules
like kqemu (used to speedup the Qemu
accelerator) are placed into the /boot/
modules directory (after you kldload
them).

OpenBSD: supports modules, too, but
does not use them. The kernel has the
name bsd and is monolithic (from one
piece that does not need anything more);
you will always find it in the root directory
(/bsd).

FreeBSD: names of devices differ from
OpenBSD. For example, physical disks are
referred to as /dev/ad0, dev/ad1, etc.; USB
disks as /dev/da0, /dev/da1, etc., global
partitions (slices in the BSD terminology –
visible by all partitioning tools) are referred
to as /dev/ad0s1 (first partition on the first
hard drive – /dev/hda1 in Linux), /dev/
ad1s1 (first partition on the second hard
drive – /dev/hdb1 in Linux), etc.; FreeBSD
partitions (visible only by FreeBSD) are
referred to as /dev/ad0s1a, /dev/ad0s1b,
/dev/ad1s1e, etc.

OpenBSD: whether you deal with
global (slices) or OpenBSD partitions,
OpenBSD follows one naming convention
only – partitions have letters – /dev/wd0j,
/dev/wd0a, etc. USB disks are referred to
as /dev/sd0, /dev/sd1i, etc.

FreeBSD: in addition to excellent
manual pages, this OS has a
comprehensive documentation kept in the
/usr/share/doc directory.

OpenBSD: except for searchable
documentation and FAQ on the Internet
(www.openbsd.org), it does not have
such a comprehensive documentation as
FreeBSD in its /usr/share/doc directory.

FreeBSD: to switch between consoles,
you need to press [Alt-F1], [Alt-F2], etc. If
you have the X environment running, you
will get back to it (from text consoles) by
pressing [Alt-F9]. If you want to go to a
text console from your X environment, you
need to press [Ctrl-Alt-F1] (or [Ctrl-Alt-F2],
[Ctrl-Alt-F3], etc.).

OpenBSD: the user switches between
text consoles always with three keys

– [Ctrl-Alt-F1], [Ctrl-Alt-F2], etc. You will
get back to the X Window system, if it is
running, by pressing [Ctrl-Alt-F5].

FreeBSD: the community is more open
to ideas and questions to which anybody
will probably always get a response. If
you have a general question, you can
send an email to the addresses listed at
www.freebsd.org website.

OpenBSD: the community (http://
www.openbsd.org) is closed, uncom-
municative; some people say that it
does not like questions. To say it better,
the community wants you to thoroughly
read all the manual pages and will barely
answer questions like how to mount
a Linux partition, or how to boot your
OpenBSD box into a single user mode. To
get some help, the best policy for you is to
read OpenBSD forums where questions
are welcome.

FreeBSD: although a few tweaks are
necessary to implement this (look at
<a href="http://www.freebsd.nfo.sk/

bsd2.htm"> www.freebsd.nfo.sk), in
version 7.1 and higher, you can use Adobe
Flash 9 with native FreeBSD Internet
browsers (Seamonkey, Firefox, Opera) and
watch youtube.com videos.

OpenBSD: you can only use the
archaic Flash 7.0 for Opera Browser, which,
unfortunately, does not work very well (the
video is good, but the sound disobeys).

FreeBSD: was primarily developed for
the i386 platform.

OpenBSD: supports more platforms
than FreeBSD (but fewer than NetBSD).

FreeBSD: is probably a little more
responsive in the X environment with
default settings (without tuning). In my
FreeBSD box, OpenOffice.org 2.4 writer
opens in 16 seconds in KDE 3 and many
other apps, too, launch a little bit faster.

OpenBSD: applications launch a
little slower in X in the default installation
(without tuning). OpenOffice.org 2.4 writer
opens in 34 seconds in KDE 3 (tested on
the same computer as with FreeBSD). To
speed up your OpenBSD box, you need
to tweak it (disable swap encryption, for
example, enlarge the number of files that
can be opened, etc.).

