
http://www.saintcorporation.com
http://www.ixsystems.com

http://www.ixsystems.com

http://www.ixsystems.com

4 BSD 2/2010

Michał Gładecki
Editor in Chief

Editor in Chief:
Michał Gładecki

michal.gladecki@software.com.pl

Contributing:
Jan Stedehouder, Rob Somerville, Marko Milenovic, Petr

Topiarz, Paul McMath, Eric Vintimilla, Matthias Pfeifer, Theodore
Tereshchenko, Mikel King, Machtelt Garrels, Jesse Smith

Special thanks to:
Marko Milenovic, Worth Bishop and Mike Bybee

Art Director:
Agnieszka Marchocka

DTP:
Ireneusz Pogroszewski

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

National Sales Manager:
Ewa Łozowicka

ewa.lozowicka@software.com.pl

Marketing Director:
Ewa Łozowicka

ewa.lozowicka@software.com.pl

Executive Ad Consultant:
Karolina Lesińska

karolina.lesinska@bsdmag.org

Advertising Sales:
Michał Gładecki

michal.gladecki@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

The editors use automatic DTP system

Mathematical formulas created by Design Science MathType™.

Dear Readers!
Please let me introduce to you the first online issue of
BSD Magazine. I would like to take this opportunity to
thank everyone who made this transformation possible
and who supported us in our mission to provide practical
knowledge about BSD systems to everyone across the
world.

BSD Magazine is now becoming a free monthly
publication and this could never be possible without
your continuous support. Hopefully, our ever-growing
readership will help promote BSD systems and contribute
towards their recognition and acclaim worldwide.

This issue is devoted to the subject of servers, the
field where BSD systems are amongst the most powerful.
We are certain that whichever BSD flavor you’re fond of
and whatever profession you currently hold you will find
something here that might just make your day.

Most of our authors had already been introduced
before but this is the first time I had the pleasure of
working with them personally and I need to say – it has
been a fantastic experience for me. We are absolutely
delighted that they decided to stay with us after our
transition to the electronic format.

 Please keep the emails coming. We appreciate your
comments, suggestions and ideas.

5www.bsdmag.org

get started
A first look at PC-BSD 8 release
Jan Stedehouder

With the release of FreeBSD 8.0 it’s only a matter of time
before we can expect the next version of PC-BSD. At the
time of writing plenty of work was being done to prepare
PC-BSD 8.0. In this article we will look at the changes in
FreeBSD 8.0 that are more of interest to end-users and
glance over the novelties in the alpha-releases of PC-BSD
8.0. We will ask what it takes to build an end-user friendly
operating system.

Installing and securing an Apache Jail
with SSL on FreeBSD
Rob Somerville

The Apache HTTP server developed by the Apache
Software Foundation is the most popular webserver
software in use today installed at over 100 Million sites
worldwide. This article will walk you through performing
some basic security measures, performing an Apache
installation in a secure FreeBSD jail, generating an SSL
certificate and setting up a password protected area on
the server.

how-to’s
The gemstones for FreeBSD
Marko Milenovic

Building web applications has become so popular that
you can’t imagine Internet as a static system any more.
Anything and everything is web application that interacts
with users and vice versa. In the age of web oriented
programming languages and web applications one
precious stone has been found in the mystical Japan.
It brings zen philosophy to a modern programming
language.

OpenBSD, NetBSD and FreeBSD as file
sharing servers – Part 1 – NFS
Petr Topiarz

How to share files between multiple operation systems
and keep your data safe. Sharing your files with NFS is
an old and perfectly functional way that preserves all Unix
features such as user and group permissions, which are
probably very important for every Unix administrator and
users as well.

06

10

Ipsec VPNs:
An Introduction to IKE and Ipsec
Paul McMath

This article concerns itself with IPsec and IKE, the
protocols used to build IPsec based VPNs. Introduced are
the basic elements of IPsec and IKE which are useful for
understanding how to configure, monitor or trouble-shoot
a VPN configuration.

LDAP on FreeBSD
Eric Vintimilla

Keeping your information synced across multiple systems
can be a pain. While there are many ways to ensure
consistency in your media and documents (rsync and
scp work wonders in this area), there are not too many
options for maintaining your address book. Luckily, there
is a common solution for this problem: set up an LDAP
server.

Secure and stable mailservers
with OpenBSD and qmail
Matthias Pfeifer

Secure and stable email servers are important for
everyone who is using email. Many companies sell special
email systems and antispam gateways which are reliable
and designed to be secure. In fact, many of these email
systems are running Linux or BSD with one of the popular
MTAs on top. You can build your own email system. And, of
course, it could be reliable, stable and secure too.

Developing Secure Storages: Now On
FreeBSD
Theodore Tereshchenko, EldoS Corp.

Developers of server-side, desktop and mobile
applications working with FreeBSD now get access to
Solid File System – a well-known component designed
by EldoS Corporation. FreeBSD developers have an ability
to store documents and files in a highly secure robust
and flexible file system with no run-time fees. Clean room
implementation allows royalty-free business applications.

column
Web Server Benchmarking
Mikel King

tips&tricks
BSD Tips and Tricks
Machtelt Garrels

interview
Interview with Olivier Cochard – Labbe,
Founder of FreeNAS
Jesse Smith

16

20

24

38

44

52

54

56

48

Contents

6 BSD 2/2010

get started A first look at PC-BSD 8 release

7www.bsdmag.org

A first look at
PC-BSD 8 release

With the release of FreeBSD 8.0 it's only a matter of time before we can expect
the next version of PC-BSD. At the time of writing plenty of work was being done to
prepare PC-BSD 8.0.

Jan Stedehouder

What can we expect from this new release? In this
article we will look at the changes in FreeBSD
8.0 that are more of interest to end-users and
glance over the novelties in the alpha-releases of

PC-BSD 8.0. And we will ask the question what it takes to build
an end-user friendly operating system.

What was new in FreeBSD 8.0
The FreeBSD 8.0 RELEASE followed the previous 7.0 RELEASE
by somewhat more than a year and a half, which we might
almost call a speedy development (compared to the two
years and three months between 6.0 and 7.0). Personally I like
to compare the development of FreeBSD with Debian GNU/
Linux as they are comparable in size (software) and scope
(supported platforms) and both geared towards the more
technologically adept users. The jump from Debian 4.0 to the

latest 5.0 release took from April 2007 to February 2009. So,
yes, we can conclude that the FreeBSD team kept a strong
pace without sacrificing stability.

The list of improvements in FreeBSD 8.0 also shows
that real ground was covered in pushing it forward. There
are improvements in wireless networking, multiprocessing
and in the Network File System implementation. The ZFS
filesystem is no longer considered experimental. For end-
users it is interesting to see that it supports GNOME 2.26.3
(officially released in March 2009, with 2.28 released in
September 2009) and KDE 4.3.1 (officially released on
1 September 2009). In both cases FreeBSD managed
to have the latest available versions of the desktop
environments at the time.

Apart from this, the USB subsystem was rewritten and
support for VirtualBox, both as host and guest, has been

Figure 1. The new PC-BSD installer allows for more flexibility and control Figure 2. Installing FreeBSD is now an option with the PC-BSD disk

6 BSD 2/2010

get started A first look at PC-BSD 8 release

7www.bsdmag.org

improved. This makes it easier to test out
FreeBSD on your Windows or Linux box,
or, run Windows in VirtualBox for those
few Windows-based applications that
you still need.

Towards a
PC-BSD 8.0 release
PC-BSD is built on top of FreeBSD and
the work towards the next PC-BSD
release began on September 5 when Kris
Moore, the lead developer, announced
the availability of the first alpha release
for version 8.0 (ftp://ftp.pcbsd.org/pub/
alpha-iso/). Now, at the end of December,
we can work and play with the 7th
alpha (if I counted correctly), one that is
considered feature complete. What can
we expect from PC-BSD 8.0 knowing full
well that at the time you are reading this
article the release candidate or the final
version might already be available for
download?

As an aside, if you wish to follow
along with the work that is being done
I suggest you subscribe to PC-BSD
testing mailing list (http://lists.pcbsd.org/
pipermail/testing/).

Flexibility during installation
It's hard to miss the major overhaul of
the graphical installation wizard (Figure
1). The installer now has a look-and-feel
that is akin to that of Fedora, OpenSUSE
and Mandriva. The changes aren’t simply
cosmetic though. The mailing list makes
clear that the installer is now scriptable,
which is interesting for more advanced
users. The graphical wizard also has
new features that give the user more
control on what to install and where.
For example, you can now opt to install
FreeBSD instead of PC-BSD from the
same medium (Figure 2). Once the
FreeBSD is done and you reboot,
you can use sysinstall to wrap up the
FreeBSD installation.

Users also have more options to
fine-tune the partitions during installation.
The 7.x release created two partitions
as default, root and swap, which you
could change with some fiddling. The
new installer suggests a partition table
that should be more familiar to FreeBSD
users (Figure 3). If you have no prior
experience with FreeBSD, you won't have
to bother yourself with it and simply use
the Auto Partition option. With these two
changes PC-BSD allows users to remain

even closer to FreeBSD than in the 7.x
release without sacrificing the easy
install for novice users.

Geared more towards new users
is the option to boot PC-BSD from
the CD/DVD into a live environment
(Figure 4). Why is this important? Well,
when we look at Linux we see that
live CD/DVD's played a major role in
reducing prejudices against the open
source desktop. Knoppix did a lot to
show that an open source desktop was
complete and ready to use for everyday
computing. It has been a while since we
had an up-to-date live disk based on
FreeBSD and it is nice to again have
a tool to promote PC-BSD/FreeBSD
this way.

Tighter integration of PBI installs
PC-BSD 8.0 will sport the KDE 4.3.4
environment. One thing I like about the
KDE 4 desktop is how it integrates the
local desktop with online services. One
example can be found in the options
to change the look-and-feel of your
desktop. Scattered throughout you can
find buttons like Get New Themes of Get
New Icons which open new screens that
pull in information from the KDE-Look
website. It's no longer necessary to go to
the site and browse through the available
collection, hoping to find a package that
is suitable for your computer. Installing
a new theme is a mouse-click away.
PC-BSD is now applying the same
mechanism to installing and managing

Figure 3. PC-BSD remains close to the FreeBSD disk partitioning

Figure 4. You can boot PC-BSD into a live environment

ftp://ftp.pcbsd.org/pub/
http://lists.pcbsd.org/

8 BSD 2/2010

get started

9www.bsdmag.org

A first look at PC-BSD 8 release

PBI's, themselves already an easy way to
install software under PC-BSD.

Till now you had to go to the PBI
website (http://www.pbidir.org) to locate
and download the software you wanted.
Downloading, double-clicking and fol-
lowing the steps in the wizards was
the way to go. For casual users this
is much simpler to do than installing
software via packages or ports. The 8.0
release removes the need to go the PB
website and allows for browsing available
software via the new Software Manager.

The Software Manager holds three
tabs, the first being the Software Browser.
This is your window to the PBI website.
If a PBI is available for your release
a download icon is visible (Figure 5). When
you click on it, you are asked whether you

wish to install the program (Figure 6). If
so, you are directed to the second tab,
Installed Software, where you'll see the
download in progress (Figure 7).

The Software Manager brings an app
store experience to the desktop and that
seems to be the way to go for the time
being.

Other improvements
I guess most of us are familiar with
Murphy's Law and thus we prepare for
the time that our system doesn't work
anymore. PC-BSD 8.0 offers a new tool
for backup and restore, aptly named
Life Preserver (System>Life Preserver).
For now it is but a simple tool to create
backups and send them to a remote
server. You can't select specific folders

(yet), but expect new features to be built
upon the basic tool in the near future.
(Figure 8)

As noted before, PC-BSD 8.0 brings
improvements for both the general users
and the more experienced/daring ones.
Another example of this is the Ports
Console. It runs in its own jail and allows
you to install new software via packages
and ports without inflicting harm on the
rest of the system. This makes it a great
sandbox to acquire FreeBSD-like skills.
The downside of the portsjail (as it is
called) is that you need to launch the
programs from withing the jail. According
to the mailing list something like:

% portjail run /usr/local/bin/firefox

should do the trick when you wish to
launch, for instance, Firefox (installed in
the portsjail) from the outside.

End-user friendly easier
said than done?
The focus of PC-BSD is to be an easy to
install, easy to use and easy to maintain
FreeBSD-based system. The next release
is another step in that direction. It is no
small task to create an operating system
that is end-user friendly and in my
opinion only a few open source desktops
are fit to be used by companies and
organizations. PC-BSD is one of them,
the others being Ubuntu, SUSE Linux
Enterprise Desktop. And – if Red Hat get
it’s head wrapped around it – Red Hat
Enterprise Linux Desktop. This doesn’t
mean that all the other BSDs and Linux’s
are bad; heaven forbid, they serve a
need for their userbase and if they have
a strong enough userbase they will
continue to exist and thrive.

Thus I was slightly amused when
I heard of the TechRepublic article
Why the BSDs get no love by Jack
Waller (http://blogs.techrepublic.com.com
/opensource/?p=1123&tag=nl.e011) and
noticed the ensuing discussion on the
FreeBSD advocacy mailing list. Jack's
argument was that the BSDs lacked two
things to attract the same attention as
Linux: a graphical installer and live CD.
Barring that, BSD would remain stuck in
the 1990s. Well, he apparently didn't keep
up with BSD Magazine, otherwise he
wouldn't have written the article. Both PC-
BSD and live BSDs have been discussed
in various issues of this magazine.

Figure 5. The new Software Manager integrates the PBIdir website in your desktop

Figure 6. Installing new PBI's is easier than before

http://www.pbidir.org
http://blogs.techrepublic.com.com

8 BSD 2/2010

get started

9www.bsdmag.org

A first look at PC-BSD 8 release

On the mailing list some people
agreed with the statement that FreeBSD
was lacking a graphical installer and
pointed out that it would lower the
threshold for new users to try their hand
at FreeBSD. The opposite side of the
discussion argued there was no need
for a graphical installer and that the
current sysinstall served its purpose.
FreeBSD isn't used by desktop users only,
which group is the target audience for
a graphical installer. People working on
embedded devices and preparing large
scale deployments don't need a graphical
installer and would only be bothered by it.
Of course, there were more shades and
nuances, so I suggest you go through the
archives to read up on this discussion.

In relation to this article I'd like to
repeat part of a post by Heidi Wyss.
She explained how she struggled with
installing FreeBSD 5.x some years ago.
With the help of the FreeBSD Handbook
and the man pages, coupled with strong

motivation and perseverance she learned
how to install and work with FreeBSD
(http://lists.freebsd.org/pipermail/free
bsd -advocacy /2009 -Decembe r /
003966.html). She ends her contribution
with the following:

I'll end with this little tale, only to stir
up thoughts: When I got the new versions
of mplayer and vlc installed on FBSD8,
I couldn't play most of my store-bought
DVDs. Since I knew there had to be an
easy fix, five minutes of searching on the
Internet brought the easy fix (FreeBSD is
so stable and reliable, once configured,
I'd wholly forgotten about the CD/DVD
device permissions), but how many so-
called mainstream desktop users would
get through that kind of glitch? Not many,
however much someone like me, who's
already quite delighted with FreeBSD,
might wish otherwise.

I write most of my articles and
books from the perspective of regular
users, albeit the more adventurous ones

among them. Moving to FreeBSD does
indeed require digging into the in-itself-
magnificent FreeBSD Handbook and
a few trips to the man pages (pretty
stern stuff). But understanding what the
instructions mean requires a minimum
level of expertise that most regular users
simply don’t have.

To make FreeBSD more palatable
to end-users (or Debian for that matter)
requires more than adding a graphical
installer. Installing the operating system
is simply the first hurdle and one that
most users in a business environment
never have to take. To achieve ease
of use means looking at the desktop
environment and offer tools that fit the
skill-set of regular user. Ubuntu is doing
this and it uses Debian as a strong
foundation. PC-BSD is doing it as well,
on the solid FreeBSD bedrock. The next
release, PC-BSD 8.0, brings with it new
elements to cater to the needs and wants
of desktop users. The project can do that
because of that singular desktop focus.

More help is on the way
Around the time that PC-BSD 8.0 hits the
servers you might also see some new
books about PC-BSD in the bookstores.
Dru Lavigne on the one hand and Jeremy
Reed and yours truly on the other hand
are busy writing books on how to work
with PC-BSD. This is an indication of the
level of confidence publishers have in
this operating system. If experience is
an indicator both books will also help in
getting new users to move to the PC-BSD
desktop.

Figure 7. New PBI's are downloaded in the background

Figure 8. Life Preserver is the first step towards a better backup solution for PC-BSD

Jan Stedehouder writes about open
source software and open standards,
mostly from the perspective of a novice
user who wishes to migrate away from
Windows. He is the author of three books,
contributed to a textbook on open source
and open standards and was co-editor of
the Dutch Open Source Yearbook 2008-
2009. His most recent book Open source
en open standaarden. Voor niets gaat de
zon op? (translated: Open source and
open standards. Is it a free ride?) aims at
introducing the general public to this topic.
According to him, BSD should be seriously
considered for desktop users as well.

About the Author

http://lists.freebsd.org/pipermail/free

10 BSD 2/2010

get started Installing and securing an Apache Jail with SSL on FreeBSD

11www.bsdmag.org

Installing and securing an
Apache Jail with SSL on
FreeBSD
The Apache HTTP server developed by the Apache Software Foundation [1] is the
most popular webserver software in use today installed at over 100 Million [2] sites
worldwide.

Rob Somerville

Renown for stability, flexibility and speed, Apache is the
web-server of choice in demanding environments.
This article will walk you through performing some
basic security measures, performing an Apache

installation in a secure FreeBSD jail, generating an SSL
certificate and setting up a password protected area on the
server.

Security in a production environment
Whilst Apache is more secure than many applications, any
software is vulnerable to attack so it is prudent to take as many
steps as possible to minimise the risk. It is advisable that the
systems administrator ensures that only the required services
are running on the server, user accounts are locked down and
consider raising the security level of the kernel if appropriate.
With a standard software install, if an intruder managed to
gain root access via an exploit all applications and the host
server environment itself would be open to abuse. Running
an application in a jail restricts any troublemaker to the jail
environment – see Figure 1.

This approach has a major advantage in that an attacker
cannot gain access to the host file-system. However, it takes
more configuration as Apache SSL etc. cannot access
applications on the host.

Post-install, whether a jail is used or not it is important that
the administrator takes steps to audit changes on the system
and prevent insecure ports etc. being installed – this can be
achieved by installing utilities such as tripwire and portaudit.
See man security for further details.

For full functionality, both domain names will need to
be added to your own DNS server or workstation hosts file.
Changes to the IP address of the servers above will need
appropriate changes to the netmask, routing entries, hosts
file etc.

Prerequisites
A running test FreeBSD 7.2 installation with access to the
internet will be required. It is recommended that a Custom
clean install is performed comprising of the base, kernels,

Figure 1. Jail filesystem architecture

10 BSD 2/2010

get started Installing and securing an Apache Jail with SSL on FreeBSD

11www.bsdmag.org

man and kernel sources to limit
server bloat. The server should have

NFS, Linux compatibility and use as
a network gateway disabled. If desired,

a separate partition could be used for
the jail and the Apache content. The
SSH daemon may be run on the host
for remote access (on a non-standard
port using the Version 2 protocol
as Version 1 has security issues) if
desired.

Caution should be exercised
particularly running the patching and
lockdown commands on a production
server as these changes may cause
adverse effects or result in unexpected
results in other scripts or applications.

It is recommended that these
changes are not applied in a live
environment without an adequate testing
regime in place with a non-production
server.

Initial patching
and lockdown
Please refer to the FreeBSD [3] website
and bsdguides.org [4] for further
information, in particular the Hardening
FreeBSD section.

• Run freebsd-update fetch and
freebsd-update install to patch the
binaries to the latest revision.

• Disable root access to the con-
soles:
• cp /etc/ttys /etc/ttys.000

• sed 's/on secure/on insecure

/g' /etc/ttys.000 > /etc/ttys

There are two spaces between on
and secure or insecure Ensure you have
a user who can su to root on the system
[or can ssh in] as you will not be able to
login via a console as root!

Remove the backup ttys.000 file
once you are satisfied that the system
performs as expected. Alternatively, edit
the ttys file using your favourite editor
to change secure to insecure where
appropriate.

• Reboot

• Check you can login as a standard
user, then su to root

• Edit the /etc/login.conf file and
replace

 passwd_format=md5 with passwd_

format=blf

This will change the default password
encryption algorithm from md5 to
blowfish which is more secure.

Table 1. Default IP addresses used

Value Comments
192.168.0.110 IP address if host system – replace as appropriate

192.168.0.111 IP address of jail system – replace as appropriate

jailbird.merville.intranet Domain name of host server – replace as appropriate

apache.merville.intranet Domain name of jailed server – replace as appropriate

Figure 2. Change Release Name and Install Root

Figure 3. Ensure you choose NO here

Figure 4. Jail file structure tree [Identical to Figure 1]

12 BSD 2/2010

get started

13www.bsdmag.org

Installing and securing an Apache Jail with SSL on FreeBSD

• Remove the line marked :umask=022
and add the following in its place:

 :umask=027:

 :mixpasswordcase=true:\

 :minpasswordlen=8:\

 :passwordtime=30d:\

 :idletime=30:\

This will tighten up password security
and change the default rights mask so
that directories are created with 0750
permissions

• Run cap_mkdb /etc/login.conf to
rebuild the login database

• Run the following to restrict access
to cron to root only:

 echo "root" > /var/cron/allow

 echo "root" > /var/at/at.allow

• Stop unauthorised users viewing
critical system files:

 chmod o= /etc/fstab

 chmod o= /etc/ftpusers

 chmod o= /etc/group

 chmod o= /etc/hosts

 chmod o= /etc/hosts.allow

 chmod o= /etc/hosts.equiv

 chmod o= /etc/hosts.lpd

 chmod o= /etc/inetd.conf

 chmod o= /etc/login.access

 chmod o= /etc/login.conf

 chmod o= /etc/newsyslog.conf

 chmod o= /etc/rc.conf

 chmod o= /etc/ssh/sshd_config

 chmod o= /etc/sysctl.conf

 chmod o= /etc/syslog.conf

 chmod o= /etc/ttys

• Restrict execution of programs to
root and the wheel group only:

 chmod o= /etc/crontab

 chmod o= /usr/bin/crontab

 chmod o= /usr/bin/at

 chmod o= /usr/bin/atq

 chmod o= /usr/bin/atrm

 chmod o= /usr/bin/batch

 chmod o= /usr/bin/users

 chmod o= /usr/bin/w

 chmod o= /usr/bin/who

 chmod o= /usr/bin/lastcomm

 chmod o= /usr/sbin/jls

 chmod o= /usr/bin/last

 chmod o= /usr/sbin/lastlogin

 chmod o= /usr/bin/top

 chmod o= /bin/ps

 chmod o= /usr/bin/man

This list can be extended to other files,
such as nmap as appropriate

• These daemons should be disabled
for security reasons:

 chmod ugo= /usr/bin/rlogin

 chmod ugo= /usr/bin/rsh

• If desired, the logfile directory can be
secured to prevent hackers flushing
the log files or viewing them.

