

4 BSD 4/2009

Editor’s Note Contents

5www.bsdmag.org

Dear Readers,
Most people involved in Unix claim that BSD systems are one of the most secure OS’s for our computers. Bearing
that in mind, we decided to prove it by devoting this issue to BSD security. Another focus for this issue is OpenBSD,
which in fact, is said to be the most secure in the BSD family. Our authors prepared a quick how-to for those who
are just beginning and a few articles for people who already know what it is all about.
So, if you are having problems with protecting your computer and you spent the last few days thinking about how to
make it secure, this issue is definitely a good start for you.

We did not forget about all you BSD users who do not favour OpenBSD much. You will find articles concerning Net-
BSD webservers, PC-BSD security and Postgresql on FreeBSD.

So stop worrying whether your system is secure or not – make it happen!

Karolina Lesińska
Editor in Chief

Editor in Chief: Karolina Lesińska
karolina.lesinska@bsdmag.org

Contributing: Ivan Rambius Ivanov, Barry Fox, Jan Stedehouder,
Diego Montalvo, Donald T. Hayford, Antti Kantee, Christian Brueffer,
Marko Milenovic, James T. Nixon III, Svetoslav P. Chukov, Michael

Hernandez, Mikel King, Josh Paetzel
Special thanks to Michael Cooter

Art Director: Agnieszka Marchocka
DTP Technician: Ireneusz Pogroszewski

Przemysław Banasiewicz

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

National Sales Manager: Ewa Dudzic ewa.dudzic@bsdmag.org
Marketing Director: Ewa Dudzic ewa.dudzic@bsdmag.org

Executive Ad Consultant:
Karolina Lesińska

karolina.lesinska@bsdmag.org
Advertising Sales: Karolina Lesińska

karolina.lesinska@bsdmag.org

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing

Postal addres:
Software Media LLC

1521 Concord Pike, Suite 301
Brandywine Executive Center

Wilmington, DE 19803
USA

tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

Print: ArtDruk www.artdruk.com

Distributed in the USA by: Source Interlink Fulfillment Division,
27500 Riverview Centre Boulevard, Suite 400, Bonita Springs, FL

34134 Tel: 239-949-4450.

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

Cover image on the iStock licence

The editors use automatic DTP system

Mathematical formulas created by Design Science MathType™.
DVDs tested by AntiVirenKit GDATA Software Sp. z o.o.

Subscription:
email: subscription_support@bsdmag.org

phone: 1 917 338 36 31

Phone + 31 (0) 36 5307118
Fax + 31 (0) 36 5407252

4 BSD 4/2009

Editor’s Note Contents

5www.bsdmag.org

get started
Installation of OpenBSD
Ivan “Rambius“ Ivanov

As usual we are presenting a step-by-step tutorial for
those who are just starting their journey with BSD. This
time Ivan shows you the way to install and configure
OpenBSD 4.5.

DVD content

Postgresql, shared memory and BSD
Barry Fox

Barry prepared a series of articles comparing a basic in-
stallation of Postgresql on various flavors of BSD. This first
article discusses the configuration on FreeBSD (including a
quick overview of the install process), and go through some
shared memory settings in the postgresql.conf file.

how-to’s
Triple booting Windows 7, Ubuntu 9.04
and PC-BSD 7.1
Jan Stedehouder

In this article Jan gives a step-by-step guide to installing
three different operating systems on the same hard drive.

BuildaSearch a FreeBSD Web Service
Diego Montalvo

Diego talks about BuildaSearch – a web service which al-
lows users to build a custom search engine or site search
in less than five minutes.

Web Servers for Embedded NetBSD
Donald T. Hayford

Don discusses in details building w web servers on Net-
BSD.

Out-of-the-box sshfs on NetBSD 5.0
 Antti Kantee

Sshfs makes it possible to mount a remote directory tree
onto the local machine. Interested how? Antti shows you
step-by-step what you need to do.

security corner
FreeBSD Security – Event Auditing
Christian Brueffer

Security is increasingly a hot topic in systems administra-
tion. Vulnerable systems get patches, firewalls get set up
and password policies are enforced. But in the end, all
these measures cannot eliminate the risk of a system
break-in. They can only reduce it...