FreeBSD: none of its features
dominate – stability, security, and usability,
as well as desktop or server/network

deployment, stand proudly alongside
each other. The latest software and
drivers (WiFi, KDE4, etc.) appear in the
system much sooner than in OpenBSD;
thus it is possible to say that FreeBSD fits
better for desktops.

OpenBSD: its priority is security; only
then do follow stability, slimness, and
usability. You may deploy a secure server
(firewall, gateway, etc.), which is a priority
for a lot of companies. The software giant
Adobe Systems runs OpenBSD on its
systems. OpenBSD (not packages) is
thoroughly audited as the base system
for security holes and some security
experts use it as a honeypot (the system
designed with the purpose of drawing
attacks from hackers). OpenBSD has the
best firewall (PF) ever to be seen in the
computer world. But this OS is extremely
conservative – with exception of
important fixes related to security, many
other things get implemented much later
than in FreeBSD.

The differences and advantages
summarized jointly
Although FreeBSD did not have the
boot menu in the past, its greater user-
friendliness is apparent already upon the
first contact with it – the OS welcomes
you with an intelligent boot menu, which
offers you quite a few possibilities to
choose from including the single user
mode (useful for cases you forgot your
password). With OpenBSD, many things
including the information on how to start
the OS in the single-user mode may,
especially for beginners, appear hard to
find.

If you want to choose one of these
two operating systems and words such
as slimness, security, or invariability (if you
are conservative) are not foreign to you,
than OpenBSD is for you.

If you have USB sticks, USB hard
drives, standard network cards – that is,
the commonly used hardware (known in
the BSD world), there is nothing to fear
with both systems, but before buying
any hardware you must be always
more careful than with Linux. Do you
use OpenBSD and plan to buy a new
hardware? Then you must be even more
careful than with FreeBSD. FreeBSD has a

http://www.openbsd.org
http://www.freebsd.org
http://www.openbsd.org
http://www.openbsd.org
http://www.freebsd.nfo.sk/bsd2.htm
http://www.freebsd.nfo.sk/bsd2.htm
http://www.freebsd.nfo.sk</a

54 BSD 4/2010

let’s talk

55www.bsdmag.org

Juraj lives in Slovakia and works in a
library in an educational institute (school of
psychology). Some time in the past he was
fortunate enough to travel around the world
and spend a bit of time in India and Australia.
Juraj’s hobbies are computers, mostly Unix
and also spirituality. He has also translated
several books from English, for example
- Zen Flesh, Zen Bones by Paul Reps. He
started with FreeBSD in 1997. He wrote the
Xmodmap Howto „http://tldp.org/HOWTO/
Intkeyb/” In addition to computers, he is
very interested in Hinduism but not really
the guru side of things, but more-so freedom
and self actualization. His website has more
information: http://www.freebsd.nfo.sk/

About the Author

little better hardware support for i386 PC's
than OpenBSD and it can be deployed
anywhere where greater flexibility and
more software are needed. If the software
for you does not exist, you can always try
Linux programs with the FreeBSD Linux
emulation.

Are you more conservative or perhaps
paranoid? Then it is absolutely the best
decision for you to choose OpenBSD
because of its purity and fewer changes
in user interaction to be expected in the
future. OpenBSD, even today, is very
easy to install on old (legacy) computers.
The Linux emulation is excellent, but in
FreeBSD it is somewhat more up-to-
date.

FreeBSD and OpenBSD, including
NetBSD, are three different cakes. They all
come from one workshop. Any IT expert
will tell you that workers of this workshop
were real masters!

http://www.bsdmag.org
http://tldp.org/HOWTO/
http://www.freebsd.nfo.sk/

56 BSD 4/2010

interview

57www.bsdmag.org

Introducing Beastie
to Strangers
When PC-BSD 8 first came out back in February, I installed the operating system on
two of my machines and was very impressed with the new release.