This will mean that certain applications
will no longer able to manipulate files in
the /var/log directory – e.g. logrotate

Listing 1. rc.conf for jailbird.merville.intranet

Keyboard settings

keymap="uk.iso"

IP settings

hostname="jailbird.merville.intranet"

ifconfig_em0="inet 192.168.0.110 netmask 255.255.255.0"

ifconfig_em0_alias_0="inet 192.168.0.111 netmask 255.255.255.255"

defaultrouter="192.168.0.254"

Services enabled

moused_enable="NO"

inetd_enable="NO"

clear_tmp_enable="YES"

rpcbind_enable="NO"

sendmail_enable="NONE"

syslogd_enable="YES"

sshd_enable="YES"

Syslog settings

syslogd_flags="-ss"

syslogd_flags="-a 192.168.0.110 "

syslogd_flags="-a 192.168.0.111"

Jail settings

jail_set_hostname_allow="NO"

jail_enable="YES"

jail_list="http"

jail_interface="em0"

jail_devfs_enable="YES"

jail_procfs_enable="YES"

Per jail settings

jail_http_rootdir="/usr/jail/http"

jail_http_hostname="apache.merville.intranet"

jail_http_ip="192.168.0.111"

jail_http_devfs_ruleset="devfsrules_jail"

12 BSD 2/2010

get started

13www.bsdmag.org

Installing and securing an Apache Jail with SSL on FreeBSD

chmod o= /var/log/

chflags sappnd /var/log

chflags sappnd /var/log/*

Building the jail
1. Ensure you have the FreeBSD Install
CD loaded
2. sysinstall

• Select Custom Installation
• Select View/Set various installation

options
• Change Install Root to /usr/jail/

http
• Change Release Version to the pre-

upgrade release [see figure 2]
• Press [q]
• Select Distributions
• Select Custom

 Select:
• Base
• Kernels>GENERIC

• Exit out of the menu to Custom
Installation Options

• Select Media
• Select CD/DVD
• Select Commit

The installation will commence
When prompted to visit the general

configuration menu choose No otherwise
you will change the host system's
settings (see Figure 3)

Exit from sysinstall

ls /usr/jail/http

This should display a minimal FreeBSD
install tree (Figure 4)
3. Edit your /etc/rc.conf to reflect the
following. Amend IP address, interface
name hostname, router etc. to suit your
configuration. The version I have used is
shown Listing 1.
4. Edit /usr/jail/http/etc/rc.conf (see
Listing 2)
5. I have secured SSH so it runs on port
10022. Edit /usr/jail/http/etc/ssh/

sshd_config to force SSH to use the jails
interface: see Listing 3.
6. cp /etc/resolv.conf /usr/jail/http/
etc/resolv.conf

Copy resolv.conf across so that the
jailed server can resolve hostnames
7. sh /etc/rc

Remove CDROM and Restart
8. jls

ping -c3 192.168.0.111

Jail should now be running (Figure 5)
9. jexec 1 touch /etc/fstab

jexec 1 passwd

jexec 1 adduser

jexec 1 tzsetup

Create a vanilla fstab for the jail, set
the root password, add a default
user (ensure they are invited to be

a member of the wheel group) and set
the timezone
10. Stop and start the jail:

 /etc/rc.d/jail stop http

 /etc/rc.d/jail start http

11. sysctl security.jail.allow_raw_

sockets=1 Temporarily allow the jail
outgoing access to the internet

Listing 2. rc.conf for apache.merville.intranet

Keyboard settings

keymap="uk.iso"

IP settings

hostname="apache.merville.intranet"

ifconfig_em0="inet 192.168.0.111 netmask 255.255.255.0"

defaultrouter="192.168.0.254"

early_late_divider="NETWORKING"

Services enabled

moused_enable="NO"

inetd_enable="NO"

clear_tmp_enable="YES"

rpcbind_enable="NO"

sendmail_enable="NONE"

sshd_enable="YES"

Listing 3. sshd_config for apache.merville.intranet

Port 10022

Protocol 2

ListenAddress 192.168.0.111

LoginGraceTime 1m

PermitRootLogin no

StrictModes yes

MaxAuthTries 3

MaxSessions 3

Subsystem sftp /usr/libexec/sftp-server

Figure 5. Jail up and running

14 BSD 2/2010

get started

15www.bsdmag.org

Installing and securing an Apache Jail with SSL on FreeBSD

12. ssh user@192.168.0.111 -p10022
Now ssh into the jail where the

username/password combination is
what you have configured in step 9
above
13. su

Enter the root password you
configured in step 9 above.

Installing Apache [5]
Download and install the package, set it
to run on jail start
1. pkg_add -r apache22

echo "apache22_enable="YES"" >> /etc/

rc.conf

rehash

2. Edit the /etc/hosts file in the jail and
add the following to allow Apache to
resolve the hostname

 192.168.0.111 apache

apache.merville.intranet

3. /usr/local/etc/rc.d/apache22 start

Installing and configuring
OpenSSL 6 and the SSL
certificates
Rather than using a vendor provided
certificate which is expensive, we will
self-sign the certificate. The browser

will interpret this as a potential security
threat so this may not be suitable for
a production environment. If you are
using a 3rd party certificate, please
consult the provided documentation on
how to install this with Apache. Here we
will configure OpenSSL. create the the
directories for the CSR and server key,
and generate the key and certificate.

Common Name should either be
192.168.0.111 or apache.merville.intranet
if you intend to add the server to DNS.
1. See Listing 4.

You will now be prompted to enter
a password – this will be needed in the
next step
2. See Listing 5.
3. edit /usr/local/etc/apache22/

Includes/httpd-ssl.conf

Change ServerName http://
www.example.com:443 to:

 192.168.0.111:443

(or apache.merville.intranet if using
DNS)

Change SSLCertificateFile to point to:

 /usr/local/etc/apache22/ssl.crt/

server.crt

Change SSLCertificateKeyFile to point
to:

/usr/local/etc/apache22/ssl.key/

server.key

If desired, remove the password from
the certificate. If you do not do this, the
server will hang waiting for the certificate
password at Starting Jails: when the
server reboots.

You can type the password at the
console and the jail will resume, but
no other process will prior to this (e.g.
console login)
4. cd /usr/local/etc/apache22/ssl.key

cp server.key server.key.000

openssl rsa -in server.key.000 -out

server.key

Securing
and configuring Apache
In these steps we will create a secure
area and password protect it using
an encrypted password stored in the
.htpasswd file.
1. mkdir /usr/local/www/apache22/data/
secure

htpasswd -c /usr/local/etc/apache22/

.htpasswd apachelogin

edit /usr/local/etc/apache22/Includes/
www_secure.conf

and add the following: see Listing 6.
This will lockdown the secure area

so that the username apachelogin and
the password you entered in step 1
will be required. If no content is found,
access will be forbidden and the visitor
will not be able to browse the directory
tree.

edit /usr/local/etc/apache22/In-

cludes/default.conf and add the
following: see Listing 7.

This prevents Apache from
announcing the version number it runs
and locks down all other directories
apart from the ../data directory.

Now, copy a test page across to the
secure area:

 cp /usr/local/www/apache22/data/

index.html /usr/local/www/

apache22/data/secure/secure.html

2. Change the kernel securelevel
Add this to /etc/rc.conf:

 kern_securelevel="3"

 kern_securelevel_enable="YES"

Listing 4. Installing OpenSSL

pkg_add -r openssl

rehash

cp /usr/local/openssl/openssl.cnf.sample /usr/local/openssl/openssl.cnf

mkdir /usr/local/etc/apache22/ssl.key

mkdir /usr/local/etc/apache22/ssl.crt

chmod 0700 /usr/local/etc/apache22/ssl.key

chmod 0700 /usr/local/etc/apache22/ssl.crt

cd /root

openssl genrsa -des3 -out server.key 1024

Listing 5. Generating the SSL certificate

openssl req -new -key server.key -out server.csr

openssl x509 -req -days 365 -in /root/server.csr -signkey /root/server.key

-out /root/server.crt

cp /root/server.key /usr/local/etc/apache22/ssl.key/

cp /root/server.crt /usr/local/etc/apache22/ssl.crt/

chmod 0400 /usr/local/etc/apache22/ssl.key/server.key

chmod 0400 /usr/local/etc/apache22/ssl.crt/server.crt

cd /usr/local/etc/apache22/extra

cp httpd-ssl.conf /usr/local/etc/apache22/Includes

http://

14 BSD 2/2010

get started

15www.bsdmag.org

Installing and securing an Apache Jail with SSL on FreeBSD

Exit from the SSH jail session and
restart:

 exit

 reboot

Testing it out
Use a browser from another computer
on your network, If you enter http://
192.168.0.111 into your browser, the
Apache home page should be shown.

http://192.168.0.111/secure/ should
be forbidden after logging on as no
index.html is present.

http://192.168.0.111/secure/secure.html
should display It Works as we have
copied the index file into the secure area.
Repeat for https:// and after accepting the
certificate, the same results should occur.

A portscan using nmap or equivalent
should be run against both IP addresses
to ensure no services have slipped
through the net.

Further actions

• Harden Apache and tighten IP
access, modules loaded etc.

• Install and tune a custom kernel
rather than using GENERIC. Remove
redundant kernel modules as
appropriate. Use nextboot to check
that the kernel works OK.

• Install portaudit which checks ports
prior to installation against the on-
line ports vulnerability database. Add
a binary file auditing tool such as
tripwire.

• Configure a firewall on the server
and the jail.

Listing 6. Additions to /usr/local/etc/apache22/Includes/www_secure.conf

 <Directory /usr/local/www/apache22/data/secure/>

 AuthType Basic

 AuthName "Apache secure area"

 AuthUserFile /usr/local/etc/apache22/.htpasswd

 Require User apachelogin

 Allow from All

 Order Allow,Deny

 Options None

 </Directory>

Listing 7. Additions to /usr/local/etc/apache22/Includes/default.conf

 ServerSignature Off

 ServerTokens Prod

 <Directory />

 Order Deny,Allow

 Deny from all

 Options None

 AllowOverride None

 </Directory>

 <Directory /usr/local/www/apache22/data/>

 Order Allow,Deny

 Allow from all

 Options None

 </Directory>

• http://www.apache.org – The Apache
Software Foundation [1]

• http://news.netcraft.com/archives/
web_server_survey.html – Netcraft [2]

• http://www.freebsd.org – FreeBSD [3]
• http://www.bsdguides.org – BSD

guides [4]
• http://httpd.apache.org – Apache refe-

rence [5]

Further reading and
references

Rob Somerville has a keen passion for all
things BSD / Open Source and has been
working with technology since the early
Eighties. His biggest claim to fame was
designing an on-line search engine for
a database company when 2400 Baud
modems were cutting-edge. Married with 1
daughter, he shares the house with many
computers, 2 cats, a dog and an extensive
collection of O’Reilly books.

About the Author

http://
http://192.168.0.111/secure/
http://192.168.0.111/secure/secure.html
https://and
http://www.apache.org
http://news.netcraft.com/archives/
http://www.freebsd.org
http://www.bsdguides.org
http://httpd.apache.org

16 BSD 2/2010

how-to’s The gemstones for FreeBSD

17www.bsdmag.org

The gemstones
for FreeBSD
Building web applications has become so popular that you can't imagine Internet as
a static system any more.

Marko Milenovic

Anything and everything is web application that
interacts with users and vice versa. In the age of
web oriented programming languages and web
applications one precious stone has been found

in the mystical Japan. It brings zen philosophy to a modern
programming language.

Why Ruby?
Ruby may be described as an absolutely pure object-oriented
scripting language and a genuine attempt to combine the best
of everything in the scripting world. It was written in C back in
the nineties by Yukihiro Matsumoto (aka matz) and it combines
syntax inspired by Perl with Smalltalk-like features. The main
goal was principle of least surprise. Matz wanted to create
a language that will help programmers express themselves and
not fight it. And he succeded. Try it out and see for yourself.

Ok, what's with Ruby on Rails?
Web applications usually work on top of some framework.
Frameworks make development easy and fast. And Ruby
wouldn't have become so popular on the web if Rails didn't
come in as a boost. It was developed by David Heinemeier
Hansson as a part of his work on Basecamp, a project
management tool. Rails uses the Model-View-Controller (MVC)
architecture pattern to organize application programming. It
puts a powerful tool into web developers hands – a tool that
brings quick and high quality development.

Why Lighttpd?
This is how developers of this great web server describe their
product:

lighttpd is a secure, fast, compliant, and very flexible web-
server that has been optimized for high-performance environ-
ments. It has a very low memory footprint compared to other

webservers and takes care of cpu-load. Its advanced feature-
set (FastCGI, CGI, Auth, Output-Compression, URL-Rewriting
and many more) make lighttpd the perfect webserver-software
for every server that suffers load problems.

You might think of Lighttpd as a lightweight web server with
limited capabilities and you would be wrong. It's true, lighttpd
is light and not just by it's name. It's very nice towards server
when it comes to memory and CPU consuming. Yet, it lacks no
advanced features that are present in other popular web serves
such as Apache. And it works like a charm with Ruby on Rails.

Why FreeBSD?
Though this may not need an answer let's just give a few
reasons why FreeBSD. FreeBSD is operating system designed
with the idea that may be summed up in: The power to serve.
It has shown it's power on some very busy systems that take
high load such as Yahoo! Easy to setup, very easy to maintain
and it works so good under great pressure.

Putting it all together
Let's put it all together and see what happens. First of all, we
need Ruby installed. In order to do that use the following:

#cd /usr/ports/lang/ruby18 && make install clean

This will install all the essential parts of Ruby language. You
are now ready to use Ruby on your FreeBSD machine as
a substitute for shell scripts or Perl. Ruby has become a very
popular substitute for Perl since it gives sysadmins a great tool
for everyday tasks.

Let us move on. We got Ruby installed but we want more.
Before moving to Rails there is another Ruby tool that we
need to explore – gems. Gem is packaged Ruby application

16 BSD 2/2010

how-to’s The gemstones for FreeBSD

17www.bsdmag.org

or a library. In order to work with gems
we use command gem that comes with
Ruby installation. Let's see what gem
does: see Listing 1.

So, all we need in order to work with
gems is this neat tool. Here is what gem
does:

• Easy Installation and removal of
RubyGems packages and their
dependents;

• Management and control of local
packages;

• Package dependency management;
• Query, search and list local and

remote packages;
• Multiple version support for installed

packages;
• much more...

So lets add Rails and a few other
packages:

#gem install rails rails-app-installer

This will install Rails and all needed
libraries. Once it's done check whether
everything is in its place with:

• #gem list --local
• actionmailer (2.3.4)
• actionpack (2.3.4)
• activerecord (2.3.4)
• activeresource (2.3.4)
• activesupport (2.3.4)
• cgi_multipart_eof_fix (2.5.0)
• daemons (1.0.10)
• fastthread (1.0.7)
• gem_plugin (0.2.3)
• mongrel (1.1.5)
• mongrel_cluster (1.0.5)
• rack (1.0.0)
• rails (2.3.4)
• rails-app-installer (0.2.0)
• rake (0.8.7)
• sources (0.0.2)
• sqlite3-ruby (1.2.4)

Great! It all worked well.

Light it up
Ruby on Rails comes with web server
called Mongrel. You may have seen it on
the list of installed gems – mongrel (1.1.5).
Mongrel may work as a stand-alone server.
It is capable of serving Ruby on Rails
powered sites without requiring any other
web servers. From the base directory of
any typical Rails application, simply run:

#mongrel_rails start -p 80 -e

production -d

This will start an application on port 80
(-p) using production settings (-e) like
a daemon in the background (-d).

This may be just fine for local
development or if you are not running
any other web sites on server. If you
are then a solution must be found.
And sometimes you simply want your
application to be run by a fully featured
web server. Lighttpd to the rescue!

Setting up Lighttpd is pretty easy
on FreeBSD. First of all it needs to be
installed:

#cd /usr/ports/www/lighttpd && make

install clean

Installation process will ask for some
tweaks to be selected. You may always
recompile Lighttpd and add more
features if needed.

Once Lighttpd is installed two things
need to be done. First of all we need to
modify configuration file that may be found
in /usr/local/etc/lighttpd.conf. You
may notice that configuration language is
pretty easy to understand. Here is sample
configuration script stripped down to bare
minimum. Users should play with various
combinations and adapt this script to their
needs (see Listing 2).

This configuration file is pretty easy
to understand without any additional
explanations. Notice that server.modules
block has been stripped down to
minimum required to run Lighttpd with
RoR application. mimetype.assign has
also been cut because of it's length. Take
a look at the original lighttpd.conf file that
comes with the installation for the whole

list. It is suggested to use include option to
keep this configuration file in better shape.
So moving big blocks of configuration to
separate files and linking them through
include option may be a good idea.

Now you need to create directory
where default web server will point to. In
this case it's /home/web/. And add some
simple HTML content there – you don't
want your default page empty, do you?
Lighttpd won't create log files on it's own
so we need to do this:

#cd /var/log && touch

lighttpd.error.log lighttpd.access.log

Now add lighttpd_enable=”YES” to /etc/
rc.conf and light it up:

#/usr/local/etc/rc.d/lighttpd start

Visit http://mydomain.org and be
amazed with your web site. If Lighttpd
didn't fire up for some reason check
/var/log/messages and /var/log/

lighttpd.error.log to see the reason
why. Sometimes log files need to be
owned by the user that is running web
server – in this case www. Log files will
tell you what went wrong.

Put a Ruby in it
Great, our Lighttpd installation worked
just fine. It's time to add some Ruby
stones to it. As you may have noticed
the last line of Lighttpd configuration files
looked like this:

#include "rails_app.conf"

It's time to create rails_app.conf and
comment this line off. Using your favorite
text editor open this file:

Listing 1. gem usage

#gem

Usage:

 gem -h/--help

 gem -v/--version

 gem command [arguments...] [options...]

Examples:

 gem install rake

 gem list --local

 gem build package.gemspec

 gem help install

http://mydomain.org

18 BSD 2/2010

how-to’s

19www.bsdmag.org

The gemstones for FreeBSD

Listing 2. Lighttpd configuration

modules to load

server.modules = (

 "mod_rewrite",

 "mod_access",

 "mod_fastcgi",

 "mod_simple_vhost",

 "mod_accesslog")

a static document-root, for virtual-hosting take

look at the

server.virtual-* options

server.document-root = "/home/web/"

where to send error-messages to

server.errorlog = "/var/log/

lighttpd.error.log"

files to check for if .../ is requested

index-file.names = ("index.html",

"index.php",

 "index.htm",

"default.htm")

set the event-handler (read the performance section

in the manual)

server.event-handler = "freebsd-kqueue" # needed on

OS X

mimetype mapping

mimetype.assign = (

 ".pdf" => "application/pdf",

 ".sig" => "application/pgp-signature",

 ".spl" => "application/futuresplash",

 ".class" => "application/octet-stream",

 ".ps" => "application/postscript",

…take a look at lighttpd.conf file for the whole

list...

 ".wmv" => "video/x-ms-wmv",

 ".bz2" => "application/x-bzip",

 ".tbz" => "application/x-bzip-

compressed-tar",

 ".tar.bz2" => "application/x-bzip-

compressed-tar"

)

send a different Server: header

be nice and keep it at lighttpd

server.tag = "lighttpd"

accesslog module

accesslog.filename = "/var/log/

lighttpd.access.log"

deny access the file-extensions

~ is for backupfiles from vi, emacs, joe, ...

.inc is often used for code includes which should in

general not be part

of the document-root

url.access-deny = ("~", ".inc")

$HTTP["url"] =~ "\.pdf$" {

 server.range-requests = "disable"

}

which extensions should not be handle via static-file

transfer

.php, .pl, .fcgi are most often handled by mod_

fastcgi or mod_cgi

static-file.exclude-extensions = (".php", ".pl",

".fcgi")

######### Options that are good to be but not

neccesary to be changed #######

bind to port (default: 80)

server.port = 80

bind to localhost (default: all interfaces)

server.bind = "mydomain.org"

server.pid-file = "/var/run/lighttpd.pid"

virtual directory listings

dir-listing.activate = "enable"

only root can use these options

chroot() to directory (default: no chroot())

server.chroot = "/"

change uid to <uid> (default: don't care)

server.username = "www"

change uid to <uid> (default: don't care)

server.groupname = "www"

include

#include "rails_app.conf"

18 BSD 2/2010

how-to’s

19www.bsdmag.org

The gemstones for FreeBSD

#vim /usr/local/etc/rails_app.conf

And add the following lines to it: see
Listing 3.

So what does this configuration file
do? It tells our Lighttpd web server that
we want to run Ruby on Rails application
using FastCGI system. It states where
our Rails application resides (/home/
blog/public) and it creates some server
related tweaks such as number of
processes to run. These tweaks should
be adopted to server configuration.
Simply, use these setting and monitor
how your server works with them. If you
are not satisfied with the performance
simply tweak them till you reach the
desired performance.

Give me a blog
to build a dream on
Wait, but we don't have an application on
that location. How is Lighttpd supposed
to work with no application in /home/
blog/public? Well, purpose of this text is
not to teach you how to write Ruby and
Ruby on Rails code but how to run it on
FreeBSD using Lighttpd. In order to do
that we'll just have to use some existing
application. This will be a good chance
to learn how to play with gem tool. And
what better web application to use for
demonstration than blog software! For
this purpose we're going to intall a great

blogging software called Typo. The
easiest way to do this is using gem:

#gem install typo

It is a part of your gems collection now.
You may notice that Typo will pull down
older version of Rails (2.2.2). This is where
the power of gems comes to stage. You
are able to run different versions of various
gems and not cause anything to crash.

By deafult Typo uses MySQL
database. Installing MySQL is beyond
the scope of this article. We'll presume
that you have MySQL running and that
you have added proper database and
user for it.

Our next step is to add Ruby MySQL
driver:

gem install mysql

Check out your local gems collection
and both mysql and typo should be
on the list. Once you install Typo into
your gems collection it becomes an
executable like any other on the system.
All you have to do now is extract its
content to some location. And this is how
Typo is installed:

#typo install /home/blog/ db_

user=$user db_name=$database db_

host=localhost db_password=$pass

This will extract Typo into /home/blog
where we wanted to run our application
at first place. It will use database
coordinates we have already prepared
for it. If you don't want to use MySQL
there are two other options. One is
PostgreSQL and the other is SQLite. In
both cases you'll need proper database
setup and Ruby drivers (postgresql and
sqlite3) installed.

Typo will start an instance of its
installation on port 7000. If you wish
you may use this for testing purposes.
We do not want this since we've setup
Lighttpd to serve our blog. So simply
kill this process. We're all ready to test
everything. Make sure that the last line of
lighttpd.conf file is not commented since
it will include Rails application setup.
Then simply restart your Lighttpd server:

#/usr/local/etc/rc.d/lighttpd restart

If no errors were present when you
tweaked config files you may point your
browser to http://blog.mydomain.org and
you'll see a fresh Typo installation. Voila!
Your blog is ready for usage.

Conclusion?
We had the power
We had the space
We had a sense of time and place
We knew the words
We knew the score
We knew what we were fighting for...