Securing OpenSSH server
Marko Milenovic

This time Marko provides a great how-to on securing
OpenSSH server.

06

12

24

Staying Secure using PC-BSD
James T. Nixon III

James discusses the problem of staying secure and
best methods to avoid different attacks on the basis of
PC-BSD.

Stop Hackers With Protection Script
Svetoslav P. Chukov

You don’t feel your server is secure? Svetoslav shows you
how to stop hackers by using protection script.

mms
OpenBSD on the Sharp Zaurus
Michael Hernandez

Michael presents Shard Zaurus and walks you through
the installation of OpenBSD on this platform.

column
BSD Certification – question an answer
session of the BSD Certification Group
Community
Dru Lavigne and Mikel King

let’s talk
Interview with Albert Whale
BSD team

Interview with Matt Juszczak
Mikel King

tips&tricks
FreeBSD Jails
Josh Paetzel

Useful ssh tips and tricks
Mikel King

14

30

32

38

42

44

48

50

56

58

60

62

64

65

6 BSD 4/2009

get started Installing OpenBSD

7www.bsdmag.org

Installing
OpenBSD
OpenBSD 4.5 is the latest version of OpenBSD released in May, 2009. This article will
walk you through its installation in great details. For a quick start boot the attached
DVD with OpenBSD 4.5.

Ivan “Rambius“ Ivanov

Before you start the installation familiarize yourself
with the OpenBSD FAQ (http://openbsd.org/faq/
index.html) and especially with its Section 4 that
describes the installation process in great detail.

Have the FAQ available during the installation process.
Gather information about your hardware – hard disks, RAM,
network cards, information about your network and video card
and monitor specifications if you are going to use graphical
environment.

Decide how much disk space you will dedicate to
OpenBSD hard disk partitions. If you install an OpenBSD
server you will perhaps allocate a whole disk to it. If you install
it on a desktop possibly with other OSes you have to decide
what part of the disk will be given to OpenBSD.

Once you make the decision about the partitions they have
to be divided in slices. Partition slices are a BSD concept and
have no Linux or Windows equivalent. Each BSD partition can
be split into slices and each slice (except the swap one) has
a mount point.

The OpenBSD system is broken into installation sets – a
base system set, a manual pages set, a compilers set, X Window
related sets. You have to consider what media will you use to
bootstrap the installation and what media to obtain the sets.

You can launch the installation by booting the DVD
provided with the magazine. You can then download and install
the OpenBSD sets from an FTP or an HTTP mirror. Or better yet
you can purchase the official 3-CDs installation kit which can
boot for all supported platforms, contains the installations sets,
precompiled binary application packages for some platforms,
the OpenBSD sources, the ports tree and some funny artwork.
Buying the kit is an excellent way to support the OpenBSD
project and it will save you some network bandwidth and
download time during the installation. In this article we will
install from the official CDs.

And once again, please read the OpenBSD 4.5 Installation
Guide (http://openbsd.org/faq/faq4.html) from the FAQ.
Understanding it will save you time and will prevent you from
making errors and redoing the installation.

Performing the installation
After you finish the preparations boot from the installation CD.
The installer loads the kernel, probes the available devices and
gives you the following prompt:

(I)stall, (U)pgrade or (S)hell

Choose (I)nstall by pressing i. You will be shown a welcome
message and some instructions and will be reminded to
backup your data. If you have done so, confirm the installation
with the next prompt:

Proceed with install? [no] yes

Next, the available hard disks are shown to choose on which
OpenBSD will be installed. In our example the machine has
two hard drives and we will install on the first one. Since there
is another OS on it, we also choose the default option to not
use the whole disk for OpenBSD.