Jesse Smith

I t was fast, powerful, flexible and worked well with my hardware.
Not only was I thrilled with the latest release from the PC-BSD
team, but I wanted to share my experience with others. I had
visions of an army of Beasties peacefully invading homes,

public access terminals, schools and businesses. And while I felt
this BSD product had earned a place on my desktop machine,
I was curious to see how other people would react to it – not just
people in the IT field or people who were already open source
enthusiasts, but everyday Joe and Jane Users. With that in mind,
I burned several copies of the PC-BSD DVD, created a short survey
form and handed both items out to anyone willing to participate.

The survey asked each volunteer some questions about how
comfortable they were with computers, which common operating
systems they had used previously and what sort of hardware
they were using.. After all, as any technical support agent can
tell you, not all computers and customers are created equal.
Each person was additionally asked what aspects of the system
worked for them, what did not work, what their first impressions
were and how they felt about some of PC-BSD's key abilities on
the desktop. The software testers were then given two weeks
to experiment with PC-BSD without any assistance or direct
technical support aside from the project's user's manual. After
two weeks, I collected the survey forms and set about finding out
what everyone else thought about PC-BSD's latest offering.

A disclaimer is probably in order here: this wasn't a scientific
experiment. There weren't any control groups, the participants
weren't monitored and all the volunteers filled out their own forms.
The information gathered to make this report was from a fairly
small population size (just under twenty people) and what it
represents is closer to collective anecdotes than scientific finding.

From my perspective, one of the more interesting things about
the survey results I got back was seeing how people ranked their
abilities with computers and how that compared with their range

of experience with various operating systems. On a scale of 1-10,
the lowest anyone ranked their abilities with a computer was 2.
That person claimed the only operating system they had ever
used (prior to trying PC-BSD) was Microsoft Windows. In fact,
about a third of the people questioned said they had only ever
used Windows prior to the experiment. The highest self-ranking
score was an 8, and that person stated they had used every OS
on the form (Windows, OS X, DOS, Linux, Solaris and FreeBSD).

Getting a firm idea of what hardware was being used to test
PC-BSD was difficult. Some people were able to provide detailed
information, stating the type of processor, CPU speed, memory
and hard drive size. But about half of the respondents claimed to
have no knowledge of their computer's hardware other than it was
a three year old desktop, or that it was a second hand Dell. Of the
people who did provide specific information about their computers,
the lowest-end machine had a 2.3GHz processor and 1GB of RAM
with a 360GB hard drive. The highest-end machine had a dual
core 2GHz CPU, 4GB of memory and a 320GB hard drive. Almost
all of the test machines were reported to be desktops, with two
volunteers reporting they were using a laptop for the experiment.

First impressions are always important and this is where
the participants seemed most uncomfortable with the operating
system. As one person remarked, It reminded me of DOS booting
up. Most operating systems, including Linux and other members
of the UNIX family, have moved to graphical start-up screens and
seeing plain text scroll by tended to throw people off. As another
volunteer observed, I didn’t like the black screen with white text.
Fortunately, once people arrived at the desktop, they felt more
comfortable. One survey response summed up the over-all
impressions of the desktop nicely by commenting, there were nice
colours and a slight adjustment to new terms. On the flip side, it
seems hardware problems were a serious issue for a number of
people – nearly a third of the participants were unable to get PC-

56 BSD 4/2010

interview

57www.bsdmag.org

BSD to boot as far as the desktop, reporting
their screens went blank after the boot menu
but before the reaching the desktop. Among
those who were able to reach the desktop,
one reported being unable to get on-line as
the computer's modem wasn't detected.

Though some got off to a rocky start,
the volunteers who arrived at the desktop
reported mostly positive results. Of the
group of people who got PC-BSD to boot,
everyone reported their screens being set
to a suitable resolution and their hardware
(such as mice, keyboards and sound
cards) working. For most of the group
navigation through the system was easy,
though one commenter mentioned having
trouble adjusting to the KDE menu layout.