Ending this article with lyrics from
Adrenochrome performed by the Sisters
of Mercy (playing in the background as
this article is being written). Combination
of Ruby, Rails, Lighttpd and FreeBSD puts
a great power in our hands. Power whose
limits are set by the imagination of us
– users. So, there is no real conclusion to
this story. It is just a starting point for all
curious readers of this magazine.

Listing 3. Rails application in Lighttpd

$HTTP["host"] =~ "blog.mydomain.org" {

 server.document-root = "/home/blog/public"

 server.errorlog = "/var/log/blog.error.log"

 accesslog.filename = "/var/log/blog.access.log"

 url.rewrite = ("^/$" => "index.html", "^([^.]+)$" => "$1.html")

 server.error-handler-404 = "/dispatch.fcgi"

 fastcgi.server = (".fcgi" =>

 ("localhost" =>

 (

 "socket" => "/tmp/ruby-railsapp.fastcgi",

 "bin-path" => "/home/blog/public/dispatch.fcgi",

 "bin-environment" => ("RAILS_ENV" => "production"),

 "min-procs" => 5,

 "max-procs" => 5,

 "idle-timeout" => 60

)

)

)

}

• http://www.freebsd.org/
• http://www.lighttpd.net
• http://www.ruby-lang.org/en/
• http://rubyonrails.org/
• http://wiki.github.com/fdv/typo/

On the ‘Net

http://blog.mydomain.org
http://www.freebsd.org/
http://www.lighttpd.net
http://www.ruby-lang.org/en/
http://rubyonrails.org/
http://wiki.github.com/fdv/typo/

20 BSD 2/2010

how-to’s OpenBSD, NetBSD and FreeBSD as file sharing servers – Part 1 – NFS

21www.bsdmag.org

OpenBSD, NetBSD and FreeBSD
as file sharing servers – Part 1 – NFS

How to share files between multiple operation systems and keep your data safe.

Petr Topiarz

Why BSD as a file sharing server?
This article came to being as a result of my experience with
using both OpenBSD and NetBSD as file servers. In fact, the
5 computers I care about are used as routers and database
servers as well, however I want to look at them from the
perspective of file sharing. The important reason why I would
truly recommend BSD is that during the last 5 years I have
run the servers, despite many electricity breakdowns, I have
never lost a single byte on either the OpenBSD or NetBSD
served machines. The most destructive case occurred some
two years ago, when electricity went down seven times in
a short period and we had no UPS to keep the machines
alive or give us time to turn them off safely. The problem
was that while all computers in our offices were coming up
and fsck was applied to them, the power went down again
and again. Two machines running Linux (on the desktops)
unfortunately did not make it (with ext3fs). It resulted in
manual check and data loss at those Linux stations. There
were no Windows machines in our office, so no comparison,
however I believe readers know what happens to Windows
in such cases. There was one Apple laptop at that time in
our office that survived on battery so again no comparison.
Finally, there were two BSD servers and there was absolutely
no problem on those BSDs. All services were up and about in
just a short time and all files were found complete, unbroken
and clean. That is why when I write about file sharing, I write
about BSD.

File sharing options.
How do you share files between multiple operating systems
and keep your data safe? There are many options and we will
go through all of them. Sharing files between Windows, Apple
and Linux or BSD machines means sharing using various
protocols:

• NFS
• Samba
• FTP
• SSH/SCP
• Apple talk/Apple share

There are many differences between the ways you can
share your files using these different protocols. There can
be some incompatibility between versions used on different
machines, such as NFS3/NFS4 or various versions of
Samba. Most problems are solved by setting your firewalls
competently and opening all the ports the protocols need
to use. A typical example of a problem is the FTP server
not only needs ports 22 and 21 open for communication,
but also a range of ports between 1024-5000 for data
transfer.

NFS – Network File System
We will start with the Unix way first. Sharing your files with
NFS is an old and perfectly functional way that preserves all
Unix features such as user and group permissions, which are
probably very important for every Unix administrator and users
as well. NFS will work perfectly with Linux, BSD, Mac OS/X, and
any kind of commercial Unix such as AIX or Solaris.

NFS has many very good features which allow not only
transfer but real work in the system over the net. Shares are
mounted as local disks and depending on the configuration
options allow users to feel as if the disk is part of their
computer even if the server is thousands miles away. Users
who mount the shares can open files directly, read, write and
even start programs from the mounted disks. If you read
some NFS related blogs or how-tos you can come across
a discussion about mounting soft or hard. Mounting soft
means data are written to your PC's cache first and, if the

20 BSD 2/2010

how-to’s OpenBSD, NetBSD and FreeBSD as file sharing servers – Part 1 – NFS

21www.bsdmag.org

server does not respond, your computer
caches the data locally and moves it
to the server when the connection is
regained. So it is comfortable for you,
however the data is not safe. If you
lose the connection for long periods
and switch off your machine, you might
assume the data was written even
though it was not. The hard option is
writing the data to the server without
delay which helps keep it safe, but in
case of slow or low quality connection
it can result in a frequent computer
freezes.

The machine working as a client –
that is your PC – will think the disk is not
answering and thus stops working until
it gets answer again. Now if you ask
me, the best choice is hard if you have
reliable connection and important data,
and soft if your connection is unstable
and you do not work on a serious stuff.

So, enough theory, let's see how to
setup and configure NFS on OpenBSD
and NetBSD, and FreeBSD, then explain
how to start it and access from various
clients.

OpenBSD NFS server
In /etc/rc.conf these options have to
be set:

 NFS_server=YES #

see sysctl.conf for NFS client

configuration

 nfsd_flags="-tun 4"

 lockd=YES

 portmap=YES

in /etc/rc.conf.local you have to set :

 portmap=YES

In /etc/export you have to specify what
and how you are going to share and who
can access that:

 /mnt/disk1 -alldirs -ro

 /home/david -alldirs -

network=192.168.1.0 -

mask=255.255.255.0

 /var -alldirs 10.27.68.83 -

maproot=501:505

The above configuration example allows
everyone to mount /mnt/disk1 for
reading.

Everyone in the network 192.168.1.0
with net mask 255.255.255.0 is allowed

to mount David's home directory, and
everyone from the computer with the
IP 10.27.68.83 to mount /var and map
users with UID between 501 and 505 to
root. If you are interested in more options,
study man exports.

If you make changes to /etc/exports
you have to do the following to make it
work without reboot:

kill -HUP `cat /var/run/mountd.pid`

NetBSD NFS server
In /etc/rc.conf you have to set:

 rpcbind=yes

 mountd=yes

 NFS_server=yes

 NFS_client=yes

 lockd=yes

 statd=yes

In /etc/export you have to specify what
and how you are going to share and who
can access that:

 /mnt/disk1 -alldirs -ro

 /home/david -alldirs -network

192.168.1.0 -mask 255.255.255.0

 /var -alldirs 10.27.68.83 -

maproot=501:505

The above configuration example allows
the same behavior as demonstrated
above with OpenBSD. One can clearly
recognize that OpenBSD and NetBSD
are based on BSD. The only difference
in our example is defining network and
net mask with the absence of the = in
NetBSD's config file.

If you make changes to /etc/exports
you have to do the following to make it
work without reboot:

``kill -HUP `cat /var/run/

mountd.pid`''

Free BSD NFS server
In /etc/rc.conf you have to set:

 rpcbind_enable="YES"

 NFS_server_enable="YES"

 mountd_flags="-r"

 rpc_lockd_enable="YES"

 rpc_statd_enable="YES"

In /etc/export you have to specify what
and how you are going to share and who
can access that:

 /mnt/disk1 -alldirs -ro

 /home/david -alldirs -network

192.168.1.0 -netmask 255.255.255.0

 /var -alldirs 10.27.68.83 -

maproot=501:505

So again exactly the same configuration
as with NetBSD, but instead of -mask use
-netmask. If you make changes to /etc/
exports you have to do the following to
make it work without reboot:

 # /etc/rc.d/mountd onereload

Configuring
the NFS client and mounting the share
Connecting your station to the server
and mounting the share is generally
very similar on all NFS-capable systems.
You have to install the NFS client, enable
portmap and then mount the share. If you
issue a command:

 # showmount -e 10.27.68.81

It will show you which shares are
available on the server with IP 10.27.68.81,
so you will see something like:

 Exports list on 10.27.68.81:

 /home/NFS 10.27.68.80

Which tells you there is a share
/home/NFS which computers in network
10.27.68.80 can connect to. If you are in
the 10.27.68.80 network, you can mount
it, that can be done like this:

 # mount -t NFS 10.27.68.81:/home/

NFS /mnt/myshares

If you want to specify more options you
can do so with -o:

 # mount -t NFS -o rw,nosuid,nodev

,hard,noexec,soft 10.27.68.81:/home/

NFS /mnt/myshares

Now if you go to /mnt/myshares on
your computer you will see the shared
files. Whether you can access them or
not depends on many things such as
permissions and the configuration of the
server and your client.

On BSD's
use the command line as shown above
(with the alternation to use: mount_NFS
command)

22 BSD 2/2010

how-to’s
On Linux
While many distros have their own
specific tools to mount the shares, e.g.
Mandriva and OpenSuSE can do so
very easily through their configuration
centers, all Linux distros can use the
command line mount command to
mount NFS as well. There is one point
worth mentioning here, modern Linux
usually uses wsize and rsize 8192 by
default and that can cause problems
with BSD servers, as many support only
wsize and rsize 1024. I suggest you add
the option -o wsize=1024,rsize=1024
when you mount the share on your Linux
machines.

On Mac
A very comfortable way in graphical
interface is using the Mac's finder:

• With the Finder active, choose
Connect to Server from the Go
menu; the Connect to Server window
appears.

• In the Address text box, enter: NFS://
10.27.68.81:/home/NFS

• Click Connect; the Connect to Server
window closes. With Mac OS X 10.1
or later the NFS exports will mount
on the desktop (unless you've turned
that feature off on the server, then the
export will only appear in the Finder
window).

On AIX
The mount command for AIX is also quite
similar: mount 10.27.68.81:/home/NFS /
mnt/myshares

The biggest difference is that
AIX stores this information in /etc/

filesystems instead of /etc/fstab. Here
is an example of the format used, as it
differs from Linux and BSD:

 /mnt/myshares:

 dev = “/home/NFS”

 vfs = nfs

 nodename = 10.27.68.81

 mount = true

 options = rw,hard,wsize=10

24,rsize=1024,vers=3,proto=udp

 account = false

On Solaris

mount -F nfs 10.27.68.81:/home/NFS

/mnt/myshares

On Windows
Technote 324055 describes the process
of installing and setting up the NFS client
from the Services for Unix media. In
short:

• Download Services for Unix
from Microsoft at http://
www.microsoft.com/downloads

• Run the self-installer (I recommend
giving it a specific path)

• Navigate to the directory and
doubleclick SfuSetup.msi

• Choose the custom installation
• Choose Entire feature will be

installed on hard drive for both
NFS and Authentication Tools for
NFS>User Name Mapping/Server for
NFS Authentication

• De-select the rest
• Accept the defaults the rest of the

way.

• Launch All Programs>Windows
Services for Unix>Services for Unix
Administration

• Click on Client for NFS
• Set the Transport, mount type,

read and write buffers here under
Performance

• Reboot
• Mounting is now possible via the

normal Explorer>Tools>Map Network
Drive as 10.27.68.81:/home/NFS

If you want to make the mount
permanent under Linux, you have to
add a line in your /etc/fstab. Here
you should be careful, as various
Unix systems behave differently if the
share is set as auto, but the server
is unreachable. It can slow down the
start of your machine or interrupt it
completely. Modern user-aimed Linux
distros such as Ubuntu will let you
continue and skip this, so you do not
have to worry too much.

Summary
Using NFS for file sharing allows you
to mount the share like a local disk
without reservations. User restrictions
and group privileges apply here. Hard
or soft options have large effect on
the behavior. NFS can be used on all
systems with an NFS client. Permanent
NFS records can affect the start of your
client machine. Most systems require
root permissions to mount NFS shares.

To be continued
In the next issue of BSD-Mag we will
have a look at the SAMBA share and its
options.

Special thanks to Mike Bybee for adding
the how-to for the NFS on Windows part.

• http://openbsd.org/faq/faq6.html#NFS
• http://www.netbsd.org/docs/guide/en/chap-net-services.html#chap-net-services-nfs
• http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/network-nfs.html
• http://onlamp.com/bsd/2000/11/14/OpenBSD.html
• http://support.apple.com/kb/TA22243?viewlocale=en_US
• http://www.freebsd.org/cgi/man.cgi?query=export&apropos=0&sektion=0&manpath=

FreeBSD+8.0-RELEASE&format=html
• http://www.openunix.eu/
• http://ubuntuforums.org/showthread.php?t=310168
• http://support.microsoft.com/kb/324055
• http://tldp.org/HOWTO/NFS-HOWTO/interop.html
• http://unixtechtips.blogspot.com/2007/01/using-nfs-solaris.html
• Michael Lucas: FreeBSD
• Jon Lasser: THINK Unix

Sources and recommended reading:

Petr Topiarz is a co-owner and manager
of a small language school in Prague,
involved also in an EU-financed online
teaching project. He started with Linux
and BSD back in 2004 and since 2005
he has done the upkeep of three BSD-
served networks and has becoome a great
BSD fan. He runs a modest portal called
openunix.eu dealing with BSD and similar
issues.

About the Author

NFS://
http://
http://openbsd.org/faq/faq6.html#NFS
http://www.netbsd.org/docs/guide/en/chap-net-services.html#chap-net-services-nfs
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/network-nfs.html
http://onlamp.com/bsd/2000/11/14/OpenBSD.html
http://support.apple.com/kb/TA22243?viewlocale=en_US
http://www.freebsd.org/cgi/man.cgi?query=export&apropos=0&sektion=0&manpath=
http://www.openunix.eu/
http://ubuntuforums.org/showthread.php?t=310168
http://support.microsoft.com/kb/324055
http://tldp.org/HOWTO/NFS-HOWTO/interop.html
http://unixtechtips.blogspot.com/2007/01/using-nfs-solaris.html

http://www.remsys.com

24 BSD 2/2010

how-to’s IPsec VPNs – An Introduction to IKE and IPsec

25www.bsdmag.org

IPsec VPNs
An Introduction to IKE and IPsec

This article concerns itself with IPsec and IKE, the protocols used to build IPsec based
VPNs (hereafter referred to simply as a VPN).

Paul McMath

I ntroduced are the basic elements of IPsec and IKE
which are useful for understanding how to configure,
monitor or trouble-shoot a VPN configuration. An example
VPN using OpenBSD is presented and subsequently

examined to demonstrate aspects of how IPsec and IKE work.
Not discussed are the relative merits of design choices or
configuration options. Whenever possible, OpenBSD's default
configuration options are used.

This article has four parts. The first is an overview of an IPsec
VPN, the ESP protocol and IKE key management. The second
discusses configuring VPN gateways and demonstrates
some of the tools to establish, manage and debug a VPN
on OpenBSD. The third part looks at VPN traffic at the packet
level using tcpdump, and the final part demonstrates a basic
configuration for roaming clients.

IPSEC VPN
IPsec refers to two protocols, Authentication Header (AH) and
Encapsulating Security Payload (ESP), both of which provide
different types of protection to IP datagrams. Both protocols
have two modes of operation – transport mode and tunnel
mode. The kinds of protection they provide are confidentiality
(data can only be read by the intended recipient), data
integrity (certainty that the data hasn't been modified while in
transit), authenticity (certainty about the sender), and replay
protection (traffic belonging to one session cannot be used
as part of a new session). This kind of security is achieved
through the use of encryption algorithms, hash algorithms,
and standard authentication mechanisms (public key
encryption, shared secret, digital signatures). In this article,
IPsec traffic refers to network traffic protected by either ESP
or AH.

In addition to AH and ESP, there is the Internet Key
Exchange (IKE) protocol. IKE is a hybrid protocol, meaning it

combines functionality defined by other protocols, specifically
the ISAKMP protocol, the OAKLEY protocol, and the SKEME
protocol. The role of IKE in a VPN is to establish and manage
a Security Association (SA) between two peers. The SA defines
many configurable attributes of IPsec traffic, in particular, how
the secure communication between two peers is achieved
(e.g., which algorithms are used, the authentication method,
key lengths, etc). IKE negotiates the SA between peers,
whereby both reach an agreement on the set of SA attributes
to use for protecting their IPsec traffic. Both peers must have
and maintain matching SAs in order to secure traffic between
them.

In this article, we will examine an OpenBSD IPsec VPN
implementation that will use the ESP protocol in tunnel mode
to secure traffic between two private, internal networks. VPN
gateways acting as multi-homed hosts will protect the traffic
as it traverses a WAN (i.e., the public internet). In our example,
both gateways will run OpenBSD's isakmpd, a daemon
process which implements the IKE protocol. Later, we will
modify the configuration to accommodate roaming users (also
running OpenBSD).

Figure 1 is a representation of our demonstration network.
The hosts vpn-gateway1 and vpn-gateway2 have external
interfaces on the WAN. Both gateways are also multi-homed,
each being connected to an internal network (corp-net1 and
corp-net2) that uses a private address space. Any host on
either of the internal networks can securely communicate with
any host on the other network. The two gateways will protect
their traffic as it traverses the WAN.

Overview of ESP (in tunnel mode)
Figure 2 shows a typical IPv4 datagram before and after the
application of Encapsulating Security Payload (ESP) in tunnel
mode. ESP puts data in front of and behind the original IPv4

24 BSD 2/2010

how-to’s IPsec VPNs – An Introduction to IKE and IPsec

25www.bsdmag.org

datagram. After ESP is applied, all of the
original IPv4 datagram is encrypted.

Important values within the ESP
header are:

• Security Parameter Index (SPI)
– a randomly generated value used
to determine which SA applies to
a ESP packet.

• Sequence number – This value
provides anti-replay protection. It
is initialized to 0 when the SA is
established and incremented by 1
for every packet sent.

The ESP-Trailer contains padding
(necessary for boundary alignment) and
some other fields not covered in this
article.

The Authentication Data field
contains the Integrity Check Value (ICV).
This value (derived cryptographically)
is used to ensure the authenticity and
integrity of the packet. As the diagram
shows, it is calculated over the entire
ESP packet, excluding the Authentication
Data portion.

Also note that because the original
IP header is now encrypted, it can no
longer be used to route the packet.
Therefore a new IP header is placed
at the beginning of the packet. This is
what is meant by tunnel mode – the true
source and origin of the datagram is now
concealed and protected.

Figure 3 illustrates packet flow for
an ESP packet in tunnel mode on one
side of the VPN. The top diagram shows
an inbound IPv4 datagram before and
after ESP encapsulation. The diagram
below shows traffic flow for this packet. It
arrives on the external bge0 interface of
vpn-gateway1 as an ESP packet; its inner
contents are still encrypted. The source
address in the outer IP header is 2.2.2.2
(vpn-gateway2); the destination address
is 1.1.1.1 (vpn-gateway1).

The presence of the ESP header
identifies the packet for IPsec processing
on vpn-gateway1. After de-capsulation
the original IPv4 datagram is no longer
encrypted; the outer IP header is now
the original header (with source address,
192.168.10.20, a host on the corp-net2,
and a destination address for a host
on the corp-net1 network). When vpn-
gateway1 forwards the datagram to its
final destination the datagram appears
as normal IPv4 traffic.

Hosts on the corp-net1 network have
their routing tables configured to use
vpn-gateway1 for all traffic to the corp-
net2 network. The host1 machine sends
a normal IPv4 datagram to the gateway
for forwarding. The gateway determines
that the datagram should be processed
by IPsec based upon values in the IPv4
header. When the packet leaves vpn-
gateway1, the original IPv4 datagram is
encrypted and a new IP header identifies
the source and destination IP address as
those of the two VPN gateways.

IKE Overview
IKE is a hybrid protocol based primarily
on ISAKMP with additional functionality

derived from other protocols. ISAKMP
terminology is therefore often used when
discussing IKE.

The purpose of IKE is to establish
and manage security associations
between two endpoints (peers). Each
endpoint of the VPN must have a SA
which corresponds to a SA on the other
endpoint.

Before a SA comes into being
both peers must reach an agreement
on the new SA's attributes. These
attributes determine characteristics of
the SA; examples include the particular
IPsec protocol (ESP or AH), encryption
algorithms and the authentication
method used to verify the identity of the

Figure 1. Two private networks connected accross a public WAN through a VPN tunnel

���������
������������

������������
���������

���������

������������
�������

������������

���

����������

���������
���������������

Figure 2. IPv4 datagram before and after ESP encapsulation in tunnel mode

��������������

������������������

��
������

�������
������

�������
������ ����������� ������������������

����

�������
��������� ���������� �������

���������

��������

�������������

Listing 1. /etc/ipsec.conf for vpn_gateway1

#ipsec.conf vpn_gateway1

#

#corp_net1: 10.0.10.0/24

#corp_net2: 192.168.10.0/24

Macro for remote vpn peer

vpn_gateway2 = "2.2.2.2"

ike passive esp tunnel from 192.168.10.0/24 to 10.0.10.0/24 \

 peer $vpn_gateway2 \

 main auth hmac-sha1 enc aes group modp1024 \

 quick auth hmac-sha2-256 enc aes

26 BSD 2/2010

how-to’s

27www.bsdmag.org

IPsec VPNs – An Introduction to IKE and IPsec

remote endpoint. The process whereby
the two peers reach agreement on the
SA's attributes is called negotiation.

Other steps must also be completed
before a new SA is created. Depending
on the type of SA, these may include
establishing a shared secret (used to
generate secret keys), authenticating the
identity of the peer or generating keying
material.

Another characteristic of SAs is that
they have lifetimes, that is, they expire and
a new SA must be created. Duration of
life is measured in either time or kilobytes
of data transferred. These are attributes
which must also be negotiated.

Daemons implementing the IKE
protocol communicate by exchanging

information in messages sent in
UDP datagrams to port 500 or 4500.
Messages are always exchanged
within the context of an exchange
type. An exchange type defines the
purpose and the content of a message.
Some exchange types are intended
to establish new SAs and therefore
define the number and content of the
messages which must be exchanged
to successfully instantiate the SA. Other
exchange types are for sharing status
information. IKE defines five exchange
types: Identity Protection, Aggressive,
Informational, Quick Mode, and New
Group Mode. The first three are derived
from ISAKMP, the latter two are specific
to IKE. A particular message belongs

to one (and only one) exchange type.
The exchange types New Group
Mode and Aggressive will not be
discussed as they are not used in our
implementation.

Negotiation itself consists of an ex-
change of messages containing
proposals. A proposal contains a pro-
posed set of attribute/value pairs for the
SA being negotiated. Peers can either
accept or reject the proposals sent
from the other peer. Usually, the initiator
of a connection sends a list of one or
more proposals, and the remote peer,
the responder, replies with a proposal
chosen from the list. If the initiator doesn't
send a proposal that the responder can
accept, then the negotiation fails and no
SA is created.

(Although the terms initiator and
responder suggest a client/server
relationship, outside the context of
establishing the SAs, both initiator and
responder communicate with each other
as equal peers.)