Available disks are: wd0 wd1

Which one is the root disk? (or ’done’) [done] wd0

Do you want to use *all* of wd0 for OpenBSD? [no]

The installer then starts fdisk, it prints the existing partition table
and shows its prompt:

Enter ’help’ for information

fdisk: 1>

6 BSD 4/2009

get started Installing OpenBSD

7www.bsdmag.org

To get a list of the commands type
help/h; to read the full fdisk’s man page
type manual or m. The command print/p
optionally followed by k, m or g prints the
partition table in kilobytes, megabytes,
gigabytes or by default in sectors: see
Listing 1.

We add a new partition with the
command edit/e followed by the number
of the partition:

fdisk: 1> e 2

Partition id (’0’ to disable) [0

– FF]: [0] A6

Do you wish to edit in CHS mode? [n]

offset: [0] 325186848

size: [0] 325058328

fdisk: *1>

The partition ID is a number
specifying the file system that will be
used on this partition – in the case of
OpenBSD it is A6. You can find the list
with the supported types and their IDs
by pressing ? at this prompt. Next, CHS
means Cylinders-Heads-Sector and in
this mode we provide the boundaries of
the partition with its starting and ending
cylinders, heads and sectors; we do not
want to use it here.

We specify the beginning of the
partition as an offset in sectors from
the beginning of disk. In this example
we want it immediately after partition #1.
Finally we give the size of the partition in
sectors as well. The OpenBSD partition
should not overlap with any other
partition. After you do your changes

print the partition table and compare
the boundaries of the partitions to
confirm there is not overlapping. If you
have made an error in the sectors
arithmetics, edit the partition with the
same e 2 command.

The prompt now has a * which
means there are unsaved changes. We
save them with write/w command and
quit fdisk: see Listing 2.

After we create the OpenBSD
partition with fdisk, we have to divide
it in slices with the disklabel utility: see
Listing 3.

Each slice is assigned a letter.
The a slice is the root filesystem /.
The c slice represents the whole disk
and cannot be altered. The b slice is
reserved for swap – if you do not want
swap simply do not create a slice
under the letter b. The slices’ sizes and
layout depend greatly on your needs.
For example if you use database
systems which by default create their
files in /var you may dedicate a slice to
/var. As a minimum it is good to create
a slice for /home as it will help you to
upgrade the OS without disturbing
the users’ home directories. We will
now create a number of slices just for
illustartion. The disklabel command to
add a slice is a and the command to
print the slices table is p. If you do not
like the existing layout you can reset it
with the command D. The changes in
the slices are written with w command:
see Listing 4.

After you quit disklabel you verify the
mount points. When you confirm them it
creates the filesystems. The biggest part
of the installation is competed.

Next comes the network configuration.
Since we have the installation sets on a
CD at this point we do not really need
network connection and we skip it.

System hostname: (short form, e.g.

foo) denica

Configure the network? [yes] no

If you are going download the installation
sets from Internet it is crucial you set up
your network: see Listing 5.

Next you have to type the root’s
password and to retype it:

Password for root account? (will not

echo)

Password for root account? (again)

Listing 1. Printing the Partition Table

fdisk: 1> p g

Disk: wd0 geometry: 60801/255/63 [466 Gigabytes]

Offset: 0 Signature: 0xAA55

Starting Ending LBA Info:

#: id C H S – C H S [start: size]

--

0: 06 0 1 1 – 7 254 63 [63: 0G] DOS > 32MB

1: A5 8 0 1 – 20241 240 63 [128520: 155G] FreeBSD

2: 00 0 0 0 – 0 0 0 [0: 0G] unused

Listing 2. Writing the Partition Table

*1> w

Writing MBR at offset 0.

fdisk: 1> p g

Disk: wd0 geometry: 60801/255/63 [466 Gigabytes]

Offset: 0 Signature: 0xAA55

Starting Ending LBA Info:

#: id C H S – C H S [start: size]

0: 06 0 1 1 – 7 254 63 [63: 0G] DOS > 32MB

1: A5 8 0 1 – 20241 240 63 [128520: 155G] FreeBSD

2: A6 20241 241 1 – 40475 226 63 [325186848: 155G] OpenBSD

3: 00 0 0 0 – 0 0 0 [0: 0G] unused

fdisk: 1> quit

Listing 3. Disklabel Slices Table

Initial label editor (enter ’?’ for help at any prompt)

> p

OpenBSD area: 325186848-650245176; size: 325058328; free: 325058328

size offset fstype [fsize bsize cpg]

c: 976773168 0 unused

i: 128457 63 MSDOS

j: 325058328 120520 unknown

8 BSD 4/2009

get started

9www.bsdmag.org

Installing OpenBSD

It should be hard to guess the root’s
password and sometimes I use
password generators to generate
random passwords.