Often times when users give feedback
it's in the form of complaints or bug reports.
While the volunteers ran into the occasional
problem, they also had some very positive
things to say about the features built into
PC-BSD. Everyone, for instance, was very
happy to learn the FreeBSD-based system
came with multimedia codecs and Flash
installed right out of the box. Each member
of the experiment who managed to get
the operating system running expressed
pleasure at the wealth of applications
(such as Open Office) which came with
the system free of charge, as opposed to
trial-ware and other half-functioning apps.
Though most of the volunteers didn't have
enough time to use and appreciate some
aspects of the system, a few respondents
expressed a great deal of enthusiasm for
ZFS snapshots and the concept of being
nearly immune to malware. For the most
part, the group was silent on the topic
of package management with one user
finding the package manager confusing
and two people expressing how they liked
the software web browser.

As far as using PC-BSD for their day-
to-day tasks (such as e-mailing, web
browsing, editing documents and playing
media files), the users largely felt that the
operating system was a good fit, with one
person mentioning trouble working with MS-
Office documents. Another user mentioned
the system appeared to have wonderful
features but wasn't sure how to make use
of all of them, reducing their productivity.

So, at the end of the day, how did
people view PC-BSD? About a quarter of

the people surveyed said they liked PC-
BSD and, over all, enjoyed the experience
with one person considering making
a switch from their previous OS. Another
quarter of the respondents (mostly made
up of people who either couldn't get the
system to boot or get on-line) said they
weren't happy with the product. Though
one disappointed volunteer expressed an
interest in trying a future version if it could
be made to boot on their hardware. The
remainder, about half, of the group said
they were interested in PC-BSD, but were
not planning on using it full-time. As one
person put it, they'd like to try the OS again
with my IT guy beside me to help explain
the software.

Something I found surprising, looking
at the results, was there didn't seem to
be any correlation between people's
confidence in their ability to use computers
and getting PC-BSD to work for them.
People who ranked their computer skills
as being low were almost as comfortable
getting the OS up and running as people
who ranked themselves higher. The only
serious hurdle to the testers appeared
to be hardware, with some participants
reporting their computers would lock
up during the boot process. But once
a tester reached the graphical desktop, it
was generally smooth sailing from there.
While the sample size involved is too
small to draw any concrete conclusions,
these findings suggest to me that the
applications and layout of PC-BSD are
mature and ready for the desktop. The
bottleneck to adoption appears to be with
a combination of hardware drivers and
inertia. The latter because even volunteers
who had very good experiences with
PC-BSD showed a reluctance to switch
operating systems, being comfortable with
their existing set up.

Another thing I took away from this
experiment is PC-BSD is providing
a desktop environment which makes
BSD easily available to a broader
audience. Even to people who haven't
used a member of the UNIX family before.
With its wide range of software and well-
considered defaults, the latest release of
PC-BSD is mixing the power of FreeBSD
with the novice-friendly desktop with
wonderful results.

http://www.bsdmag.org
http://www.bsdmag.org

http://bsdcan.org

http://hakin9.org/en

http://www.IXsystems.com/Orion2

	Cover

	advertisement

	Dear Readers!
	Contents
	Modern FreeBSDInstall
	advertisement

	X11 without dbus/haldand with three kings
	Converting a FreeBSDPort Using PBI Builder
	BSD File Sharing– Part 2. SAMBA
	Running VirtualBoxOSE with VNC underFreeBSD 8.0
	FreeBSD Firewall withTransparent Proxy Server,DHCP Server and Name Server
	The Squid andthe Blowfish
	Hosting EnvironmentNetwork and FirewallRedundancy with the BSDs
	Comparison of FreeBSDAnd OpenBSD: Not One Cake But The Two Ones
	Introducing Beastieto Strangers
	advertisement

	advertisement