IPsec traffic requires establishing
two types of SAs – an ISAKMP SA
and an IPSEC SA. They are created
sequentially, and the first must complete
successfully before the second can
begin. Establishment of the first is called
Phase 1 and results in an ISAKMP SA.
In our example, the IKE messages which
establish the ISAKMP SA are of the
Identity Protection exchange type (phase
1 using Identity Protection is also referred

Figure 3. Traffic flow for an ESP packet

��

������������������� ������� ����

�����������������
��������������

���������������

�� �� ������������

�����������������
��������������
���������������

������������
������������

���������������

�������������������
����������

��������������������
���������������������
������������������

��������������������
������������������

���������������������

�����������������
���������������
���������������

��������������������
���������������
���������������

������������

����
���������

����
�������

Listing 2. /etc/ipsec.conf for vpn_gateway2

#ipsec.conf vpn_gateway2

#

#corp_net1: 10.0.10.0/24

#corp_net2: 192.168.10.0/24

Macro for remote vpn peer

vpn_gateway1 = "1.1.1.1"

ike active esp tunnel from 10.0.10.0/24 to 192.168.10.0/24 \

 peer $vpn_gateway1 \

 main auth hmac-sha1 enc aes group modp1024 \

 quick auth hmac-sha2-256 enc aes

26 BSD 2/2010

how-to’s

27www.bsdmag.org

IPsec VPNs – An Introduction to IKE and IPsec

to as main mode). This exchange type
mandates six messages be exchanged,
three from each peer. The purpose
of these messages is to 1) negotiate
the proposed SA's attribute values, 2)
establish a shared secret using the Diffie-
Hellman protocol, and 3) authenticate
the identity of the remote peer using
either a pre-shared secret, public key
encryption or a digital signature. When
completed, the new ISAKMP SA is used
to protect messages sent in Phase 2,
which will establish the IPSEC SA.

Phase 2 messages are of the
exchange type Quick mode (quick,
because if Perfect Forward Secrecy
(PFS) is not required, then an expensive
Diffie-Hellman calculation is not
necessary). Quick mode defines a three
message exchange which will negotiate
proposed SA attribute values, ensure
against the possibility of replay and
generate keying material. If PFS is
required, there will still only be three
messages exchanged, but keying
material for Diffie-Hellman will be
included in the messages. When phase
2 completes there will be an IPSEC SA
capable of protecting traffic with ESP or
AH.

IPSEC SAs apply to traffic in one
direction only, therefore they are created
in pairs, each peer having two, one for
inbound and the other for outbound
traffic. When discussing establishment
of an IPSEC SA, what is always meant is
establishing a pair of IPSEC SAs on each
peer for bi-directional traffic.

The IPSEC SA and the ISAKMP SA
have distinct functions. The IPSEC SA
defines the protection for IPsec traffic
(e.g., the encryption and authentication
algorithms defined for the IPSEC SA are
used when processing an ESP packet).
In our example, this is traffic between
the two private internal networks. The
ISAKMP SA protects the UDP traffic
between the two daemons running on
the gateways and communicating via
the IKE protocol. This IKE traffic contains
the IKE messages exchanged as part of
managing SAs or creating new ones,
either at the request of initiators or due
to old SAs reaching their maximum life
and expiring.

Information about IPSEC SAs (e.g.,
when and how IPsec protection is
applied to IP datagrams) is kept in two
databases: the Security Policy Database

Listing 3. pf rules for vpn_gateway1

pf rules for vpn_gateway1

#

#corp_net1: 10.0.10.0/24

#corp_net2: 192.168.10.0/24

vpn_gateway1="1.1.1.1"

vpn_gateway2="2.2.2.2"

########

These rules must be present for any IPsec/ESP traffic

pass esp traffic

pass in on $ext_if proto esp from $vpn_gateway2 to $vpn_gateway1

pass out on $ext_if proto esp from $vpn_gateway1 to $vpn_gateway2

pass IKE traffic on ports 500 and port 4500

pass in on $ext_if inet proto udp from $vpn_gateway2 to $vpn_gateway1 \

 port { 500, 4500 }

pass out on $ext_if inet proto udp from $vpn_gateway1 to $vpn_gateway2 \

 port { 500, 4500 }

IP-in-IP traffic flowing between gateways on the enc0 interface.

pass in on enc0 proto ipencap from $vpn_gateway2 to $vpn_gateway1 \

 keep state (if-bound)

pass traffic on the enc0 interface

pass in on enc0 from 10.0.10.0/24 to 192.168.10.0/24 \

 keep state (if-bound)

pass out on enc0 from 192.168.10.0/24 to 10.0.10.0/24 \

 keep state (if-bound)

Listing 4. pf rules for vpn_gateway2

pf rules for vpn_gateway2

#

#corp_net1: 10.0.10.0/24

#corp_net2: 192.168.10.0/24

vpn_gateway1="1.1.1.1"

vpn_gateway2="2.2.2.2"

########

These rules must be present for any IPsec/ESP traffic

pass esp traffic

pass in on $ext_if proto esp from $vpn_gateway1 to $vpn_gateway2

pass out on $ext_if proto esp from $vpn_gateway2 to $vpn_gateway1

pass IKE traffic on ports 500 and port 4500

pass in on $ext_if inet proto udp from $vpn_gateway1 to $vpn_gateway2 \

 port { 500, 4500 }

pass out on $ext_if inet proto udp from $vpn_gateway2 to $vpn_gateway1 \

 port { 500, 4500 }

IP-in-IP traffic flowing between gateways on the enc0 interface.

pass in on enc0 proto ipencap from $vpn_gateway1 to $vpn_gateway2 \

 keep state (if-bound)

pass traffic on the enc0 interface

pass in on enc0 from 192.168.10.0/24 to 10.0.10.0/24 \

 keep state (if-bound)

pass out on enc0 from 10.0.10.0/24 to 192.168.10.0/24 \

 keep state (if-bound)

28 BSD 2/2010

how-to’s

29www.bsdmag.org

IPsec VPNs – An Introduction to IKE and IPsec

(SPD) and the Security Association
Database (SAD). An entry in the SPD is
called a policy. A policy determines the
disposition of all IP traffic, i.e., whether
or not a particular IP datagram should
be given IPsec protection. Within the
policy are values called selectors
which correspond with values found
in an IP header and transport layer
header. These typically include source/
destination IP addresses, and source/
destination port. An IP datagram will
be processed by IPsec if its headers
have values that match the selectors
for a policy in the SPD. (A policy is
sometimes referred to as a flow – a uni-
directional flow of traffic between two
endpoints which will be protected by
IPsec. In our example (see Figure 1),
there will be two flows, each extending
from one internal, private network to the
other internal, private network.)

Each policy in the SPD references
a SA in the Security Association
Database (SAD). The SAD holds
information about the active SAs. This
includes attribute values negotiated
when the SA was established as well as
values which are stateful (e.g., current
lifetime). When a datagram is processed
by an IPsec protocol, values in the
SAD determine specifically how the
datagram should be processed (which
authentication/encryption algorithms to
use, etc).

Because a VPN gateway may
simultaneously have multiple phase 2
IPSEC SAs protecting traffic from any
number of networks or hosts, and each
SA may use different attributes to protect
their traffic, there must be a means
of determining which SA applies to
particular ESP packet. Within the SAD,
uniqueness for a SA is determined by
a triplet consisting of the IPsec protocol
(AH or ESP), destination IP address and
an arbitrarily chosen number called
Security Parameter Index (SPI).

The SPI is included in every ESP
header processed by IPsec and used
by the remote peer to determine the
corresponding SA in its SAD. When the
matching SA is found, the attributes of
the SA are used to process the packet
(e.g., authenticate and de-crypt its
contents, etc).

OpenBSD has a tool for examining
the contents of the SAD and the SPD. Its
usage is discussed later.

Listing 5. Output of '/sbin/ipsecctl -sa'

vpn-gateway1> ipsecctl -sa

FLOWS:

flow esp in from 10.0.10.0/24 to 192.168.10.0/24 peer 2.2.2.2 srcid

1.1.1.1/32 dstid 2.2.2.2/32 type use

flow esp out from 192.168.10.0/24 to 10.0.10.0/24 peer 2.2.2.2 srcid

1.1.1.1/32 dstid 2.2.2.2/32 type require

SAD:

esp tunnel from 2.2.2.2 to 1.1.1.1 spi 0x1795569e auth hmac-sha2-256 enc aes

esp tunnel from 1.1.1.1 to 2.2.2.2 spi 0x6bbaeabd auth hmac-sha2-256 enc aes

Listing 6. Output of '/sbin/ipsecctl -vv -s all'

vpn-gateway1> ipsecctl -vv -s all

FLOWS:

@0 flow esp in from 10.0.10.0/24 to 192.168.10.0/24 peer 2.2.2.2 srcid

1.1.1.1/32 dstid 2.2.2.2/32 type use

@1 flow esp out from 192.168.10.0/24 to 10.0.10.0/24 peer 2.2.2.2 srcid

1.1.1.1/32 dstid 2.2.2.2/32 type require

SAD:

@0 esp tunnel from 1.1.1.1 to 2.2.2.2 spi 0x6bbaeabd auth hmac-sha2-256

enc aes

 sa: spi 0x6bbaeabd auth hmac-sha2-256 enc aes

 state mature replay 16 flags 4

 lifetime_cur: alloc 0 bytes 0 add 1259977522 first 0

 lifetime_hard: alloc 0 bytes 0 add 1200 first 0

 lifetime_soft: alloc 0 bytes 0 add 1080 first 0

 address_src: 1.1.1.1

 address_dst: 2.2.2.2

 identity_src: type prefix id 0: 1.1.1.1/32

 identity_dst: type prefix id 0: 2.2.2.2/32

 src_mask: 255.255.255.0

 dst_mask: 255.255.255.0

 protocol: proto 0 flags 0s

 flow_type: type use direction out

 src_flow: 192.168.10.0

 dst_flow: 10.0.10.0

 remote_auth: type rsa

@0 esp tunnel from 2.2.2.2 to 1.1.1.1 spi 0x1795569e auth hmac-sha2-256 enc aes

 sa: spi 0x1795569e auth hmac-sha2-256 enc aes

 state mature replay 16 flags 4

 lifetime_cur: alloc 0 bytes 0 add 1259977522 first 0

 lifetime_hard: alloc 0 bytes 0 add 1200 first 0

 lifetime_soft: alloc 0 bytes 0 add 1080 first 0

 address_src: 2.2.2.2

 address_dst: 1.1.1.1

 identity_src: type prefix id 0: 2.2.2.2/32

 identity_dst: type prefix id 0: 1.1.1.1/32

 src_mask: 255.255.255.0

 dst_mask: 255.255.255.0

 protocol: proto 0 flags 0

 flow_type: type use direction in

 src_flow: 10.0.10.0

 dst_flow: 192.168.10.0

 remote_auth: type rsa

28 BSD 2/2010

how-to’s

29www.bsdmag.org

IPsec VPNs – An Introduction to IKE and IPsec

Listing 7. tcpdump capture of Phase 1 packet exchange

1 2.2.2.2.500 > 1.1.1.1.500: isakmp v1.0 exchange ID_PROT

2 cookie: b3ec3c1bd7d14984->0000000000000000 msgid: 00000000 len: 184

3 payload: SA len: 56 DOI: 1(IPSEC) situation: IDENTITY_ONLY

4 payload: PROPOSAL len: 44 proposal: 1 proto: ISAKMP spisz: 0 xforms: 1

5 payload: TRANSFORM len: 36

6 transform: 0 ID: ISAKMP

7 attribute ENCRYPTION_ALGORITHM = AES_CBC

8 attribute HASH_ALGORITHM = SHA

9 attribute AUTHENTICATION_METHOD = RSA_SIG

10 attribute GROUP_DESCRIPTION = MODP_1024

11 attribute LIFE_TYPE = SECONDS

12 attribute LIFE_DURATION = 3600

13 attribute KEY_LENGTH = 128

14 payload: VENDOR len: 20 (supports OpenBSD-4.0)

15 payload: VENDOR len: 20 (supports v2 NAT-T, draft-ietf-ipsec-nat-t-ike-02)

16 payload: VENDOR len: 20 (supports v3 NAT-T, draft-ietf-ipsec-nat-t-ike-03)

17 payload: VENDOR len: 20 (supports NAT-T, RFC 3947)

18 payload: VENDOR len: 20 (supports DPD v1.0)

19 1.1.1.1.500 > 2.2.2.2.500: isakmp v1.0 exchange ID_PROT

20 cookie: b3ec3c1bd7d14984->f3dc38d41c937286 msgid: 00000000 len: 184

21 payload: SA len: 56 DOI: 1(IPSEC) situation: IDENTITY_ONLY

22 payload: PROPOSAL len: 44 proposal: 1 proto: ISAKMP spisz: 0 xforms: 1

23 payload: TRANSFORM len: 36

24 transform: 0 ID: ISAKMP

25 attribute ENCRYPTION_ALGORITHM = AES_CBC

26 attribute HASH_ALGORITHM = SHA

27 attribute AUTHENTICATION_METHOD = RSA_SIG

28 attribute GROUP_DESCRIPTION = MODP_1024

29 attribute LIFE_TYPE = SECONDS

30 attribute LIFE_DURATION = 3600

31 attribute KEY_LENGTH = 128

32 payload: VENDOR len: 20 (supports OpenBSD-4.0)

33 payload: VENDOR len: 20 (supports v2 NAT-T, draft-ietf-ipsec-nat-t-ike-02)

34 payload: VENDOR len: 20 (supports v3 NAT-T, draft-ietf-ipsec-nat-t-ike-03)

35 payload: VENDOR len: 20 (supports NAT-T, RFC 3947)

36 payload: VENDOR len: 20 (supports DPD v1.0)

37 2.2.2.2.500 > 1.1.1.1.500: isakmp v1.0 exchange ID_PROT

38 cookie: b3ec3c1bd7d14984->f3dc38d41c937286 msgid: 00000000 len: 228

39 payload: KEY_EXCH len: 132

40 payload: NONCE len: 20

41 payload: NAT-D len: 24

42 payload: NAT-D len: 24

43 1.1.1.1.500 > 2.2.2.2.500: isakmp v1.0 exchange ID_PROT

44 cookie: b3ec3c1bd7d14984->f3dc38d41c937286 msgid: 00000000 len: 228

45 payload: KEY_EXCH len: 132

46 payload: NONCE len: 20

47 payload: NAT-D len: 24

48 payload: NAT-D len: 24

49 2.2.2.2.500 > 1.1.1.1.500: [udp sum ok] isakmp v1.0 exchange ID_PROT

50 cookie: b3ec3c1bd7d14984->f3dc38d41c937286 msgid: 00000000 len: 332

51 payload: ID len: 12 type: IPV4_ADDR = 2.2.2.2

30 BSD 2/2010

how-to’s

31www.bsdmag.org

IPsec VPNs – An Introduction to IKE and IPsec

OpenBSD Configuration
The daemon which implements
the IKE functionality in OpenBSD is
/sbin/isakmpd. Each gateway will
run an instance of isakmpd; they will
communicate via UDP over port 500.

isakmpd requires a configuration
which specifies the details of the SAs
it will negotiate. By default, isakmpd
reads configuration files in /etc/

isakmpd/. The syntax for these files can
be quite complex however, and while
one may use them, a newer tool called
/sbin/ipsecctl exists which makes
configuration of isakmpd much simpler
and more intuitive.

Additionally, OpenBSD implements
a pseudo-device called enc(4). This
is a virtual interface specifically for
IPsec traffic, and there is only one
supported (enc0). Traffic captured on this
interface (with tcpdump) is seen prior to

encapsulation and after de-capsulation
(on other interfaces, the encapsulated
packets are encrypted and their contents
not visible). One purpose of the enc0
interface is to allow packet filtering of
IPsec traffic with pf, OpenBSD's packet
filter. Note that if you're running pf on
a vpn gateway, then rules must be added
to explicitly allow IPsec traffic to pass on
the enc0.

Rules for configuring isakmpd with
ipsecctl are typically kept in a file called
/etc/ipsec.conf. Each peer must have
a SA which corresponds with a SA on
the remote peer. Therefore, a rule in
ipsec.conf on one gateway must have
a corresponding rule in the ipsec.conf of
the other gateway.

The ipsec.conf for vpn-gateway1
is Listing 1. The keyword passive tells
isakmpd not to initiate a connection, but
rather wait for incoming connections.
We specify esp in tunnel mode (both
are defaults). The from and to keywords
identify the source and destination
addresses for traffic that will be protected
by ESP. The peer keyword is the remote
peer running an implementation of IKE
(vpn-gateway2).

The keyword main specifies attributes
used for establishing the Phase 1 SA,
the ISAKMP SA. (main refers to main
mode – the Identity Protection exchange
type). These are also default values. The
keywords are:

• auth – algorithm used to
authenticate IKE messages

• enc – algorithm used to encrypt all
IKE messages once secret key is
established

• group – defines values required for
the Diffie-Hellman exchange

The fourth line, starting with the keyword
quick (referring to the Quick Mode
exchange type) contains attributes for the
phase 2 IPSEC SA. Keywords auth and
enc in quick mode specify the algorithms
used for authentication and encryption of
the ESP packets. These values are also
the defaults.

Listing 2 is the ipsec.conf file vpn-
gateway2. It is almost identical to the one
on vpn-gateway1. Differences are:

• Instead of passive, we use active (the
default). This causes isakmpd on
vpn-gateway2 to initiate a connection.

• The from and to networks are
reversed

• the peer references vpn-gateway1.

Now the pf rules which must be included
on vpn-gateway1 (Listing 3):

The first two rules allow ESP traffic
between the two gateways on the
external interface. The second two
allow IKE UDP traffic on ports 500 and
4500 (use of port 4500 is discussed
later). The next rule is specifically for
ipencap – the protocol for tunneling
IP within IP datagrams. The final two
rules filter traffic on enc0 based upon
source/destination IP addresses found
within the unencrypted IPv4 datagram.
Note that the final three rules explicitly
bind the state to the enc0 interface. The
reason for this is explained in the enc(4)
manpage. Rules for vpn_gateway2
(Listing 4) are analogous.

Before we can start the daemons,
it will be necessary to exchange public
keys of the hosts vpn-gateway1 and
vpn-gateway2. The isakmpd daemon
uses a public/private key pair found
in /etc/isakmpd/local.pub and /etc/

Listing 7. tcpdump capture of Phase 1 packet exchange

52 payload: SIG len: 260

53 payload: NOTIFICATION len: 28

54 notification: INITIAL CONTACT (b3ec3c1bd7d14984->f3dc38d41c937286)

55 1.1.1.1.500 > 2.2.2.2.500: isakmp v1.0 exchange ID_PROT

56 cookie: b3ec3c1bd7d14984->f3dc38d41c937286 msgid: 00000000 len: 328

57 payload: ID len: 12 type: IPV4_ADDR = 1.1.1.1

58 payload: SIG len: 260

59 payload: NOTIFICATION len: 28

60 notification: INITIAL CONTACT (b3ec3c1bd7d14984->f3dc38d41c937286)

Figure 4. Sequence diagram for Phase 1 ISAKMP
Security Assocation authenticating with digital
signatures

��������� ���������

������

������

������������

����������

����������

������������

30 BSD 2/2010

how-to’s

31www.bsdmag.org

IPsec VPNs – An Introduction to IKE and IPsec

isakmpd/private/local.key. This is
a 2048 bit RSA key pair that is generated
automatically on first boot.

Part of establishing a phase 1 SA is
authenticating the identity of the peer.
The isakmpd daemon defines four ways
a host can specify its identity: as an
IPv4 or IPv6 address, a Fully Qualified
Domain Name (FQDN) or a User Fully
Qualified Domain Name (UFQDN). By
default, isakmpd sends its IPv4 address
as the identity. An identity of a different
type would have to be specified in
ipsec.conf.

The identity type also determines the
file system directory where the public key
of the remote peer is kept. Since we're
going with isakmpd's default choice of
an IPv4 identity, the remote peer's public
key should go in /etc/isakmpd/pubkeys/
ipv4/ and should be renamed to match
the IP address the remote peer will use
(e.g., the public key of vpn-gateway1 is in
/etc/isakmpd/pubkeys/ipv4/1.1.1.1 on
vpn-gateway2).

It is also necessary that hosts on the
internal networks route traffic intended
for the remote internal network to the
VPN gateway (a host on corp-net1 will
send packets destined for corp-net2
to vpn-gateway1 for forwarding). The
gateways could also be default routes
for all traffic leaving the internal networks.
In this case, only traffic intended for
the remote corporate network is sent
through the VPN tunnel.

After loading our new pf rules (pfctl -f
/etc/pf.conf), we can start the isakmpd
daemon and load our configuration from
ipsec.conf. Starting with vpn-gateway1 we
execute:

 /sbin/isakmpd -vKL

The -v flag enables verbose logging; the
-K flag tells isakmpd not look for any
configuration files (we will use ipsecctl
to configure isakmpd). The -L flag tells
isakmpd to capture an unencrypted
copy of the IKE negotiations to a file
which can be later read by tcpdump. The
default location of this file is /var/run/
isakmpd.pcap. We will examine this file
when looking at how isakmpd negotiates
and maintains SAs.

The command to load our
configuration from ipsec.conf is:

 ipsecctl -v -f /etc/ipsec.conf

The -v flag is for verbosity, and the -f
flag passes the file name containing our
ipsec.conf file.

The above two commands are then
executed on vpn-gateway2.

With these options, isakmpd will write
information to /var/log/daemon and /var/
log/messages. This can provide important
information about the negotiation.
ipsecctl can show information about the
SAs established.

Listing 5 is the output from ipsecctl
-sa. This confirms the existence of our

SAs. The first two lines identify flows in
the SPD. The values in and out refer to the
particular direction of traffic to which this
flow applies. The output for the second
flow basically says that an out-bound
IPv4 datagram with a source address
on the 192.168.10.0/24 network and
a destination address on the 10.0.10.0/24
network will be processed by ESP and
sent to the remote peer at 2.2.2.2. Also
shown are the source and destination
identities of the VPN gateways which are
authenticated during phase 1.