Now we provide the location of the
OpenBSD installation sets:

Location of the sets? (cd disk ftp

http or ’done’) [cd]

Available CD-ROMs are: cd0

Which one contains the install media?

(or ’done’) [cd0]

Pathname to the sets? (or ’done’)

[4.5/i386]

If you configured the network you can
obtain the sets from an OpenBSD mirror.
Choose one from a numbered list of
servers: see Listing 6.

No matter how you locate the sets,
you have to choose which sets exactly
you want: see Listing 7.

The required sets are bsd – the
kernel, base45.tgz – the base system
and etc45.tgz – the files in /etc. The
optional, but recommended ones are
comp45.tgz – contains the compiler,
headers and libraries and man45.tgz
– contains the manual pages. The
sets that start with x are related to the
X Window system. We choose to install
all sets. If you are preparing a headless
server with no graphical environment
you can exclude the X Window sets.
After we choose the sets it proceeds
with installing them.

The final step of the installation is to
enable or disable sshd and ntpd and
choose the time zone: see Listing 8.

Here we choose to run sshd and to
not run ntpd. You may choose otherwise
if you wish.

This pretty much concludes the
installation. Now we halt the machine
and reboot the newly installed OpenBSD
system.

Adding a new
user after the first boot
After the new system boots we login into
it as root. Up to now root is the only user
we have and its powers are to much to
be used for day-to-day work. We use the
command useradd to add a new user
with its -m option to create the user’s
home directory and then the command
passwd to give it a password.

useradd -m rambius

ls /home

rambius

passwd rambius

Changing local password for rambius.

New password:

Retype new password:

It is a good practice to limit the use of
root, but still you have to be able to run
administrative commands. We can give
the new user the ability to become root
or to execute commands as root.

The first way is to add it to wheel
group which will enable it to use su and
switch to root:

user mod -G wheel rambius

groups rambius

users wheel

Now exit the root session and log in as
the regular user: see Listing 9.

By adding a user to wheel group
you enable him to potentially execute
whatever commands the user wants as
root. The other way is to allow him/her
to execute only certain commands as
root using the utility sudo. Back as root
invoke

visudo

and the following line in it

rambius ALL=(ALL) SETENV: ALL

In this case we allow again the regular
user to execute all the commands as
root, but we have much control to restrict
the commands. Check sudo(8) for more
information. Now login as the regular
users and execute:

$ sudo id

Password: <type user password>

A difference between the two methods
is that for su you have to provide root’s
password; for sudo you have to provide
the password of the user calling sudo
and it prompts for that password almost
every time you use it.

It is time to configure the network if we
have not done so during the installation.
Each network interface is configured in a
file called /etc/hostname.<interface>. To
find out your interfaces use ifconfig: see
Listing 10.

We will configure em0 Ethernet
interface. If you use dhcp it takes two
commands:

echo dhcp > /etc/hostname.em0

sh /etc/netstart

If you want to statically assign an IP
address, it will take you four commands:

echo "inet 192.168.1.15

255.255.255.0" > /etc/hostname.em0

echo "192.168.1.1" > /etc/mygate

Listing 4. Creating Slices

> a a

offset: [325186848]

size: [325058328] 5g

Rounding to cylinder: 10475262

FS Type: [4.2BSD]

mount point: [none] /

> a b

offset: [335662110]

size: [314583066] 4g

Rounding to cylinder: 8401995

FS Type: swap

> a d

offset: [344064105]