Listing 8. tcpdump capture of Phase 2 packet exchange

1 2.2.2.2.500 > 1.1.1.1.500: isakmp v1.0 exchange QUICK_MODE

2 cookie: b3ec3c1bd7d14984->f3dc38d41c937286 msgid: b12eaece len: 428

3 payload: HASH len: 24

4 payload: SA len: 52 DOI: 1(IPSEC) situation: IDENTITY_ONLY

5 payload: PROPOSAL len: 40 proposal: 1 proto: IPSEC_ESP spisz: 4

xforms: 1 SPI: 0x1795569e

6 payload: TRANSFORM len: 28

7 transform: 1 ID: 3DES

8 attribute LIFE_TYPE = SECONDS

9 attribute LIFE_DURATION = 1200

10 attribute ENCAPSULATION_MODE = TUNNEL

11 attribute AUTHENTICATION_ALGORITHM = HMAC_MD5

12 attribute GROUP_DESCRIPTION = 14

13 payload: NONCE len: 20

14 payload: KEY_EXCH len: 260

15 payload: ID len: 16 type: IPV4_ADDR_SUBNET = 10.0.10.0/255.255.0

16 payload: ID len: 16 type: IPV4_ADDR_SUBNET = 192.168.0.0/255.255.0

17 1.1.1.1.500 > 2.2.2.2.500: isakmp v1.0 exchange QUICK_MODE

18 cookie: b3ec3c1bd7d14984->f3dc38d41c937286 msgid: b12eaece len: 416

19 payload: HASH len: 24

20 payload: SA len: 52 DOI: 1(IPSEC) situation: IDENTITY_ONLY 2

21 payload: PROPOSAL len: 40 proposal: 1 proto: IPSEC_ESP spisz: 4

xforms: 1 SPI: 0x6bbaeabd

22 payload: TRANSFORM len: 28

23 transform: 1 ID: 3DES

24 attribute LIFE_TYPE = SECONDS

25 attribute LIFE_DURATION = 1200

26 attribute ENCAPSULATION_MODE = TUNNEL

27 attribute AUTHENTICATION_ALGORITHM = HMAC_MD5

28 attribute GROUP_DESCRIPTION = 14

29 payload: NONCE len: 20

30 payload: KEY_EXCH len: 260

31 payload: ID len: 16 type: IPV4_ADDR_SUBNET = 10.0.10.0/255.255.255.0

32 payload: ID len: 16 type: IPV4_ADDR_SUBNET = 192.168.10.0/

255.255.255.0

33 2.2.2.2.500 > 1.1.1.1.500: isakmp v1.0 exchange QUICK_MODE

34 cookie: b3ec3c1bd7d14984->f3dc38d41c937286 msgid: b12eaece len: 60

35 payload: HASH len: 24

32 BSD 2/2010

how-to’s

33www.bsdmag.org

IPsec VPNs – An Introduction to IKE and IPsec

The output for the SAD shows
the peers, the SPI value and the
authentication and encryption algorithms
negotiated in phase 2.

Listing 6 executes ipsecctl with
maximum verbosity. Here we see many
values for the entries in the SAD. The
identity_src and identity_dst specify
the peers (the VPN gateways). The
src_flow and dst_flow specify the src/
destination of traffic that will get ESP
protection. Also shown is information
about the lifetime's hard and soft limits
and the current values.

The tcpdump utility is very useful for
debugging if there are problems. If pf is
configured to log blocked packets, then
tcpdump can capture them on the pflog0
interface:

 tcpdump -e -i pflog0

The -e flag will print information about the
rule that caught the packet. This includes
the interface where the packet was seen.
If a packet on the enc0 interface shows
up in the output, then the pf rules are not
correct. tcpdump on the enc0 interface is
also useful:

 tcpdump -vn -i enc0

The -v (verbose) flag will show both
inner and outer IP headers. (Note: to use
expressions to filter traffic on enc0, it is
necessary to pass the -l option to tcpdump
and grep for the desired output: tcpdump -
vnl -i enc0 | grep 192.168.10.20) netstat
rn' and the route -n will show will show
entries for the ESP encap family.

Read the man pages for enc(4) and
ipsecctl(8) and isakmpd(8) for more
ways to examine the status of the VPN.

Packet Analysis for SA
establishment and ESP traffic
We can now look at the file containing
the unencrypted copies of the packets
exchanged during negotiation of the
SAs. The file /var/run/isakmpd.pcap gets
created when the -L flag is passed to
isakmpd on start up.

IKE communicates with its peer
using messages sent in UDP packets
to port 500. Every IKE message begins
with an ISAKMP header. Important fields
in this header include the exchange
type (e.g. Quick Mode), and cookie.
The purpose of the cookie is to prevent
certain kinds of DOS attacks where
an attacker floods a host with IKE
messages containing random forged
source IP addresses. In such a scenario,
the recipient host would make repeated
expensive (and useless) Diffie-Hellman

Listing 9. ESP traffic between two gateways

22:58:14.994055 esp 2.2.2.2 > 1.1.1.1 spi 0x1795569e seq 1 len 116 (DF)

22:58:14.996830 esp 1.1.1.1 > 2.2.2.2 spi 0x6bbaeabd seq 1 len 116 (DF)

22:58:14.997749 esp 2.2.2.2 > 1.1.1.1 spi 0x1795569e seq 2 len 100 (DF)

22:58:15.015284 esp 1.1.1.1 > 2.2.2.2 spi 0x6bbaeabd seq 2 len 116 (DF)

22:58:15.016143 esp 2.2.2.2 > 1.1.1.1 spi 0x1795569e seq 3 len 116 (DF)

22:58:15.020448 esp 1.1.1.1 > 2.2.2.2 spi 0x6bbaeabd seq 3 len 884 (DF)

22:58:15.022903 esp 2.2.2.2 > 1.1.1.1 spi 0x1795569e seq 4 len 884 (DF)

22:58:15.216085 esp 1.1.1.1 > 2.2.2.2 spi 0x6bbaeabd seq 4 len 100 (DF)

22:58:15.216907 esp 2.2.2.2 > 1.1.1.1 spi 0x1795569e seq 5 len 116 (DF)

22:58:15.224242 esp 1.1.1.1 > 2.2.2.2 spi 0x6bbaeabd seq 5 len 244 (DF)

Listing 10. tunneled IP datagrams captured on enc0

23:23:41.668665 (authentic,confidential): SPI 0x1795569e: 2.2.2.2 > 1.1.1.1: 192.168.10.20.4754 > 10.0.10.15.22: .

ack 1 win 16384

23:23:41.684920 (authentic,confidential): SPI 0x6bbaeabd: 1.1.1.1 > 2.2.2.2: 10.0.10.15.22 > 192.168.10.20.4754: P

1:22(21) ack 1 win 17376

23:23:41.687152 (authentic,confidential): SPI 0x1795569e: 2.2.2.2 > 1.1.1.1: 192.168.10.20.4754 > 10.0.10.15.22: P

1:22(21) ack 22 win 16384

23:23:41.690609 (authentic,confidential): SPI 0x6bbaeabd: 1.1.1.1 > 2.2.2.2: 10.0.10.15.22 > 192.168.10.20.4754: P

22:806(784) ack 22 win 17376

23:23:41.695056 (authentic,confidential): SPI 0x1795569e: 2.2.2.2 > 1.1.1.1: 192.168.10.20.4754 > 10.0.10.15.22: P

22:814(792) ack 806 win 15600

23:23:41.890620 (authentic,confidential): SPI 0x6bbaeabd: 1.1.1.1 > 2.2.2.2: 10.0.10.15.22 > 192.168.10.20.4754: .

ack 814 win 17376

23:23:41.892862 (authentic,confidential): SPI 0x1795569e: 2.2.2.2 > 1.1.1.1: 192.168.10.20.4754 > 10.0.10.15.22: P

814:838(24) ack 806 win 16384

23:23:41.899418 (authentic,confidential): SPI 0x6bbaeabd: 1.1.1.1 > 2.2.2.2: 10.0.10.15.22 > 192.168.10.20.4754: P

806:958(152) ack 838 win 17376

23:23:41.904189 (authentic,confidential): SPI 0x1795569e: 2.2.2.2 > 1.1.1.1: 192.168.10.20.4754 > 10.0.10.15.22: P

838:982(144) ack 958 win 16384

23:23:41.944319 (authentic,confidential): SPI 0x6bbaeabd: 1.1.1.1 > 2.2.2.2: 10.0.10.15.22 > 192.168.10.20.4754: P

958:1678(720) ack 982 win 17376

32 BSD 2/2010

how-to’s

33www.bsdmag.org

IPsec VPNs – An Introduction to IKE and IPsec

calculations as part of negotiating
a phase 1 SA. To prevent this, the
initiator and the responder each include
a cookie in the headers of the first two
messages they exchange. When a peer
receives a message with the cookie it
sent, it knows the source address of the
sender is valid.

An individual IKE message is made
up of one or more payloads. Payloads
carry relevant information about
either the existing or proposed SA.
A payload may itself contain another
payload. These are sometimes called
nested or hierarchical payloads. There
are different, pre-defined types of
payloads, and their type determines
their contents.

Three types which can be un-
derstood together are the SA payload,
the Proposal payload, and the Transform
payload. A SA payload is an example
of a nested or hierarchical payload.
The SA payload contains at least one
Proposal payload, which contains at
least one Transform payload. The
Transform payload is a list of proposed
values for the SA's attributes. These
include values set in /etc/ipsec.conf.
The attributes listed in the Transform
payload are what must be agreed upon
by both peers.

The Key Exchange payload and the
Nonce payload contain keying material
for session management, including Diffie-
Hellman calculations. The Identification
payload contains the identity of the
peer (e.g., a IPv4 address, FQDN or
UserFQDN). This is the identity which
will be verified through authentication.
Our implementation authenticates with
digital signatures sent in the Signature
payload.

The Vendor payload contains
vendor specific information and
allows peers to determine which IKE
implementation the remote side is
running. The Notification payload is
used to exchange various error or
status information. A Delete payload
informs the receiver that the sender is
removing a SA from it SAD and IPsec
traffic for that SA will no longer be
valid.

Figure 4 shows the six packet
exchange that creates a Phase 1
ISAKMP SA. The first two packets contain
the ISAKMP header (HDR) and the SA
payloads. Packets 3 and 4 contain the

header, the Key exchange payloads (KE)
and Nonce payloads (NO). Packets 5
and 6 have Identification payloads and
Signature payloads. These last two
are encrypted using the information
exchanged in packets 1 through 4.
This exchange is specific to a Phase
1 in main mode using authentication
with digital signatures. Were a different
authentication mechanism used, the
exchange would still require six packets,
but packets 3 through 6 would have
different payloads.

Listing 7 is the output from tcpdump
-nv -r /var/run/isakmpd.pcap. This
is the unencrypted version of the
exchange initiated earlier (the lines are
numbered for easier reference – blank
lines separate individual packets). The
ISAKMP header will be in the first two
lines of each packet. The last field on line
1 has the exchange type of this packet,
ID_PROT (Identity Protection). Since this is
the initiator's first packet, the responder
cookie (on line 2) is set to all zeros.

Payloads start on line 3. This packet
contains the SA, Proposal and Transform
payloads; the indentation by tcpdump
reflects the nesting. The Transform
payload contains the attributes which
are being negotiated and the proposed
values. Lines 14-18 contain Vendor
payloads identifying the particular IKE
implementation.

The second packet (lines 19-36)
contains the proposal chosen by
the responder. This is identical to the
proposal sent by the initiator and sending
this packet constitutes agreement on the
values for the SA's attributes. This packet
also contains the responder's cookie.
The values for the cookies remain
constant for the duration of the SA being
established.

The next two packets (lines 37-42 and
43-48) are an exchange of Key Exchange
and Nonce payloads. These contain the
necessary information to generate
a Diffie-Hellman shared secret. The
shared secret is then used to generate

Figure 5. ESP encapsulation in tunnel mode with UDP encapsulation for NAT-T

���
���������

����������
�����������
���������

���������� �������
���������

�������
������ ����������� ��������������

��������

���������

�������������

Listing 11. Roaming configuration in ipsec.conf on vpn_gateway1

ipsec.conf vpn_gateway1

#

roaming connections

ike passive esp tunnel from 192.168.10.0/24 to any

Listing 12. Roaming client's ipsec.conf

ipsec.conf for roaming client

#

rule for paul@r500.com

#

vpn_gateway1="1.1.1.1"

ike dynamic esp tunnel from egress to 192.168.10.0/24 \

 peer $vpn_gateway1 \

 srcid paul@r500.com

34 BSD 2/2010

how-to’s

35www.bsdmag.org

IPsec VPNs – An Introduction to IKE and IPsec

keying material. After exchanging these
two packets the peers are able to
encrypt subsequent IKE traffic.

In packets 5 and 6, data after
the ISAKMP header is encrypted. The
Signature (lines 52 and 58) payloads,
along with data derived from the
previous messages, are used to
authenticate the identities specified in
the ID (Identification) payloads (lines 51
and 57).

Listing 8 shows the 3 packets that
are the Phase 2, Quick mode negotiation
which creates an IPSEC SA. These

packets are cryptographically protected
by the Phase 1 SA. Note that all three
packets now have the exchange type
QUICK_MODE in their header.

The first two packets have the
proposals just as in phase 1, but
attributes in the Transform payloads
differ (the particular attributes of
a Transform payload are determined
by the exchange type). The proposals
also contain the sender's SPI for this
SA (last values in lines 5 and 21), and
the Identity payloads contain IPV4_ADDR_
SUBNET identities (lines 15,16 and 31,32)

which correspond to the source and
destination addresses in the ipsec.conf
files.

The final packet (lines 33-35)
completes the exchange.

Listing 9 contains ESP traffic
captured on the external interface of
vpn_gateway1 with tcpdump. Here we see
contents of the ESP header – the Security
Parameter Index (SPI), and the sequence
number (for anti-replay protection), being
incremented for each packet a peer
sends.

Listing 10 contains traffic captured on
the enc0 interface on vpn-gateway1. The -
v flag was used (some of the output has
been trimmed) to show contents of the
ESP header in addition to the tunneled
IP datagram.

Roaming clients
(road warriors).
We now present a configuration for
roaming clients. In this scenario, the
same host is both the VPN gateway (i.e.,
a peer running an implementation of
IKE) and the source and destination of
the ESP traffic. (In the previous example,
the source/destination of ESP traffic was
the private internal networks). Physically,
these clients may be connecting from
an airport, hotel, cafe, etc.

For this example, it is assumed that
the roaming clients are connecting from
behind a 'NAT'ed gateway and have
a dynamically assigned IP address
on an internal network. They will run
isakmpd locally and have access to
hosts on corp-net1. The VPN tunnel will
extend from vpn-gateway1 all the way to
the client machine (i.e., through whatever
firewall is in between). Traffic originating
from the client with a destination on the
corp-net1 network will be sent through
the tunnel. Traffic destined for other
networks will leave the client normally.
This is referred to as a split horizon
configuration.

Before showing the actual
configuration, it will be necessary
to briefly discuss issues regarding
ESP traffic as it passes through
gateways that perform NAT and PAT.
Performing NAT/PAT requires the
ability to modify values in the IP and
transport layer headers of a packet
(e.g., src/dest IP addresses, src/dest
port numbers, checksums). Because
ESP encapsulates and encrypts data

Listing 13. vpn_gateway1 pf rules for roaming client

vpn-gateway1 pf.conf rules for roaming clients

vpn_gateway1 = "1.1.1.1"

pass IKE traffic on ports 500 and port 4500

pass in on $ext_if inet proto udp from any to $ext_if \

 port { 500, 4500 }

pass out on $ext_if inet proto udp from $ext_if to any \

 port { 500, 4500 }

IP-in-IP traffic flowing between gateways on the enc0 interface.

pass in on enc0 proto ipencap from any to $vpn_gateway1 \

 keep state (if-bound)

pass traffic on the enc0 interface

pass in on enc0 from any to 192.168.10.0/24 keep state (if-bound)

pass out on enc0 from 192.168.10.0/24 to any keep state (if-bound)

Listing 14. pf rules for roaming client

Roaming client's pf.conf rules

wifi_if="iwn0"

vpn_gateway1="1.1.1.1"

pass IKE traffic on ports 500 and port 4500

pass in on $wifi_if inet proto udp from $vpn_gateway1 to $wifi_if \

 port { 500, 4500 }

pass out on $wifi_if inet proto udp from $wifi_if to $vpn_gateway1 \

 port { 500, 4500 }

IP-in-IP traffic flowing between gateways on the enc0 interface.

pass in on enc0 proto ipencap from $vpn_gateway1 to $wifi_if \

 keep state (if-bound)

Rules for enc0

pass in on enc0 from 192.168.10.0/24 to $wifi_if keep state (if-bound)

pass out on enc0 from $wifi_if to 192.168.10.0/24 keep state (if-bound)

34 BSD 2/2010

how-to’s

35www.bsdmag.org

IPsec VPNs – An Introduction to IKE and IPsec

in the original IP datagram, the contents
of the original IP header and TCP/UDP
header are unreadable. Gateways that
try to apply NAT or PAT to an ESP packet
usually corrupt the packet and break
IPsec traffic.

The solution is called NAT-Traversal
(NAT-T). While it doesn't solve all
problems related to NAT/PAT and IPsec
interoperability, it does cover some
common cases. NAT-T is applied by
encapsulating all traffic (IKE traffic and
ESP packets) within UDP headers. This
is referred to as UDP encapsulation and
is illustrated in Figure 5. The UDP header
provides PAT with a source port which it
can remap. When NAT-T is implemented,
all traffic protected by the IPSEC SA (i.e.,

the ESP traffic) and all traffic protected
by the ISAKMPD SA (IKE traffic) use port
4500 (recall that IKE normally uses
port 500). We can expect the gateway
that performs PAT to remap port 4500
to another number in the ephemeral
range.

Because NAT/PAT translation map-
pings on the gateway have a timeout
based upon a period of inactivity, there
is the possibility of a gateway dropping
the map entry for IKE and IPsec traffic.
This would break the SA because
source and destination port numbers
are used to identify which datagrams
should be processed by IPsec. To
solve this, peers send each other UDP
packets at intervals shorter than the

NAT/PAT timeout thresholds. These are
called keep-alive packets, and their
sole purpose is to keep the translation
mappings of the senders NAT/PAT from
expiring. These keep-alive packets serve
no purpose for the recipient and are
therefore ignored when they arrive.

Whether or not to use NAT-T is
determined by IKE during the phase 1
and phase 2. The first step is for both
peers to advertise that they support
NAT-T. Then they perform NAT Discovery
to test for the presence of any NAT
occurring between them. If NAT-T is
deemed necessary, then the peers will
begin UDP encapsulation and switch
to port 4500 for all IKE and ESP traffic.
Although NAT-T was not required in the

Listing 15. Output of '/usr/sbin/systat rules'

1 users Load 0.11 0.11 0.08 Wed Dec 30 22:21:52 2009

RULE ACTION DIR IF PR PKTS BYTES STATES INFO

 11 Pass In bge0 tcp 333 51006 1 inet from any to 1.1.1.1/32 port = ssh

 12 Pass In bge0 udp 4 936 1 inet from any to 1.1.1.1/32 port = isakmp

 13 Pass In bge0 udp 424 59809 1 inet from any to 1.1.1.1/32 port = ipsec-nat-t

 14 Pass Out bge0 udp 0 0 0 inet from 1.1.1.1/32 to any port = isakmp

 15 Pass Out bge0 udp 0 0 0 inet from 1.1.1.1/32 to any port = ipsec-nat-t

 16 Pass In enc0 ipencap 61 8521 2 inet from any to 1.1.1.1/32

 17 Pass In enc0 124 15466 1 inet from any to 192.168.10.0/24

 18 Pass Out enc0 0 0 0 inet from 192.168.10.0/24 to any

Listing 16. udp encapsulation of isakmpd and esp traffic on port 4500

abc-internet-cafe.com.54721 > vpn-gateway1.org.4500: [no cksum] udpencap: esp abc-internet-cafe.com > vpn-

gateway1.org spi 0x19b15c99 seq 27 len 196

vpn-gateway1.org.4500 > abc-internet-cafe.com.54721: [no cksum] udpencap: esp vpn-gateway1.org > abc-internet-

cafe.com spi 0xb38daea1 seq 26 len 180 (DF)

abc-internet-cafe.com.54721 > vpn-gateway1.org.4500: [no cksum] udpencap: esp abc-internet-cafe.com > vpn-

gateway1.org spi 0x19b15c99 seq 28 len 100

abc-internet-cafe.com.54721 > vpn-gateway1.org.4500: [udp sum ok] udpencap: isakmp v1.0 exchange INFO encrypted

cookie: 1539d90ef4af6130->5ae83f08105b67c2 msgid: cb5aacc9 len: 92

vpn-gateway1.org.4500 > abc-internet-cafe.com.54721: [udp sum ok] udpencap: isakmp v1.0 exchange INFO encrypted

cookie: 1539d90ef4af6130->5ae83f08105b67c2 msgid: 606a9a2b len: 92

abc-internet-cafe.com.54721 > vpn-gateway1.org.4500: [no cksum] udpencap: esp abc-internet-cafe.com > vpn-

gateway1.org spi 0x19b15c99 seq 29 len 244

vpn-gateway1.org.4500 > abc-internet-cafe.com.54721: [no cksum] udpencap: esp vpn-gateway1.org > abc-internet-

cafe.com spi 0xb38daea1 seq 27 len 132 (DF)

abc-internet-cafe.com.54721 > vpn-gateway1.org.4500: [no cksum] udpencap: esp abc-internet-cafe.com > vpn-

gateway1.org spi 0x19b15c99 seq 30 len 228

190: vpn-gateway1.org.4500 > abc-internet-cafe.com.54721: [no cksum] udpencap: esp vpn-gateway1.org > abc-

internet-cafe.com spi 0xb38daea1 seq 28 len 148 (DF)

abc-internet-cafe.com.54721 > vpn-gateway1.org.4500: [udp sum ok] NAT-T Keepalive

36 BSD 2/2010

how-to’s
previous example, the daemons did
perform negotiation and NAT Discovery
and subsequently determined that NAT-
T wasn't necessary. In Listing 7, lines
14-17 (and 32-35) show each peer
sending Vendor payloads identifying
themselves and their support for
a NAT-T implementation. In the third
and fourth packets, payloads of the
NAT-D type contain data used for
NAT Discovery (lines 41-42 and 47-48,
respectively). Were the peers to detect
the presence of NAT, then the last two
packets of the phase 1 exchange
would have occurred over port 4500
and all subsequent IKE traffic would
use this port number.

The need for NAT-T with ESP traffic
is also negotiated in phase 2. Typically,
if NAT is detected in phase 1, the initiator
sets the value for the Encapsulation
Mode attribute to UDP-Encapsulated-
Tunnel in the phase 2 proposal.

Another (configuration) issue
involves the identity of the client. As in
the previous example, both the client
and the gateway have exchanged public
keys. The isakmpd daemon maps an
identity type (IPv4, IPv6, FQDN, UFQDN)
to a particular directory in the filesystem
where it expects to find a public key for
the remote identity (e.g., /etc/isakmpd/
pubkeys/ipv4/). Roaming clients cannot
use the IPv4 identity type, because
their IP address will change depending
upon their location. We therefore use
the UFQDN type, naming the remote
client's public key after a UFQDN (e.g.,
paul@r500.com) and putting it in /etc/
isakmpd/pubkeys/ufqdn/. The identity
is also specified in ipsec.conf of the
roaming client.

Listing 11 is the ipsec.conf on vpn-
gateway1. Since this is the gateway,
we specify passive. The any keyword
is used for the destination, since
the roaming client's IP address is
not known, The peer IP address is not
specified; the default is to use the IP
address of the connecting machine.
Because were using defaults, we don't
show the values for phase 1 and phase
2 negotiation.

Listing 12 is the ipsec.conf on the
roaming client. The dynamic keyword
turns on Dead-Peer-Detection. This
will cause the IKE peers to exchange
informational messages containing
Notification payloads which verify the

continued presence of the remote
peer (these can be seen in the file
containing unencrypted IKE traffic).
The source is defined as from egress
(egress is a default network interface
group name) which translates to the
IP address assigned to our NIC. The
to keyword is the destination network
and peer specifies the IP address of
vpn-gateway1. The srcid is the identity
that the client will send in the Identity
payload. This will be the identity which
is authenticated.

Now consider the rules for pf.conf
on vpn-gateway1 (see Listing 13). Note
that unlike the previous example, we
don't need to pass rules for the ESP
protocol, since the ESP header will be
encapsulated by the UDP header.

The first two rules pass UDP traffic
on ports 500 and 4500. The next rule
is for tunneled IP traffic (ipencap) on
enc0, and the last two filter on source/
destination addresses on enc0.

Listing 14 has the pf rules for the
roaming client. Here, the macro $wifi_if
substitutes for whatever IP address
is currently assigned to the wireless
interface, iwn0. As before, the first two
rules allow IKE UDP traffic on ports 500
and 4500. The last three are for the enc0
interface.

As in the previous example, isakmpd
and ipsecctl are executed on both peers.
Listing 15 is the (abbreviated) output
from the command systat rules on
vpn-gateway1. Shown are the number
of packets which matched individual pf
rules. Rule 12, the pass in rule for port
500, had 4 packets; these were the first
4 packets of the phase 1 exchange.
After these, all traffic switched to port
4500 (ipsec-nat-t) because NAT was
discovered between the peers. This is
reflected in the packet count for rule 13,
the pass in rule for port 4500. The packet
counts for rules 16 and 17 also show
that traffic is being passed on the enc0
interface.

Listing 16 is tcpdump output for traffic
on the external interface of vpn-gateway1
to port 4500. The two hosts are abc-
internet-cafe.com, the roaming client's
external gateway, and vpn-gateway1. This
output contains IKE traffic, IPsec traffic
and (on the last line) a NAT-T Keepalive.
The tcpdump run outputs the particular
inner protocol (esp or isakmp) after
udpencap.

Conclusion
This article has been an attempt to
provide a high-level overview of IKE
and IPsec, to show two functional
configurations using OpenBSD, and to
explain the contents of IKE and IPsec
traffic at the packet level. We specifically
covered the use of Encapsulating
Security Payload in tunnel mode,
showing how an IPv4 datagram is
encapsulated and encrypted by ESP,
and how that traffic is routed before
and after de-capsulation. We discussed
how IKE daemons exchange messages
containing payloads in UDP datagrams,
and saw at the packet level how IKE
negotiates a phase 1 ISAKMP SA in
main mode (i.e., of the Identity Protection
exchange type) for protecting IKE
traffic, and how the phase 2 IPSEC
SA is established to protect traffic with
ESP. Also discussed was a simple
configuration for roaming clients. We
explained how two peers attempt to
detect the presence of NAT and apply
NAT-T, encapsulating IKE traffic and
ESP packets within UDP datagrams
exchanged on port 4500.

There are many more details to
IPsec and IKE. The focus here has been
to provide an introduction to some
basic concepts and give an example
of how they are implemented. As
always, the OpenBSD manpages are
an important resource for additional
information – specifically ipsec(4),
ipsec.conf(5), ipsecctl(8), enc(4),
isakmpd(8); and for more in-depth
reading: Demystifying the IPsec Puzzle
by Sheila Frankel (Artech House, 2001),
and VPNs Illustrated by Jon C. Snader
(Addison-Wesley, 2006).

Paul McMath has worked as a Unix admin
for over 10 years in Europe and the United
States. He became interested in BSD
Unix in 2002 after installing OpenBSD on
a 32-bit Sparc machine. Current interests
include networking and BSD kernels.

About the Author

http://www.hakin9.org/en

38 BSD 2/2010

how-to’s LDAP on FreeBSD

39www.bsdmag.org

LDAP
on FreeBSD

Keeping your information synced across multiple systems can be a pain. While there are
many ways to ensure consistency in your media and documents (rsync and scp work
wonders in this area), there are not too many options for maintaining your address book.

Eric Vintimilla

Luckily, there is a common solution for this problem:
set up an LDAP server. Whether you maintain
a large corporate network or just want to centralize
the information for your home network, LDAP will help

immensely.

What is LDAP?
LDAP stands for Lightweight Directory Access Protocol. It is
basically a directory-based storage system that can be used
to hierarchically store information. Each entry has a unique
identifier, known as its Distinguished Name (DN) and a number
of named attributes (which hold the information you wish to
store).

dn: cn=Barbara J Jensen,dc=example,dc=com

cn: Barbara J Jensen

objectclass: person

sn: Jensen

This example shows a very basic layout, where the DN consists
of the relative distinguished name (CN), which is the person’s
name, and the domain component (DC), which is their domain
(in this case, it is example.com).

Again, this is a very basic setup. There are many options
for the elements in an LDAP directory, and new ones can easily
be created.

Installing and Configuring openldap
To start, we are going to install openldap, which is the open
source implementation of LDAP, onto our FreeBSD machine.
This can be found in FreeBSD’s ports tree.

[root@moe ~]# cd /usr/ports/net/openldap24-server/

[root@moe /usr/ports/net/openldap24-server]# portinstall –P

If you are presented with any installation options, just choose
the defaults (unless you want to perform any customizations
for your own system).

Next, you will start to personalize your installation. Using
your favorite editor, open up the slapd.conf file.

 [root@moe ~]# nano /usr/local/etc/openldap/slapd.conf

We are going to make some configurations to get your LDAP
directory up and running. Note, that this set up will be relatively
insecure, so you will want to add TLS support and probably
deny anonymous access to your data, but we will not concern
ourselves with that now. Edit your slapd.conf so it looks like Listing
1 (you can change the domain to whatever your domain is).

Now, we will test our configuration to make sure there are
no errors.

[root@moe ~]# sudo /usr/local/libexec/slapd -Tt

bdb_db_open: warning – no DB_CONFIG file found in

directory /var/db/openldap-data: (2).

config file testing succeeded

It looks like we are missing a database configuration file.
Fortunately, there is a sample one that we can copy to the
correct location.

[root@moe ~]# cp /usr/local/etc/openldap/DB_

CONFIG.example /var/db/openldap-data/DB_CONFIG

 [root@moe ~]# /usr/local/libexec/slapd -Tt

config file testing succeeded

Next, you will have to edit ldap.conf file.

 [root@moe ~]# nano /usr/local/etc/openldap/ldap.conf

38 BSD 2/2010

how-to’s LDAP on FreeBSD

39www.bsdmag.org

The two options you are concerned
with are BASE and URI. Under the BASE
heading, you will enter your domain
component and under the URI heading
you will enter the URLs associated with
your LDAP server. See Listing 2 for an
example.

Now, the LDAP server is almost
fully set up. Unfortunately, there is one

blaring security issue that should be
fixed. In the slapd.conf file, there is a field
called rootpw, which shows what the
root password to your directory is… in
a plain text. Luckily, openldap comes
with a way to hide your real password:
the slappasswd command. To use it, just
type (substituting your desired password
for secret):

[root@moe ~]# slappasswd –s secret

{SSHA}3t7MIHB3VSkuqBZtBs37qXzXnejQan8x

Now, type this hash string in the rootpw
field in you slapd.conf file.

LDAP and Mozilla Thunderbird
This system is almost ready for use.
However, it will be very helpful if we can

Listing 1. slapd.conf

#

See slapd.conf(5) for details on configuration

options.

This file should NOT be world readable.

#

include /usr/local/etc/openldap/schema/

core.schema

Define global ACLs to disable default read access.

Do not enable referrals until AFTER you have

a working directory

service AND an understanding of referrals.

#referral ldap://root.openldap.org

pidfile /var/run/openldap/slapd.pid

argsfile /var/run/openldap/slapd.args

Load dynamic backend modules:

modulepath /usr/local/libexec/openldap

moduleload back_bdb

moduleload back_hdb

moduleload back_ldap

Sample security restrictions

Require integrity protection (prevent hijacking)

Require 112-bit (3DES or better) encryption

for updates

Require 63-bit encryption for simple bind

security ssf=1 update_ssf=112 simple_bind=64

Sample access control policy:

Root DSE: allow anyone to read it

Subschema (sub)entry DSE: allow anyone to read

it

Other DSEs:

Allow self write access

Allow authenticated users read access

Allow anonymous users to authenticate

Directives needed to implement policy:

access to dn.base="" by * read

access to dn.base="cn=Subschema" by * read

 access to *

 by self write

 by users read

 by anonymous auth

if no access controls are present, the default

policy

allows anyone and everyone to read anything but

restricts

updates to rootdn. (e.g., "access to * by * read")

#

rootdn can always read and write EVERYTHING!

##

BDB database definitions

##

database bdb

suffix "dc=example,dc=com"

rootdn "cn=Manager,dc=example,dc=com"

Cleartext passwords, especially for the rootdn,

should

be avoid. See slappasswd(8) and slapd.conf(5) for

details.

Use of strong authentication encouraged.

rootpw secret

The database directory MUST exist prior to running

slapd AND

should only be accessible by the slapd and slap

tools.

Mode 700 recommended.

directory /var/db/openldap-data

Indices to maintain

index objectClass eq

Listing 2. ldap.conf configuration

LDAP Defaults

#

See ldap.conf(5) for details

This file should be world readable but not world

writable.

BASE dc=example,dc=com

URI ldap://ldap.example.com ldap://192.168.1.13:389

#SIZELIMIT 12

#TIMELIMIT 15

#DEREF never

ldap://root.openldap.org
ldap://ldap.example.com
ldap://192.168.1.13:389

40 BSD 2/2010

how-to’s

41www.bsdmag.org

LDAP on FreeBSD

Listing 3. mozillaorgperson.schema

mozillaOrgPerson schema v. 0.6.3

#

req. core

req. cosine

req. inetorgperson

attribute defs

attributetype (1.3.6.1.4.1.13769.2.1.1

 NAME ('mozillaNickname')

 SUP name)

attributetype (1.3.6.1.4.1.13769.2.1.2

 NAME ('mozillaUseHtmlMail')

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7

 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.13769.2.1.3

 NAME 'mozillaSecondEmail'

 EQUALITY caseIgnoreIA5Match

 SUBSTR caseIgnoreIA5SubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{256})

attributetype (1.3.6.1.4.1.13769.2.1.4

 NAME 'mozillaHomeLocalityName'

 EQUALITY caseIgnoreMatch

 SUBSTR caseIgnoreSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128})

attributetype (1.3.6.1.4.1.13769.2.1.5

 NAME 'mozillaPostalAddress2'

 EQUALITY caseIgnoreListMatch

 SUBSTR caseIgnoreListSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.41)

attributetype (1.3.6.1.4.1.13769.2.1.6

 NAME 'mozillaHomePostalAddress2'

 EQUALITY caseIgnoreListMatch

 SUBSTR caseIgnoreListSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.41)

attributetype (1.3.6.1.4.1.13769.2.1.7

 NAME ('mozillaHomeState') SUP name)

attributetype (1.3.6.1.4.1.13769.2.1.8

 NAME 'mozillaHomePostalCode'

 EQUALITY caseIgnoreMatch

 SUBSTR caseIgnoreSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{40})

attributetype (1.3.6.1.4.1.13769.2.1.9

 NAME ('mozillaHomeCountryName')

 SUP name SINGLE-VALUE)

attributetype (1.3.6.1.4.1.13769.2.1.10

 NAME ('mozillaHomeFriendlyCountryName')

 EQUALITY caseIgnoreMatch

 SUBSTR caseIgnoreSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

attributetype (1.3.6.1.4.1.13769.2.1.11

 NAME ('mozillaHomeUrl')

 EQUALITY caseIgnoreIA5Match

 SUBSTR caseIgnoreIA5SubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{256})

attributetype (1.3.6.1.4.1.13769.2.1.12

 NAME ('mozillaWorkUrl')

 EQUALITY caseIgnoreIA5Match

 SUBSTR caseIgnoreIA5SubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{256})

un-comment for all LDAP server NOT supporting SYNTAX

2.16.840.1.113730.3.7.1

attributetype (1.3.6.1.4.1.13769.2.1.13

 NAME ('nsAIMid')

 DESC 'AOL Instant Messenger (AIM) Identity'

 EQUALITY telephoneNumberMatch

 SUBSTR telephoneNumberSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.50)

attributetype (1.3.6.1.4.1.13769.2.1.14 NAME (

'mozillaHomeStreet')

 EQUALITY caseIgnoreMatch

 SUBSTR caseIgnoreSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128})

attributetype (1.3.6.1.4.1.13769.2.1.96

 NAME ('mozillaCustom1')

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.13769.2.1.97

 NAME ('mozillaCustom2')

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.13769.2.1.98

 NAME ('mozillaCustom3')

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.13769.2.1.99

 NAME ('mozillaCustom4')

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.13769.2.1.100

 NAME ('mobile' 'mobileTelephoneNumber')

 DESC 'RFC1274: mobile telephone number'

 EQUALITY telephoneNumberMatch

 SUBSTR telephoneNumberSubstringsMatch

40 BSD 2/2010

how-to’s

41www.bsdmag.org

LDAP on FreeBSD

just import an LDIF file from our email
client (in this case, Mozilla Thunderbird).

This process is more involved than the
previous steps, but it will save a lot of

time (and headaches) in the long run.
First, you will have to create a schema

Listing 3. mozillaorgperson.schema

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.50)

attributetype (1.3.6.1.4.1.13769.2.1.101 NAME 'pager'

 DESC 'RFC2256: Telephone Number'

 EQUALITY telephoneNumberMatch

 SUBSTR telephoneNumberSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.50{32})

attributetype (1.3.6.1.4.1.13769.2.1.102

 NAME ('homePhone' 'homeTelephoneNumber')

 DESC 'RFC1274: home telephone number'

 EQUALITY telephoneNumberMatch

 SUBSTR telephoneNumberSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.50)

objectClass defs

objectclass (1.3.6.1.4.1.13769.2.2.1

 NAME 'mozillaOrgPerson'

 SUP top

 AUXILIARY

 MAY (

 sn $

 givenName $

 cn $

 mozillaNickname $

 title $

 telephoneNumber $

 facsimileTelephoneNumber $

 mobile $

 pager $

 homePhone $

 street $

 postalCode $

 mozillaPostalAddress2 $

 mozillaHomeStreet $

 mozillaHomePostalAddress2 $

 l $

 mozillaHomeLocalityName $

 st $

 mozillaHomeState $

 mozillaHomePostalCode $

 c $

 mozillaHomeCountryName $

 mozillaHomeFriendlyCountryName $

 ou $

 o $

 mail $

 mozillaSecondEmail $

 mozillaUseHtmlMail $

 nsAIMid $

 mozillaHomeUrl $

 mozillaWorkUrl $

 description $

 mozillaCustom1 $

 mozillaCustom2 $

 mozillaCustom3 $

 mozillaCustom4))

Listing 4. Our LDAP structure.

Organization

dn: dc=example,dc=com

objectClass: dcObject

objectClass: organization

dc: example

o: Name Of Organization

description: Description of Organization

Organizational Role for Directory Manager

dn: cn=root,dc=example,dc=com

objectClass: organizationalRole

cn: Manager

description: Directory Manager

dn: ou=Users,dc=example,dc=com

objectClass: top

objectClass: organizationalunit

ou: Users

description: This is the tree were user accounts are

stored

Listing 5. Thunderbird LDIF file.

1st User Entry

dn: uid=username1, ou=users, dc=example, dc=com

objectClass: inetOrgPerson

uid: username1

userPassword: userpass1

cn: Johnny FreeBSD

givenName: Johnny

sn: FreeBSD

title: Title of user

mail: johnnyfreebsd@example.com

telephoneNumber: none

homePhone: 610 555-1212

homePostalAddress: 123 First St.

facsimileTelephoneNumber: none

pager: none

mobile: none

o: Acme Inc

l: Anytown

st: PA

postalAddress: 54321 Street

postalCode: 19380

description: Additional notes go here

42 BSD 2/2010

how-to’s

file for Thunderbird’s LDIF structure. Its
contents can be seen in Listing 3.

 [root@moe ~]# nano /usr/

local/etc/openldap/schema/

mozillaorgperson.schema

Once you have created the schema
file, you will have to add it to your
configuration file. Add the following lines
to your slapd.conf file:

include /usr/

local/etc/openldap/schema/

mozillaorgperson.schema

include /usr/local/etc/

openldap/schema/cosine.schema

include /usr/local/etc/

openldap/schema/inetorgperson.schema

Once these changes have been made to
the configuration file, we can test it again
to be sure. You may receive an error
that says Inconsistent duplicate for the
homePhone and mobile attributes.

[root@moe ~]# /usr/local/libexec/

slapd -Tt

/usr/local/etc/openldap/schema/

cosine.schema: line 637 attributetype:

Inconsistent duplicate attributeType:

"mobile"

slaptest: bad configuration file!

If you see this message, then edit /usr/
local/etc/openldap/schema/cosine.schema
and comment out the offending attribute
declarations.

#attributetype (0.9.2342.19200300.1

00.1.41

NAME ('mobile'

'mobileTelephoneNumber')

DESC 'RFC1274: mobile

telephone number'

EQUALITY telephoneNumberMatch

SUBSTR telephoneNumberSubstr

ingsMatch

SYNTAX 1.3.6.1.4.1.1466.115.1

21.1.50)

We are finally ready to define the basic
structure of the directory. Listing 4 shows
what we will use. To import it, we will use
the slapadd command.

 [root@moe ~]# slapadd -l initial3.ldif

_#################### 100.00% eta

none elapsed none fast!

Closing DB...

We can now start to add our Thunderbird
LDIF file. In this example, we will be importing
the contents of Listing 5. Again, use the
slapadd command to add the LDIF file.

[root@moe ~]# slapadd -v -l

mozilla.ldif

added: "uid=username1,ou=users,dc=exa

mple,dc=com" (00000004)

_#################### 100.00% eta

none elapsed none fast!

Closing DB...

Next, start up the Stand-alone LDAP
daemon. You can use sockstat to make
sure it is running.

[root@moe ~]# /usr/local/libexec/slapd

[root@moe ~]# sockstat -4 -p 389

USER COMMAND PID FD PROTO

LOCAL ADDRESS FOREIGN ADDRESS

root slapd 11891 7 tcp4 *:

389 *:*

Now that the daemon is running, we can
perform a search to make sure our data
was properly imported. The ldapsearch
command will output the recently
imported information.

[root@moe ~]# ldapsearch -x -b

'dc=example,dc=com' '(objectclass=*)'

Do not forget to add the following to your
rc .conf file, so your LDAP server will
automatically restart if you reboot your
system:

 slapd_enable="YES"

Conclusion
Congratulations! You now have an LDAP
server where you can centrally store your
contact information. Now you have this
directory of information, but how can you
access it (besides the command line)? You
can easily set up LDAP directory searching
in Mozilla Thunderbird! Just right-click on
your e-mail account in the folder listing
on the left side, then click Properties. Click
on Composition & Addressing and then
select the Use a different LDAP Server
option. Click the Add button and fill in your
LDAP server’s information. Now, whenever
you start to type in an email address in
a message’s To: field, it’ll autocomplete
using your LDAP data!

Once you have set up all of your e-
mail clients to use your new LDAP server,
you will never have to worry about syncing
your contacts between multiple machines
again! You will only have to maintain
the information in your LDAP directory
(phpldapadmin can help you in this area).
In the long run, this data storage will help
save you time and headaches, and it will
be well worth the initial effort!

Figure 1. Thunderbird Configuration

Figure 2. Composing a new message

http://www.sunhosting.ca

44 BSD 2/2010

how-to’s Secure and stable mailservers with OpenBSD and qmail

45www.bsdmag.org

Secure and stable
mailservers with
OpenBSD and qmail
Secure and stable email servers are important for everyone who is using email. Most
of the communication in companies is done by sending and receiving emails. So,
reliable email systems are very important for each Internet company.

Matthias Pfeifer

Many companies sell special email systems
and antispam gateways which are reliable and
designed to be secure. In fact, many of these
email systems are running Linux or BSD with one

of the popular MTAs on top.
You can build your own email system. And, of course, this

could be reliable, stable and secure too.
I have installed many email systems on many different

machines. Over the time, I found that systems with OpenBSD
and qmail work best for me and my customers.

My customers always want stable, secure and highly
flexible email systems.

From my point of view, it is also very easy to manage and
upgrade the following email system. With this article, you get
a very extensible and reliable email system without the need to
buy user licenses or software.

The MTA we will use is qmail. Qmail was developed by Daniel
J. Bernstein in 1995. In 1995 there were a very few alternatives
MTA available. The most common MTA was sendmail, which
has many security problems. Bernstein followed a new way with
this MTA: modularity. Bernstein also designed qmail for security
and speed. No-one has found a security flaw in qmail since
1997. See References for more information.

For managing virtual hosting and non /etc/passwd user
accounts, we will use vpopmail. Vpopmail makes the handling
of users and domains in our qmail installation very easy. You
will need virtual domains if you plan to add more than one
domain to your email system.

We will also use some other software like daemontools
and ucspi, also developed by Daniel J. Bernstein.

The rest of this Article is a how-to. You can follow this
installation by copying and pasting the posted commands.

Please do not forget to buy an OpenBSD CD set or at least
donate.

Lets start!
I assume that you have a fresh OpenBSD installation. Make
sure that you have enough disk space under /var, /tmp and
/usr. See the following disk layout for example:

/dev/sd0a 2.0G 52.1M 1.8G 3% /

/dev/sd0e 3.9G 2.0K 3.8G 0% /tmp

/dev/sd0f 39.4G 457M 37.0G 1% /usr

/dev/sd0g 1.7T 2.6M 1.6T 0% /usr/home

/dev/sd0d 19.7G 27.4M 18.7G 0% /var

Of course, this is a very large system. In OpenBSD, /var is
mounted with the nosuid flag by default. We have to change this
if we want to get qmail running properly. In qmail, there is just
one program which is using setuid – qmail-queue. Two other
programs are running as root: qmail-start as qmail-lspawn.

All qmail binarys will be installed in /var/qmail/bin.
Change the entry in fstab from

/dev/sd0e /var ffs rw,nodev,nosuid 1 2

to

/dev/sd0e /var ffs rw,nodev 1 2

Reboot the machine or remount the /var partition.

Get the Software
Load the following tarball which contains all software packages
you will need for the installation. Create a directory and fetch
the package:

mkdir /qmail

cd /qmail

44 BSD 2/2010

how-to’s Secure and stable mailservers with OpenBSD and qmail

45www.bsdmag.org

ftp http://www.freshmail.de/mailgate/

package.tgz

tar xvzf package.tgz

Start the prepare.sh script. The script will
do the following things:

• create directories
• create users and groups
• unpack and move software packages
• patch qmail

Just execute prepare.sh:

sh prepare.sh

Now, lets build qmail
The system is prepared and we are
ready for installing qmail itself:

cd /usr/source/qmail/qmail-1.03

make man

make setup check

./config-fast YOUR_DOMAIN_NAME

Change YOUR_DOMAIN_NAME to the name of
your mail system. For example mail.your-
company.com. Next, we need to install
ucspi-tcp. This package contains the
program tcpserver. tcpserver works like the
inetd superserver, but has more features.
We will use the program for managing
incoming connections on port 25.

cd /usr/source/qmail/ucspi-tcp-0.88/

make

make setup check

We also need daemontools. This package
contains the programs supervise and

multilog. Supervise is used for monitoring
qmail processes. If an important process
dies, the supervise process takes note
and tries to restart the process. Multilog is
used for logging. Installing daemontools:

cd /usr/source/qmail/admin/

daemontools-0.76

sh package/install

Reboot the server. It is the easiest way to
check all the steps we have completed.