size: [306181071] 50g

Rounding to cylinder: 104872320

FS Type: [4.2BSD]

mount point: [none] /usr

> a e

offset: [448936425]

size: [201308751] 25g

Rounding to cylinder: 52436160

FS Type: [4.2BSD]

mount point: [none] /var

> a f

offset: [501372585]

size: [148872591] 10g

Rounding to cylinder: 20980890

FS Type: [4.2BSD]

mount point: [none] /var/log

> a g

offset: [522353475]

size: [127891701] 20g

Rounding to cylinder: 41945715

FS Type: [4.2BSD]

mount point: [none] /tmp

> a h

offset: [564299190]

size: [85945986]

Rounding to cylinder:

FS Type: [4.2BSD]

mount point: [none] /home

> w

> q

8 BSD 4/2009

get started

9www.bsdmag.org

Installing OpenBSD

vi /etc/resolv.conf

search mydomain.com

nameserver 192.168.1.1

nameserver 192.168.1.2

lookup file bind

Now will install some application to
our new system. They are shipped as
OpenBSD packages, which consist
of the precompiled applications plus
some packing information like their
dependencies. Again you can install
them from various sources – CDs, FTP
servers, etc. You specify the location
of the packages in the PKG PATH
environment variable and then you install
them with pkg add. Here is an example
how to install from a CD:

$ sudo mount /dev/cd0a /cdrom

$ export PKG_PATH=/cdrom/‘uname -r‘/

packages/‘machine -a‘

$ sudo pkg_add kdebase

This will install the package kdebase and
all its dependencies. You can use the
same command but different PKG PATH to
install a package from an OpenBSD FTP
mirror: see Listing 11.

Here several packages named
emacs are found and we have to specify
which one exactly we want.

It is possible to specify several
package locations in PKG PATH separated
by colons and they are searched by the
order in which they appear. The package
is installed from the first place in which
it is found.

PKG_PATH=/cdrom/‘uname -r‘/packages/

‘machine -a‘:

> ftp://ftp.cse.buffalo.edu/pub/

OpenBSD/‘uname -r‘/packages/‘machine

-a‘

$ sudo pkg_add kde-i18n-bg

Starting the graphical
environment
In the package example below we
added KDE environment and now we will
show how to use it. First, start X Window
System as regular user to verify it works
normally:

$ startx

You should get the default window
manager with an xclock and an xterm
on the screen. Press [Ctrl-Alt-Backspace]

to kill X. Create a new .xinitrc and start
KDE in it and invoke startx:

$ echo exec startkde > ~/.xinitrc

$ startx

You can also get a graphical login. Edit
rc.conf.local.

echo "xdm_flags=" >> /etc/

rc.conf.local

Listing 5. Network Setup with DHCP

Configure the network? [yes]

Available interfaces are: em0

Which one do you wish to initialize? or ’done’ [em0]

Symbolic (host) name for em0? [denica]

The media options for em0 are currently

media: Ethernet autoselect (100baseTX full-duplex)

Do you want to change the media options? [no]

IPv4 address for em0? (or ’none’ or ’dhcp’) [dhcp]

Issuing hostname-associated DHCP request for em0.

IPv6 address for em0? (or ’rtsol’ or ’none’) [none]

DNS domain name? (e.g. ’bar.com’) [mydomain.com]

DNS nameserver (IP address ot ’none’) [1.2.3.4]

Use the nameserver now? [yes]

Default IPv4 route? (IPv4 address, ’dhcp’ or ’none’) [dhcp]

Edit hosts with ed? [no]

Do you want to do any manual network configuration? [no]

Listing 6. Locating Sets on FTP mirror

Location of the sets? (cd disk ftp http or ’done’) [cd] ftp

HTTP/FTP proxy URL? (e.g. ’http://proxy:8080’, or ’none’) [none]

Display the list of the known ftp server? [no] yes

...

List skipped for brevity

...