After the reboot, log into the server
and look for qmail like this: see Listing 1.

You should see some qmail related
processes running. Check for the
readproctitle service like this:

ps -waux | grep read

root 3140 0.0 0.0 304

400 ?? I 5:34PM 0:00.00

readproctitle service errors:

.....................................

readproctitle is a part of daemontools. It
maintains an rotated log in memory. This
log can be inspected with ps. When you
see this line of dots, qmail is working well.
Otherwise there will be error messages
in the output of readproctitle.

Installing vpopmail
Now, that qmail is up and running we
can install vpopmail. You can decide
to use a MySQL database for running
vpopmail. Using MySQL as a user data
back-end helps you to extend the system
later. Please note that only data which
relates to a user account is stored in the
database. Emails are still stored in the

file system. In this case I will show you
how to install vpopmail by using MySQL.

Installing MySQL on OpenBSD
Set up the PKG_PATH environment variable.
For example:

export PKG_PATH=”ftp://

ftp.openbsd.org/pub/OpenBSD/4.6/

packages/i386/”

Install the Server:

pkg_add mysql-server

You now need to follow the instructions
in /usr/local/share/doc/mysql/README.

OpenBSD and you are done.

Vpopmail and MySQL
MySQL is installed and running. It is time
to set up vpopmail's MySQL configuration.
Create the needed directory and set user
rights:

 mkdir ~vpopmail/etc

 chown vpopmail:vchkpw ~vpopmail/etc

Create the configuration file for
connecting the MySQL database and set
up the user rights. Insert your vpopmail
USER and PASSWORD here.

 echo "localhost|0|VPOPMAILUSER|PA

SSWORD|vpopmail" > ~vpopmail/etc/

vpopmail.mysql

 chown vpopmail:vchkpw ~vpopmail/etc/

vpopmail.mysql

 chmod 640 ~vpopmail/etc/

vpopmail.mysql

Listing 1. qmail related processes

ps -waux | grep qm

root 21393 0.0 0.0 364 512 ?? I 5:48PM 0:01.71 supervise qmail-send

root 6655 0.0 0.0 308 512 ?? I 5:48PM 0:00.49 supervise qmail-smtpd

root 31989 0.0 0.0 360 508 ?? I 5:48PM 0:00.92 supervise qmail-pop3d

qmaill 25905 0.0 0.0 424 512 ?? I 5:52PM 0:00.02 multilog t s100000 n20 /var/log/qmail/qmail-send

qmails 2029 0.0 0.0 340 752 ?? I 5:52PM 0:00.06 qmail-send

qmaill 17911 0.0 0.0 276 512 ?? I 5:52PM 0:00.02 multilog t s100000 n20 /var/log/qmail/qmail-smtpd

vpopmail 30315 0.0 0.0 324 752 ?? I 5:52PM 0:00.01 /usr/local/bin/tcpserver -v -R -l mail.your-

domain.com (...)

qmailr 5584 0.0 0.0 248 576 ?? I 5:52PM 0:00.01 qmail-rspawn

qmaill 8636 0.0 0.0 416 512 ?? I 5:52PM 0:00.01 multilog t s100000 n20 /var/log/qmail/qmail-pop3d

root 21233 0.0 0.0 408 556 ?? I 5:52PM 0:00.01 tcpserver -H -R -v -c100 0 110 qmail-popup

(...)

qmailq 13451 0.0 0.0 228 668 ?? I 5:52PM 0:00.01 qmail-clean

root 13990 0.0 0.0 424 616 ?? I 5:52PM 0:00.01 qmail-lspawn ./Maildir

http://www.freshmail.de/mailgate/
ftp://

46 BSD 2/2010

how-to’s
Log into your MySQL database as root
and execute the following SQL statement:

 CREATE DATABASE vpopmail;

 GRANT select,insert,update,delete,cr

eate,drop ON vpopmail.* TO

 VPOPMAILUSER@localhost IDENTIFIED BY

'PASSWORD';

Use the same vpopmail USER and PASSWORD
as specified in the configuration.

Now the vpopmail database and the
vpopmail user have been created. We
can now build vpopmail:

cd /qmail/source

tar zxvf vpopmail-5.4.27.tgz

cd vpopmail-5.4.27

I recommend the following configuration.
Feel free to customize it to your needs.
Just type ./configure -–help to see the
configuration options.

./configure --enable-logging=p --

enable-auth-module=mysql

--disable-passwd --enable-clear-passwd

--disable-many-domains

--enable-auth-logging --enable-sql-

logging --enable-valias

--disable-mysql-limits

make && make install-strip

If you get no errors here then vpopmail
should be installed correctly.

Finishing the installation
Run the following script to check your
installation. It will tell you if something
is wrong.

cd /qmail

sh finish.sh

The last steps must be done by hand.
Open the following files, search for

mail.example.com and change it to the
name of your mail system:

/var/qmail/supervise/qmail-pop3d/run

/var/qmail/supervise/qmail-smtpd/run

Stop qmail and enable selective
relaying:

qmailctl stop

echo '127.:allow,RELAYCLIENT=""' >>

/etc/tcp.smtp

qmailctl cdb

Go to the /qmail directory and run the
script below:

cd /qmail

sh default_user.sh

Add a default user here. I recommend
the user postmaster@your-domain.com.

Note: Do not forget to add you domain
to the system by using vpopmail (See
vpopmail, adding a domain in this article).

Since sendmail is the default MTA
under OpenBSD, we have to deactivate
it. Kill all running sendmail processes:

pkill -9 sendmail

Then move the original sendmail binary:

mv /usr/sbin/sendmail /usr/sbin/

sendmail.old

chmod 0 /usr/sbin/sendmail.old

echo sendmail=NO >> /etc/rc.conf.local

qmail ships with a sendmail compliant
sendmail binary. Link the qmail sendmail
to the place of the original OpenBSD
sendmail:

ln -s /var/qmail/bin/sendmail /usr/

sbin/sendmail

ln -s /var/qmail/bin/sendmail /usr/

lib/sendmail

There is also a crontab entry for qmail.
Run contab -e and delete the sendmail
line. If you are done, start qmail:

qmailctl start

Run the following script to check your
installation:

sh /qmail/check_installation.sh

If the script says it is ok, congratulations.
You now have a OpenBSD system with
qmail and vpopmail running.

Using vpopmail
Vpopmail is used to manage virtual
domains and users

• vpopmail programs can be found in
/usr/home/vpopmail/bin

• domains and users are stored in
/usr/home/vpopmail/domains

Adding a domain

cd /usr/home/vpopmail/bin

./vadddomain my-domain.com MY_PASSWORD

The user postmaster is created
automatically.

Adding a user

cd /usr/home/vpopmail/bin

./vadduser new-user@my-domain.com

USER_PASSWORD

Please read http://www.qmailwiki.org/
Vpopmail for more information about
vpopmail and its programs.

Congratulations! Your email system is
running. The installation was easy, but don't
underestimate the management of email
systems. If you are new to Internet email
servers, you should learn to control your
system. Take your time and play around
with all the configuration options. Use
the references for information about the
installed software. In following articles I will
show you how to extend this installation
with Dovecot (IMAP) and qpsmtpd.• OpenBSD installation – http://www.openbsd.org/faq/faq4.html

• qmail website – http://www.qmail.org/
• qmail configuration options – http://www.lifewithqmail.org/lwq.html#configuration
• vpopmail Website – http://www.inter7.com/index.php?page=vpopmail
• Using vpopmail with qmail – http://www.qmailwiki.org/Vpopmail
• UCSPI-TCP – http://cr.yp.to/ucspi-tcp.html
• daemontools – http://cr.yp.to/daemontools.html
• Author's Website – http://www.freshmail.de

On the ‘Net

Matthias Pfeifer works as a system
administrator at an internet company and
for freshmail.de.

About the Author

http://www.qmailwiki.org/
http://www.openbsd.org/faq/faq4.html
http://www.qmail.org/
http://www.lifewithqmail.org/lwq.html#configuration
http://www.inter7.com/index.php?page=vpopmail
http://www.qmailwiki.org/Vpopmail
http://cr.yp.to/ucspi-tcp.html
http://cr.yp.to/daemontools.html
http://www.freshmail.de

http://www.bsdcan.org

48 BSD 2/2010

ELDOS

49www.bsdmag.org

Developing Secure Storages: Now On FreeBSD

Are you developing an in-
house application? Working
on a code for sale? You must
ensure a convenience of work

with files that are in use. This applies to
files processed by software application
you develop, as well as to auxiliary
files your application uses or creates.
As a thoughtful software architect, you
are taking care about organization of
correct approach to file management
from your application, and also about
providing a convenient secured storage
for them.

For years, Solid File System is
successfully used by developers to
achieve these goals. Following numerous
requests from FreeBSD-developers
community, EldoS Corporation has
ported the product for this popular
platform. Moreover, after appearance of
the Standard Edition of Solid File System
for FreeBSD, the time of Driver Edition
came out as well.

Solid File System is primarily
oriented for use in applications located
either on a server, desktop or a mobile
platform, operating with binary files or
compound objects. For example, if your
application operates with documents
or collections of documents, business

afford significant downtime due to any
routine investigations.

The most critical aspects of file
and document processing in corporate
environment are providing security of
sensitive information, protection against
loss of valuable information, preservation
of business documents integrity,
management of documents access
permissions, reliability and ease of
access to requested data by end-users.

Use of DBMS (database mana-
gement system) is justified only for
homogeneous data arrays that can
be ordered by a chosen characteristic.
In some cases binary data can also
be ordered accordingly and stored in
a database. In the remaining cases,
when your application should manage
data in form of files or compound objects,
keeping them in a regular database is
not rational.

From the very nature of files follows
the use of file system as a storage:
ensuring easy access and other
necessary functionality. But modern file
systems emphasize read/write speed,
sacrificing at the same time security,
and, in some cases, – reliability.

Standard file systems are designed
as general-purpose file storages. One

or other user-defined entities, object
models or classes, formatted text or raw
binary data of variable size – Solid File
System is worth taking a look at. You will
benefit from exploring Solid File System
capabilities if you develop software of
any of the following types:

• Business and corporate software
• Applications for PDA, handheld

computers and mobile phones
• Data backup and archiving software
• 3D graphics/design/engineering/

science applications
• Document management systems,

document storage systems
• Secure video and other media

archives
• Internet and intranet applications

Business
and corporate software
According to National Law Journal (2006),
about 90% of business documents are
stored in electronic form, while between
60 and 70% of corporate data reside in
e-mails or in attachments. Volumes can
reach terabytes...Compliance with current
government regulations (eDiscovery
in the US, analogous laws elsewhere)
is a must for companies who can not

Developing Secure
Storages:
Now On FreeBSD
Theodore Tereshchenko, EldoS Corp.

Developers of server-side, desktop and mobile applications working with FreeBSD
now get access to Solid File System – a well-known component designed by EldoS
Corporation. FreeBSD-developers have an ability to store documents and files in
a highly secure robust and flexible file system with no run-time fees. Clean room
implementation allows royalty-free business applications.

48 BSD 2/2010

ELDOS

49www.bsdmag.org

Developing Secure Storages: Now On FreeBSD

size does not fit all, as well as there is no
single file system suitable for all types
of applications. If an application that
you develop creates or receives files
for processing or storage, it is better to
base it upon the file system developed
especially for this purpose.

Experienced developers starting to
use Solid File System usually mention
its flexibility and ease of use for applied
tasks, comparing to standard file
systems. On the other hand, novices
learn the API quite easily: the methods
and syntax are the same as in standard
Windows API and there is no need to
apply extra efforts to use the extended
functionality.

To demonstrate the ease of use of
Sold File System API take a look at the
code example demonstrating encryption
of a file in storage. To do this you only
need to add this simple code:

StorageSetFileEncryption(storage,

filename, ecAES256_HMAC256, old_

password, old_password_length, new_

password, new_password_length);

where old_password is current encryption
password if the file is encrypted or the
empty string otherwise, new_password
is the password to be used with new
encryption mode (if any).

If you want to use your own
encryption algorithms – you can
implement it in a just few steps. Replace
correspondent StorageSetFileEncrypti

on() parameter in the example above
from ecAES256_HMAC256 to ecCustom256,
then add a code to process
OnDataEncrypt(), OnDataDecrypt(), OnHash
Validate()and OnHashCalculate() events
correspondingly.

Solid File System allows you to assign
user-defined attributes and tags to stored
files. This dramatically decreases your
efforts to implement ordering, search
and further processing code within your
application context.

Moreover, if you develop a cross-
platform application, then use of such
a cross-platform components can
be a wise decision. Besides FreeBSD
version, EldoS released versions for
Windows, Windows Mobile, Linux,
MacOS X. The kernel of Solid File System
is written in ANSI C. This allows an easy
port to other software and hardware
platforms.

Applications for PDA,
handheld computers
and mobile phones
Specific design of handheld hardware
and mobile phones dictates peculiarities
of data handling. The main problems
are data protection from power failures,
ensuring data security from loss or theft,
and compensating for relatively low
speed of handheld devices hardware.

Solution of these problems is mainly
responsibility of hardware manufacturer,
but, nevertheless, during development
of applications for PDA handheld
computers and mobile phones you must
take these problems into account.

First, these devices can un-
expectedly loose power. This is not
an ordinary situation, but still occurs
regularly. A user of your application will
hardly be happy to loose data because
of this cause, insignificant from his
point of view. Therefore, this factor of
partial information loss must be taken
into account during development of an
application. The measures should be
taken to ensure data integrity. It is nice
when a file storage that you use helps
you to do this.

For example, during creation of Solid
File System storage you can set the
value of parameter usertransactions to
true, launching, therefore, a mechanism
of operations journaling. In this case
an integrity of files and whole storage
is insured, even in case of an outside
failure, by recording each file operation
processed within transactional frame.

Loss of a mobile device is not
a rarity either. One can not be sure
that it always will end up in hands of
an honest person. If your application
works with data that can be considered
sensitive – make sure that your secrets
are well protected from unauthorized
access. The easiest way to do so is to

use encryption algorithms. No, you will
not have to implement them yourself:
Solid File System supports transparent
strong encryption on both per-stream
basis and encryption of the whole
storage.

Solid File System may play a role of
a superstructure over existing file system
(for example, creating a file system
inside a single file of other file system),
or be a fully fledged replacement of
standard file system – by processing
of corresponding events of sector-by-
sector read and write. Therefore, by
implementing optimal algorithms of
events processing for required type
of memory you will get a fully-fledged
royalty-free file system.

Data backup
and archiving software
There are 7 traditionally defined tiers of
data recovery: from regular data backup
without a hot site, up to the highest level
– highly integrated automated data
backup solutions. For every tier of data
recovery Solid File System may be of
significant help to you.

For the reserve copying purposes,
it is very convenient to place data into
a Solid File System based storage. All
documents will be conveniently stored in
one file. There is no need to rewind the
tape searching for a specific document
– the whole storage can be quickly
restored.

But what is even more important,
according to Computer Crime and
Security Survey about 44% of US
companies face an attack against their
servers each year. A survey published
by Ponemon Institute LLC in 2008 (The
2008 Annual Study: Cost of a Data
Research) states that an average loss
related to malicious attack against
business amount about 6.6 million US

http://www.eldos.com

50 BSD 2/2010

ELDOS

51www.bsdmag.org

Developing Secure Storages: Now On FreeBSD

dollars per company. These numbers
are the justification for paying additional
attention to data security and protection
by encryption.

Therefore, the fact that Solid File
System has built-in cryptographic
protection, allows you to entrust tape
storage to almost any third-party service
provider without risk of information leaks.
In this case the keys or passwords used
for encryption should be kept separately
from backups. A loss of such key will not
effect feasibility of storage restoration,
but will make access do stored data
impossible.

Solid File System also allows you
to use incremental backup systems
working on the sector-by-sector basis:
you will not have to update the whole
storage file when minimal changes have
been made to the data. Practicability
of this approach depends on the
frequency of stored file changes, i.e. on
the specific application. The advantage
of reserve copying whole storages
is that the backup system does not
need to know the internal structure,
encapsulation level, or directory tree
of the storage. The whole storage will
be copied without possibility of loss of
a single file attribute.

In addition, Solid File System
supports native data compression. If
your Solid File System storage contains
data susceptible to compression, use
of Solid File System for whole storage
compression is much more time- and
cost-effective than use of regular
compression tools applied to separate
files or folders. Solid File System based
storages use journaling for self-integrity
checks. If a part of a tape or sector on
disk becomes physically damaged and
unreadable, the whole storage, save
the damaged file(s), remains intact
and functional. You also can backup
separate files from your Solid File
System storage, if necessary. Solid File
System Driver Edition allows making
access to your storage the same way
you access regular files and folders
from the application of reserve copying
or any other application. This also makes
possible development of a monitoring
tools watching the changes made to
files inside a Solid File System storage
and exporting them in any convenient
format for reserve copying or any other
manipulations.

Naturally, the restoration of a whole
Solid File System storage takes more
time than a single file, but, as a result,
you are getting the whole working
storage with all files inter-dependencies
and directory content preserved. Such
data-restore operation can be executed
by less qualified personal than that
required for a full manual re-assembly of
storage structure.

In addition, use of storage based
on Solid File System makes possible
easy separation of storage back-
ups from operating system back-up
procedures: quickly restore your storage
independently from software operation
environment.

3D graphics/design/engineering/
science applications
Development of additional en-
hancements for an existing application
or even development of a full-fledged
application for 3D graphics processing,
industrial engineering and design are
very challenging tasks. In addition to
non-trivial algorithms of application
itself, you need to take care of storage of
logical structures, models and objects
processed by your application. Even
if an internal structure of the objects
is pre-defined, it is often necessary to
keep them away from end-user direct
access.

A good approach to these problems
is to use a securely protected storage
or several storages with robust
authentication system and access
delimitation. Therefore, by using Solid
File System based storages you can
focus your efforts on development of
major functionalities of your application.
Moreover, if there will be a need to make
run-time access to files and documents
in a storage from a third-party application
– you can always count on Driver Edition.
This edition of allows you to create
a controlled virtual drive from a storage.
This drive can be mounted as a local
drive. Moreover, access to this storage
will not be different from that to real local
files.

Transparent compression on per-
stream basis allows you to keep objects
developed by you maximally compacted.
The compression is done absolutely
automatically and does not require any
additional compression algorithms:
its is done on the level of storage file

system. Thus, a minimal size of objects is
maintained, which is especially important
when an object contains a lot of text
information.

Huge size of data processed by
your application will not be a problem
for distributed storage based on Solid
File System. This storage can function
on different computers and even under
different operating systems. You will
jut have to implement sector-by-sector
read/write callback functions. All other
aspects of storage operations will be
unchanged and no modifications of
software code will be necessary.

Scientific data are no different. Just
to give you an example, it s expected that
the Hadron Collider to be launched by
CERN will generate terabytes of diverse
data. Millions of the particles trajectories
with mass, charge and other data need
to be sorted through and stored. The
heterogeneous nature of cluster-based
storage does not allow use of more
traditional storage solutions. Solid File
System based storage will provide fast
access, transferability and integrity of all
expensive and expansive scientific data.

Virtual drug lead library are universally
used in the filed of molecular medicine
and drug design. They are models of
chemical compounds that are used
for virtual screening during searches
for potential novel drugs. A single
virtual library may contain millions of
compound models that need to be
screened according to specific criteria.
The storage, again, is usually highly
distributed. The libraries contain patented
information and company know-hows,
and, therefore serious security measures
must be taken to protect them. Solid
File System allows creation of secure
storages that, at the same time, can be
easily and quickly accessed via standard
command line FreeBSD interface and
therefore can be analyzed and searched
through with conventional FreeBSD
batch scripts.

Document management
systems, document
storage systems
Developers of document storage
subsystems or developers of document
management systems plan their
application on the basis of chosen file
storage method. Some of them use
databases to store documents and their

50 BSD 2/2010

ELDOS

51www.bsdmag.org

Developing Secure Storages: Now On FreeBSD

versions, some use features provided
by file systems. While pros of file system
comparing to databases are evident,
the cons are limitations of file attributes,
logic of their ordering, weak protection
of file information from unauthorized
access.

During Solid File System development
we removed above-mentioned short-
comings of ordinary file systems, and,
therefore, by using storage based on
Solid File System your application
will be able to preserve all range of
data necessary for description of your
documents in user-defined file attributes.
Ability to use build-in tags on the level of
file system extends existing hierarchical
folder structure and use of symbolic links.
Attribute- and tag-based search is also
implemented on the file system level.

Multi-stream access to Solid File
System files allows simultaneous work
with files of different users, which is
a must for modern DMS systems.
Moreover, a number of simultaneously
used storages is also unlimited.

Protection of data in storages build on
Solid File System is secured by modern
reliable encryption algorithms, such as
AES and SHA (HMAC) algorithms with
256-bit key. Additionally, as a developer
you can determine whether you will apply
encryption to a whole storage, to a file or
even to single stream within a file.

Document archiving imposes
additional requirements on economical
use of storage space allocated to
documents. Solid File System has built-
in ability to compress files on-the-fly
with Zip algorithm so that you would not
have to worry about saving your storage
space.

Journaling and special recovery
functions of storages based on Solid
File System ensure high probability of
full recovery from serious software and
hardware failures. Naturally, only reserve
copy can help in case of complete failure
of memory device where the storage is
kept. But even in this case standard
functionality of Solid File System will
simplify task of preserving document
integrity.

An ability to place storages not
only on local disks, but also on remote
servers, in memory, inside database
records and on custom devices will
also be of use for you. By implementing
callback functions of sector-by-sector

read/write operations you do not have
to restrict yourself while selecting place
for actual data storage. Your application
will be able to work with storages placed
locally, as well as with remote storages.
And you will not even have to change the
code of your software application.

Secure
video/document archives
During the last decade, volume of
industrial video and audio recordings
has been growing exponentially.
IDC, a leading market research firm,
estimates that total amount of stored
digital information is around 2.8 exabytes
(2.8 million terabytes) with tenfold
expected growth every five years! All this
huge amount of information needs to be
stored and retrieved upon demand.

Moreover, author rights protection is
a requirement: its is important to secure
media archives against unauthorized
access. Currently, many solutions for
implementation of media-archives
storage do not address this problem,
or it is often approached through
administrative restrictions. This can be
explained by the fact that encryption of
huge files requires significant time and
consumes twice the storage space
amount. To add insult to injury, when user
needs just a small fragment from the
inside of the file – the whole file should
be decrypted, searched for the fragment,
played back and then the unencrypted
file must be deleted.

If you use Solid File System based
storage, everything gets much more
simple, since encryption/decryption
operations are made on-the-fly, im-
perceptibly to the application. There-
fore, to encrypt a media file you
just needs to copy it to the storage.
Encryption operation will be performed
automatically. In order to play this
record back, it is necessary to jump to
record beginning and start playback.
The decryption operation will be done
automatically.

Special requirements for the speed
of retrieval exist in TV industry, where
a specific story must be quickly found
by its description and other metadata
and delivered to the mixing studio. As for
many other applications, reliability and
impenetrability are very important. The
problem is complicated by a fact that
many studios have huge legacy tape

storages, while transfer to new media is
slow due to budgetary considerations.

Solid File System makes possible
creation of huge but easily accessible
storages (maximum storage size of 256
terabytes... just ask EldoS if you need
more) for video files. Any material can
be quickly retrieved by its metadata,
which are user-defined and can hold
all necessary descriptive information.
Legacy storages can be integrated into
the system without expensive transfer
from tapes to modern media.

Internet
and intranet applications
The main ideology behind Internet and
intranet application is that data used by
these applications are stored on remote
servers located away from end-users.
Therefore, the problem of control over
storage data, ensuring their integrity
and confidentiality, becomes extremely
important.

Everybody has heard about hacker
attacks on Internet servers, stealing
passwords and other user data. Little
attention is paid to the fact that such an
attack is often done either on the level of
server operating system or on additional
web-services – not on a level of applied
end-user software. Meanwhile, this is
an extremely important moment: when
a hacker gets access to files he can get
access to sensitive information only if
files are stored unencrypted.

To put it in other way, if your
Internet/intranet application stores user
information in regular files, it is advised
to think about securing the files against
outside malicious attacks. Therefore,
by using Solid File System for creation
of secured file storage you continue
working with files in your application,
plus make them secure. Even by getting
access to the storage, intruders will not
be able to get access to files inside it.
Users of your application will certainly
appreciate it.

If you are working on one of the
discussed applications or need to
implement similar storage functions
– considering Solid File System is the
right step. You can learn more from
the EldoS Corporation website http://
www.EldoS.com/solfs/.

http://

52 BSD 2/2010

column

www.bsdmag.org

Since this issue centers on
the topic of servers, I found it
a particularly hard since there
has been at least one article

about a server project or application in
every issue. It’s a topic that we’ve covered
more or less throughout the entire span
of the magazine. After considerable
meditation I was fortunate enough
to settle on the topic of Web Server
Benchmarking, one that would not be
a rehashing of something we’ve already
talked about.

Have you ever built up an application
on a server where initially performance
was good however after you bring
several other programmers onboard
the application grew exponentially
over night? When you got out to the
beta testers things start falling apart.
Programmers start pointing fingers at
other departments. The hardware guys
shrug, saying we wanted to deploy on
the latest and greatest hardware but it
wasn’t in the budget. Management is
on the war path because, let’s face it ,
they’re just management and generally
have no clue. More importantly they
don’t want to buy the most expensive
piece of big iron because it will cut
into their budget and their year-end
bonuses.

So what’s good sysadmin to do?
Well that’s where benchmarking comes

the URL you give ab must have at
least one leaf. For instance if I wanted
to test my company’s website I have
to pick a specific page as ab will not
test the domain root. Therefore I need
to give it a complete URL like http://
www.olivent.com/about. In addition I
have found that at a minimum you need
to set the number of requests and the
concurrency in order to gather any
useful information.

An example of the Apache Bench
command:

 ab -n 2 -c 2 http://

www.olivent.com/about

An example of the Siege command:

 siege -r 2 -c 2 http://

www.olivent.com/about

While the output of these commands
is interesting it is not necessary for
the purposes of this article. What is
important is that you understand that
before you can test the web server and
your application, you need to define the
battery of tests you wish to run.

Properly implemented, these tools
can assist you with determining if
the problem is truly the fault of your
hardware, the application code, or even
an outside source such as network

in. You could cobble together your own
tools and that’s all fine and dandy, but
probably far more of an investment then
management is willing to spend. The
remainder of this article we’ll discuss
the basic use of a couple of tools. The
first and the easiest is the command
line based Apache Bench utility known
as ab.

If you have an Apache installation
then you already have ab. What I like
about ab is that you can test any http(s)
server with this tool. It is extremely
lightweight and very flexible.

The second is a tool called siege and
it is available in the ports collection. Once
again this is a command line friendly
utility that is rather lightweight and offers
a lot of the same features as ab but in
a slightly different form.

The last tool I will talk about is jmeter
which is another utility from the Apache
Group. If you are afraid of the command
line, then you’ve probably already
stopped reading BSD Magazine. In
case you’ve hung in there and have
Java installed on your machine, by all
means give jmeter a go. Personally I do
not like jmeter, finding it both awkward
to use and difficult to get good results
from.

Let’s take a quick look at ab and
how you might use it to test your
server. The first thing I learned is that

Web Server
Benchmarking

Mikel King

I cannot lie; I had an extremely difficult time determining what to write about for this
issue of the magazine.

http://
http://
http://

52 BSD 2/2010

column

www.bsdmag.org

latency. As you can imagine, benchmark
testing is a time-consuming process
and you need to be able to approach
management with all of your punctuation
in the right place.

At a minimum I recommend that you
perform several baseline tests on a static
page host on the server in question.
You must have a local server test to
eliminate any inconsistencies relating
to your LAN environment. Obviously you
should have a corresponding result from
another machine (or several) on the
LAN to determine if your application is
experiencing any latency from a poor
network topology.

Next you will want to run the similar
tests against various phases of your
application. Perhaps a page that
generates the same data as the static
HTML page previously tested. If there is
a noticeable discrepancy between the
two then you have isolated your issue
to the application’s processing engine.
It could be that the programming
language you are working in performs
poorly.

If the difference between the static
HTML page and the dynamic page is
not too large, then have the language
pull that text from your database before
rendering. Keep in mind that if you have
a dynamic database-driven application,
and the database is on another server,
you will have to rely on the connectivity
between the two servers.

In any event you have enough
information at this point to approach
management and get the programmers
to tweak the performance of their work.
If that is not possible then you might
consider installing a language optimizer.
I worked on one project written in PHP
that just ran slowly.

Eventually we redeployed it under
the Zend Server community edition on
the exact same hardware and received
a huge boost in performance. Obviously
the application was written using the
Zend Framework, thus making the port
rather trivial.

On another project I worked with
some Ruby developers and, sad to say,
even purchasing better hardware didn’t
seem to improve performance. My firm
feeling is that Ruby was not to blame
but these particular developers were in
over their heads. Eventually the important
parts of the application were rewritten

in PHP and integrated into an existing
system. Understand the latter choice
was a result of the existing application
and not any language preference of PHP
vs. Ruby.

Overall the use of these sorts
of benchmarking tools can help an
application project immensely. For a web
programmer these sorts of tools could
help them optimize their code as the
write it. These tools definitely help the
sysadmin ensure that the hardware is
running at optimal levels.

One thing worth considering is the
installation method of you web server.
Did you install a pre-compiled package
built with someone else’s choices in
an unknown environment? Did you
compile the server yourself optimizing
it for your hardware? Many believe that
a production application should be
compiled from source on the actual
hardware for maximum efficiency.

Ultimately the choice is yours, but
for the record I like to compile. Hopefully
this 30,000 meter view of web server
benchmarking was enough to give you
pause to consider such things while
you are building you next great web
application. I would like to encourage
you to give these utilities a try. If there
is interest in discussing your findings,
perhaps we can start a thread on
the BSD News Network’s site at
http://BSDNews.net.

Mikel King (http://twitter.com/mikelking)
has been working in the Information
Services field for over 20 years. He is
currently the CEO of Olivent Technologies,
a professional creative services partnership
in NY. Additionally he is currently serving
as the Secretary of the BSD Certification
group as well as a Senior Editor for
Daemon News.

About the author

53

http://www.bsdmag.org
http://BSDNews.net
http://twitter.com/mikelking

54 BSD 2/2010

tips&tricks

What do you know about
OpenSSH, the tool you use
every day? Can you configure

it on a per-host basis? Do you know
how tunnels can help you in a tight
corporate environment? Do you know
how it can help you to securely browse in
an unsecure environment? Does remote
portforwarding ring a bell? Do you know
how to build your own subsystems? If
you answered no to at least one of these
questions, you might learn a thing or two
from this article.

What do you need?
We used in our examples OpenSSH as
shipped with the operating system. Any version
of OpenSSH will do the trick, as long as it is
more recent than December 2005. Other
implementations of SSH might support the
features described below to a lesser extend,
e.g. Putty for Windows and Mac, or WinSCP.
The command line version on UNIX or alikes
is always the most flexible. Apart from *BSD,
OpenSSH is available for a wide variety of
platforms, including all Linux distributions,
most UNIX flavours, Mac OS X and Cygwin,
see http://www.openssh.com. OpenSSH
was originally developed by the OpenBSD
team. There is a second team focussing on
portability to other platforms.

SSH Configuration
The system-wide configuration of the SSH
clients (ssh, scp, sftp) is done through
/etc/ssh/ssh_config. All info can be found
in man ssh_config. Use this command to
get a comprehensible overview of how
your setup differs from the default:

grep -v ^# /etc/ssh/ssh_config

On a per-user basis, the configuration is
done in ~/.ssh/config.

The file is just called config, and
not ssh_config like the system-
wide file.

Example:

Host dev.example.org

 User petra

SSH Subsystems
A subsystem specifies a command to
be executed by the SSH daemon on the
remote host. The most common subsystem
is sftp. Subsystems are defined in /etc/
ssh/sshd_config on the remote host:

Subsystems sftp /usr/lib/openssh/

sftp-server

In order to make your own subsystem,
perform the following steps:

• Create a script that holds the
command(s) to be executed, for
instance:

 echo “echo Hello World” > /usr/

lib/openssh/subsystest

• Make the script executable by
chmodding it to 555.

• Edit /etc/ssh/sshd_config:
Subsystem helloworld /usr/lib/

openssh/subsystest

• Test:
 ssh -s remote_host helloworld

SSH Agent Forwarding
One of the interesting features of the SSH
agent is forwarding or keychaining. This
feature allows users to take their identity
with them from one host to another, as
demonstrated in the Figure 1.

In the apicture below, this is what
would happen without using the agent:

 NoHostAuthenticationForLocalhost yes

Host web.example.org

 SendEnv JAVA_HOME

Host *

 StrictHostKeyChecking yes

Here you see how different hosts can take
different options. Specifying the username,
for instance, prevents you from having
to type ssh -l user hostname. Other
options would normally be defined on the
command line like ssh -o option=value
hostname. In our example, we also use:

• NoHostAuthenticationForLocalhost:
used in an environment with shared
home directories so that you don't get
warnings about changed host keys.

• SendEnv: Specify which environment
variables of the local host
environment will be exported to the
remote host environment.

• StrictHostKeyChecking: do not add
host keys automatically to ~/.ssh/
known_hosts; SSH refuses to connect
to hosts of which the host key has
changed.

When starting an SSH session, the
remote host name is looked up in the
table. The options found in the first match
are applied. If the host name is not found
in the configuration file, default options (*)
are applied.

More options can be found in the
man page.

Tips and tricks

Figure 1. ssh agent

OpenSSH: common but underappreciated by Machtelt Garrels

����������
�����������

����������
�����������

����������
�����������

������

���������������
����������������������

��������������
�����������������

http://www.openssh.com

55www.bsdmag.org

tips&tricks

• ssh as user1 on host1 to user2
on host2: works using public key
authentication, user2 on host2 has
the public key info of user1 on host1
in his/her file, so user1 does not
have to provide a password.

• ssh as user1 on host1 to user3: only
works using password authentication.

• ssh as user3 on host 3 to user2 on
host2: only works using password
authentication.

Using the SSH agent, however, allows
user3 to connect from host3 to user2
on host2 as well, without providing
a password, eventhough this would
normally not be allowed because user2 on
host2 has not added user3's key to ~/.ssh/
authorized_keys. For host2, it would appear
as if user3 on host3 is actually user1 on
host1, the public key of the user is found
in authorized_keys and authentication is
done using keys instead of passwords.

Usage of the agent:

• Start the agent: ssh-agent – (this
could also be done at login time, so
all user processes know about it and
can use the feature).

• Add your key to the agent: ssh-add
• Use the agent: ssh -A user@host
• Configure the agent in ~/.ssh/config

 Host trusted.example.org

 ForwardAgent yes

 Host *

 ForwardAgent no

Read more in the man pages for ssh-
agent and ssh-add.

SSH Tunnels

Local Port Forwarding
Local port forwarding is used for instance
when the SSH port is open in a firewall,
but the port you actually need is blocked,
as shown in the image where we need to
connect to a MySQL database. Moreover,
in the case of databases you usually
secure them and only allow connections
from localhost. With SSH, we can fake this
behaviour (see Figure 2). The general syntax
for a local port forwarding is as follows:

ssh -Llocal_port:localhost:remote_port

user@host

The practical example:

ssh -L12345:127.0.0.1:3306

mysqladmin@server

Usage of the tunnel:

mysql -u admin -p -h 127.0.0.1 -P

12345

Remote Port Forwarding
Say that your home machine is in
a local, non-routable home network,
unaccessible from the outside. Yet when
you are at work, you would like to have
access to your home machine. This is
a case for using remote port forwarding.
You will need a server which you can

reach both from work and from home
through normal SSH. Setting up the
tunnel works as follows:

• On your home machine, make
a connection to a public machine,
using the remote port forwarding
syntax. Generally speaking, this
would be

 ssh user@server -R local_port:

your_local_ip:remote_port

• In practice:
 ssh user@pubserver -R 54321:

192.168.10.2:22

 Note that the local_port is local on the
remote server, not on the local host, as
demonstrated in the next step:

• Go to work, there connect to the
public server and use the tunnel:

 ssh -p 54321 localhost

 This will connect you to the normally
unreachable home computer.

Secure Browsing
How often have you found yourself in an
untrusted environment, like when using
the wireless network at a conference?
How do you know if your moves are
monitored and logged? Can you surf the
web in all safety? Using an SSH feature
called the built-in SOCKS proxy, you
don't need to worry. The SOCKS proxy
is a special type of tunnel to a secure
server. This server will make the HTTP
requests for you, and securely send all
information through the encrypted SSH
channel. Start the tunnel as follows:

ssh -D proxy_port server

Now configure your browser to use
SOCKS proxy localhost on this proxy_
port; do not configure any HTTP proxy.

Just do it
So you've read through this article, now
grab your keyboard and get started! And
remember, there is lots of information in
the man pages, including examples and
other features that we couldn't include
here. Keep in mind that there is more
than just man ssh; try

apropos ssh

to see which man pages are installed on
your system and just read them all!Figure 2. ssh tunnels

���������� �������� ������������
������

��������������
����

��������������
�������

���������� �������

���������

���������

56 BSD 2/2010

interview

BSD Mag: Monsieur Cochard-Labbé,
thank you for taking the time to answer
some questions. To start, would you
please tell us a little about yourself?
Where you are from and how you
became interested in open source?
OCL: I'm living in France, 33 years old,
married with two daughters and I work as
a network consultant at Orange Business
Services. I discovered Slackware Linux
during my studies in 1996, and have
been a Linux desktop user since.

BSD Mag: There are not a lot of open
source projects providing specialized
NAS services. What prompted you to
create FreeNAS?
OCL: In mid 2005, I wanted to transform
one of my old PCs into a NAS server for
home. My goals were simple:

• Boot from my USB key (the OS
should be small)

• Use a software RAID-5 with 4 PATA
hard drives

BSD Mag: For your latest release, there
were over 10,000 downloads for the
project's live CD. From the feedback
you've received, would you say most
of your users are home users or
businesses?
OCL: I believe lots of users are
home users. The business features
of FreeNAS are presently too limited
(user authentication, user/group fine
permission and quota management).
But, because I never used a professional
NAS (like netapp), it's not easy for me to
find out what type of features are needed
for business.

And it's not easy to work alone, at
home, on the professional features.
For example, for adding the MS Active
Directory authentication, I needed to
build a MS Windows server VM, and
understand how Windows servers work
before testing it with FreeNAS. This
is why I never had time to add LDAP
integration and other more complex
features.

I didn't find an open source project that
filled my needs, so I chose to build my
own. My second motivation was that
I was a simple computer user, and
wanted to use this exercise to explore the
operating system more deeply. I already
had a m0n0wall system at home, and
I wanted to have the same interface for
my NAS. This is the historical reason why
FreeNAS is based on FreeBSD. I learned
PHP and discovered FreeBSD by studying
the m0n0wall code. And after some days,
the first release of FreeNAS was available.

I never imagined that my little
customized m0n0wall to NAS would
become so famous... And this created
some problems: Because I'm not
a developer, I had to learn how to
use subversion, how to write PHP that
supported translation (getext), and
I was afraid of unknown potential bugs.
FreeNAS was only a hobby, and couldn't
be prioritised over my family life and paid
job. Managing this project eats into lots of
my sleep time.

Interview with Olivier
Cochard-Labbé,
Founder of FreeNAS
Jesse Smith

The FreeNAS project (http://freenas.org/freenas), founded by Olivier Cochard-Labbé
in 2005, is an open source network attached storage distribution. The project offers
a simple, elegant way for home users and network administrators to host data on
a small, stable platform at very low cost. Back in December there was talk of the
FreeNAS project moving away from its FreeBSD roots and using Debian as the base
for future releases. A short time later, iXsystems offered to the take the FreeNAS project
under the company's wing and continue development using the FreeBSD platform. M.
Cochard-Labbé was kind enough to take a few minutes from his busy schedule to talk
about the project.

http://freenas.org/freenas

http://www.bsdmag.org

58 BSD 2/2010

interview
BSD Mag: A little while ago, you
announced that FreeNAS would move
away from FreeBSD to a Debian base.
Would you mind explaining your reasons
for the change?
OCL: It's a little more complex story:

I created FreeNAS during October
2005, and was the only developer until
July 2006 when Volker Theile joined the
project as a developer. But my professional
and personal status changed a lot in
2007 and prevented me from continuing
to spend my free time on FreeNAS. Then
I chose to give the project keys to Volker
in April 2008 to prevent slowing down
the development of FreeNAS: I didn't
contribute to the code after that. Volker
has worked, almost alone, on FreeNAS
since. And in September 2009, we had
an internal discussion about the future of
FreeNAS regarding its present technical
limitations (the biggest is the difficulty
of adding user plug-ins). The conclusion
was FreeNAS needed a full rewrite. Volker
(still project leader and the only developer)
preferred to use a Linux base because he
found it easier to develop under Linux.
I approved this choice. But soon after the
public announcement of this big planned
change, I received a lot of email from the
FreeBSD world. And the most important
one from iXsystems that proposed to
take FreeNAS under their wings. This is
why I came back actively to the project,
to manage the transition period with
iXsystems.

BSD Mag: Regarding the arrangement
with iXsystems, how will FreeNAS
benefit from their involvement and how
does iXsystems benefit? Will we still
see a Debian version of FreeNAS in the
future?

OCL: They will give FreeNAS a more
business-use direction (still keeping
the home user features). Regarding
the Debian version of FreeNAS, as
a full new project, we can't call it the
Debian version of FreeNAS. This project
was created by Volker and is called
OpenMediaVault, and you can follow
the rapid development here: http://
blog.openmediavault.org.

BSD Mag: FreeNAS recently reached
version 0.7. What new features or
improvements are we going to see
between now and version 1.0?
OCL: You need to ask this question to
iXsystems now. *

BSD Mag: What are some advantages
to choosing FreeNAS over other,
proprietary, NAS solutions?
OCL: I've never used proprietary NAS
solutions, so I can't really answer
this question. Ask this question to the
FreeNAS users.

BSD Mag: Lots of people in the open
source community like to tinker. Are there
areas where the FreeNAS project could
use some help (developing, testing,
writing documentation)?
OCL: The documentation needs a big
update. And we always need developers.
It's very easy to contribute on FreeNAS:
It's only some PHP pages that create
text files!

BSD Mag: NAS systems tend to get very
large. How do you test the storage/speed
limits of FreeNAS?
OCL: I can't test the storage and speed
limits, because these tests need some
hardware that I don't have.

BSD Mag: The ZFS file system seems
designed for servers and NAS systems.
What are some things you like about ZFS
and is there anything you don't like about
it?
OCL: I'm not a system engineer. I didn't
really have the skills for comparing ZFS
to another file system. What I've read on
the Feature Requests list to add to ZFS,
I've never heard about before. ZFS needs
a big system that is not very compatible
with a little home NAS.

BSD Mag: Are you working on any other
projects at the moment? What sort of
things are on your plate?
OCL: Learning from my FreeNAS
experience and as a network guy, I've
started a new project: BSD Router Project
(http://bsdrp.net). It's an embedded open
source router distribution (based on
nanoBSD) configurable from the CLI
only. But, with my coming back to the
FreeNAS project, I can't work as I would
like to on this project.

BSD Mag: Is there anything else you'd
like to share with our readers?
OCL: Before starting FreeNAS, I'd never
touched a FreeBSD system and didn't
know PHP/Shell programming. It's by
creating FreeNAS that I've learned
these technologies. This means that
anyone who has a good idea, without
programming skills, can very easily
create an appliance OS such as
FreeNAS.

Thanks again to M. Cochard-Labbé
for his time and inspiring words.

Jesse Smith is a system administrator and
programmer by training, an open source
advocate by choice and a writer at heart.
When he's not working with computers,
he loves spending time with his family and
enjoying the natural beauty of his native
Canada.

About the author

* As Cochard-Labbé said, the future of the FreeNAS project is now in the hands of
iXsystems. Back in December, Josh Paetzel gave an interview to BSD Talk in which he
chatted a little about the project and its future. During the interview he mentioned that not
only does iXsystems use FreeNAS internally for storage, but they also sell and support it as
a product. One of the reasons iXsystems opted to take over the FreeNAS project is in order
to maintain a steady support path for their clients. Keeping the project on a FreeBSD base
will additionally insure their customers can continue to use ZFS for their storage needs. Mr.
Paetzel went on to say that iXsystems has three general objectives for FreeNAS:

• Move FreeNAS to the new FreeBSD 8.0 platform.
• Improve modularity and add-in packages.
• Maintain smooth support for existing FreeNAS installs.

For those interested, you can listen to the entire enlightening Paetzel interview on the BSD Talk
website at http://bsdtalk.blogspot.com/2009/12/bsdtalk-182-freenas-with-josh-paetzel.html.

http://
http://bsdrp.net
http://bsdtalk.blogspot.com/2009/12/bsdtalk-182-freenas-with-josh-paetzel.html.

http://www.saintcorporation.com

http://www.ixsystems.com

	Cover
	Contents
	A first look at

PC-BSD 8 release
	Installing and securing an
Apache Jail with SSL on
FreeBSD
	The gemstones
for FreeBSD
	OpenBSD, NetBSD and FreeBSD
as file sharing servers – Part 1 – NFS
	IPsec VPNs
An Introduction to IKE and IPsec
	LDAP

on FreeBSD
	Secure and stable
mailservers with
OpenBSD and qmail
	Developing Secure

Storages:

Now On FreeBSD
	Web Server

Benchmarking
	Tips and tricks: OpenSSH: common but underappreciated
	Interview with Olivier

Cochard-Labbé,

Founder of FreeNAS