Server? (IP address, hostname, list#, ’done’ or ’?’) 78

Use active mode ftp [no]

Server directory? [pub/OpenBSD/4.5/i386]

Login? [anonymous]

Listing 7. Available Sets

[X] bsd

[X] bsd.rd

[] bsd.mp

[X] base45.tgz

[X] etc45.tgz

[X] misc45.tgz

[X] comp45.tgz

[X] man45.tgz

[X] game45.tgz

[] xbase45.tgz

[] xetc45.tgz

[] xshare45.tgz

[] xfont45.tgz

[] xserv45.tgz

Set name? (or ’done’) [bsd.mp] all

10 BSD 4/2009

get started
Specify which window manager you
want to use with the graphical login in
.xsession in your home directory:

$ echo startkde > ~/.xsession

After you reboot the machine you will see
the graphical login.

Next steps and additional
resources
Now when you have a working OpenBSD
system, you can dive in it and explore it.
afterboot(8) man page is the place to
start reading about it. If you want more
information about the command used in
this article you can check:

• fdisk(8), disklabel(8), mount(8),
fstab(5) to see how to create
partitions and slices and how to
mount them;

• ifconfig, hostname(1), hostname.if(5),
myname(5), mygate(5), dhcp(8) to
understand how configure your
network with dynamic or static
address;

• sshd(8) and ssh(8) to remotely login
to your machine using Secure Shell;

• user(8) to add, modify and remove
users in your system;

• su(1) and sudo(8) to allow users to
execute commands as root;

• pkg add(1) and pkg delete to add,
update and remove packages;

• There are many graphical windows
managers besides KDE – Gnome,
Xfce, icewm, etc. Give some of them
a try – you may find them easier and
faster to use than KDE

• Rebuild OpenBSD from sources.
It is a great way to understand
more about the system. You can
obtain them from the official CDs or
download them.

Upgrading to OpenBSD 4.5
When we bootstrapped the installer
from the CD we received the following
prompt:

(I)stall, (U)pgrade or (S)hell

If you have an older version of OpenBSD
you may upgrade it. The upgrade is
similar to a clean installation. You have to
choose which partition holds the existing
OpenBSD system, which slice has the
root filesystem, what other slices you
want to mount for the installation and
which sets you will fetch and install.
After you upgrade you can also upgrade
the existing packages with pkg_add -u
command.

Listing 8. sshd and ntpd setup

Start sshd(8) by default? [yes]

Start ntpd(8) by default? [no]

Do you expect to run the X Window System? [no] yes

What timezone are you in? (’?’ for list) [Canada/Mountain] Europe/Sofia

Listing 9. Testing su

OpenBSD/i386 (denica) (ttyC0)

login: rambius

Password:

$ id

uid=1000(rambius) gid=1000(rambius) groups=1000(rambius), 0(wheel)

$ su -

Password: <type root password>

id

uid=0(root) gid=0(wheel) groups=0(wheel), 2(kmem), 3(sys), 4(tty),

5(operator), 20(staff), 31(guest)

Listing 10. Showing network interfaces

$ ifconfig

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33204

groups: lo

inet 127.0.0.1 netmask 0xff000000

inet6 ::1 prefixlen 128

inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4

wpi0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500

lladdr 00:13:02:5b:66:b7

groups: wlan

media: IEEE802.11 autoselect

status: no network

ieee80211: nwid "" 100dBm

bge0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500

lladdr 00:15:c5:0a:28:69

media: Ethernet autoselect (100baseTX full-duplex)

status: active

enc0: flags=0<> mtu 1536

Listing 11. PKG PATH

$ PKG_PATH=ftp://ftp.cse.buffalo.edu/pub/OpenBSD/‘uname -r‘/packages/

‘machine -a‘

$ export PKG_PATH

$ sudo pkg_add emacs

Ambiguous: emacs could be emacs-21.4p7 emacs-21.4p7-no_x11

emacs-22.2p0 emacs-22.2p0-gtk emacs-22.2p0-no_x11

$ sudo pkg_add emacs-22.2p0-no_x11

Ivan Ivanov is a Bulgarian software
developer working in New York for Ariel
Partners LLC. His main area of expertise
is software project automation. He is also
a member of the New York City BSD User
group.

About the Author

12 BSD 4/2009

This is a partial list of new features and
systems included in OpenBSD 4.5. For a
comprehensive list, see the changelog
leading to 4.5.

• New/extended platforms:
• Initial ports to the xscale based

gumstix platform and the ARM
based OpenMoko

• OpenBSD/sparc64
• New vdsk(4) and vnet(4) drivers

provide support for virtual I/O
between logical domains on Sun's
CoolThreads servers, including
UltraSPARC T2+ machines.

• Workstations and laptops with
UltraSPARC IIe CPUs can now scale
down the CPU frequency to save
power.

• Improved hardware support,
including:
• Several new/improved drivers

for sensors, including: The cac(4)
driver now has bio and sensor
support.

• The mpi(4) driver now has bio and
sensor support.

• New gpiodcf(4) driver for DCF77/
HBG timedelta sensors through
GPIO pins.

• New schsio(4) driver for SMSC
SCH311x LPC Super I/O devices.

• The it(4) driver now supports IT8720F
chips.

• The it(4) driver now supports FAN4
and FAN5 sensors for IT8716F/

IT8718F/IT8720F/IT8726F chips.
• The owtemp(4) driver now supports

Maxim/Dallas DS18B20 and
DS1822 temperature sensors.

• The km(4) driver now supports AMD
Family 11h processors (Turion X2
Ultra et al).

• The lm(4) driver now supports
W83627DHG attachment on the I2C
bus.

• The lmenv(4) driver now has better
support for the fan sensors on lm81,
adm9240 and ds1780 chips.

• The sdtemp(4) driver now supports
ST STTS424 chips.
• The em(4) driver now supports

ICH9 IGP M and IGP M AMT
chips, and link status detection
has improved.

• The sdmmc(4) driver now supports
SDHC cards.

• New vsbic(4) driver for the
MVME327A SCSI and floppy
controller on mvme68k and
mvme88k machines.

• The re(4) driver now supports
8168D/8111D-based devices, and
multicast reception on 8110SB/SC-
based devices.

• The ehci(4) driver now supports
isochronous transfers.

• S/PDIF output support has been
added to the ac97(4), auich(4),
auvia(4) and azalia(4) drivers.

• azalia(4) mixer has been clarified
and simplified, support for 20-bit and
24-bit encodings has been added.

• The gbe(4) frame buffer driver now
supports acceleration.

• New tools:
• ypldap(8), an YP server using

LDAP as a backend.
• xcompmgr(1) was added to

xenocara.
• New functionality:

• The libc resolver(3) may now be
forced to perform lookups by TCP
only using a new resolv.conf(5)
option. The nameserver
declaration in resolv.conf(5) has
also been extended to allow
specification of non-default
nameserver ports.

• apropos(1) has two new options (-S
and -s) to allow searching by machine
architecture and manual section.

• aucat(1) now has audio server
capability. Audio devices can
be shared between multiple
applications. Applications can
run natively on fixed sample rate
devices or on devices with unusual
encodings. Multi-channel audio
devices can be split into smaller
independent subdevices.

• aucat(1) now has a deviceless
mode, in which it can be used as
a general purpose audio file format
conversion utility (to mix, demultiplex,
resample or reencode files).

• ifconfig(8) can now list channels
supported by an IEEE 802.11 device.

For more details visit www.openbsd.org

• The msk(4) driver now supports
Yukon-2 FE+ (88E8040, 88E8042)
based devices.

• The iwn(4) driver now supports Intel
WiFi Link 5100/5300 devices.

• The wpi(4) and iwn(4) drivers
now support hardware CCMP
cryptography.

• The ath(4) driver now has WPA-PSK
support.

• age(4), a driver for Attansic L1
gigabit Ethernet devices was added.

• ale(4), a driver for Atheros AR81xx
(aka Attansic L1E) Ethernet devices
was added.

• mos(4), a driver for Moschip
MCS7730/7830 10/100 USB
Ethernet devices was added.

• jme(4), a driver for JMicron JMC250/
JMC260 10/100 and Gigabit
Ethernet devices was added.

• run(4), a driver for Ralink USB IEEE
802.11a/b/g/Draft-N devices was
added.

• auacer(4), a driver for Acer Labs
M5455 audio devices was added.

• ifb(4), a driver for Sun Expert3D,
Expert3D-Lite, XVR-500, XVR-
600 and XVR-1200 framebuffers
(accelerated).

• wildcatfb(4), an X driver for Sun
Expert3D, Expert3D-Lite, XVR-500,
XVR-600 and XVR-1200 framebuffers
(unaccelerated).

• sunffb(4), an accelerated X driver for
Sun Creator, Creator 3D and Elite 3D
framebuffers.

• vdsk(4), a driver for virtual disks of
sun4v logical domains.

• vnet(4), a driver for virtual network
adapters of sun4v logical domains.

• vrng(4), a driver for the random
number generator on Sun
UltraSPARC T2/T2+ CPUs.

• The vcons(4) driver is now interrupt
driven.

• ips(4), a driver for IBM SATA/SCSI
ServeRAID controllers was added.

• udfu(4), a driver for device firmware
upgrade (DFU) was added.

• Many improvements were made to
the acpi(4) subsystem.

• The umsm(4) driver supports several
new EVDO/UMTS devices.

• The mfi(4) driver now supports the
next generation of MegaRAID SAS
controllers.

What’s new in OpenBSD 4.5?

dvd content

dvd contents
Contents description

13www.bsgmag.org

If the DVD content cannot be accessed and the disc is not damaged, try to
run it on at least two DVD-ROMs.

4/2009

If you have encountered any problems with the DVD, please write to: cd@software.com.pl

14 BSD 4/2009

get started Postgresql, shared memory and BSD

15www.bsdmag.org

Postgresql, shared memory

and BSD
This series of articles will compare a basic installation of Postgresql on various flavors
of BSD, and compare the performance between them given similar shared memory
settings.

Barry Fox

This first article will discuss the configuration on
FreeBSD, including a quick overview of the install
process. We will also go through some shared
memory settings in the postgresql.conf file (and in the

operating system) that will be modified in order to compare the
relative performance (on the same machine, and also across
operating systems). The goal is to get a sense of how the
shared memory settings affect performance over a few simple
queries, and how the various BSD operating systems differ.It
is not meant to provide any real world configuration advice,
as the settings are somewhat contrived in order to provide a
basis for experimentation.

Initial installation
Installing Postgresql is a straightforward task.It will compile
easily from source (it requires gnu make, so that must be
installed first, and follows the standard configure/make/make
install path), and by default things are installed in /usr/local/
pgsql.

Before the database engine can be started, it must
be initialized. The initialization process basically sets up
the initial configuration stuff, and preps everything. As the
command runs, you will see things scroll over the console:
in Listing 1.

The path at specified with the -D switch is the database
root directory. All the configuration files, and data will
reside within this directory. As this is a test machine, I am
simply placing it within the home directory of the postgres
user.However on a production box, a more thoughtful
location might be preferred.

The initdb command will automatically set the various
shared memory values depending on what it thinks is
appropriate based on the system resources. These settings
may be sufficient for many small databases, however a

large frequently accessed database will require additional
configuration.

At this point the engine can be started (Listing 2).
The engine is now running with the default configuration.
Usually the next step in the configuration will be to edit
the pg_hba.conf file to set up the connection settings (what
hosts are allowed to connect to the engine, etc.), as well
as to edit the postgresql.conf file. We will be looking into
the postgresql.conf file in a little bit, but first we will go
through creating a database, loading in a bit of data, and
then running some timing tests to see how the default
configuration works.

Setting up the initial tests
The createdb command creates a new database (it is a well
named command). There are options that would allow the
database to go into a different tablespace (which is important
when administering a live system, as it allows for more flexible
volume management). It is also possible to limit the number of
concurrent connections allowed on the database (which can
be useful to reduce resource contention). For our purposes, we
will go with the defaults.

$ /usr/local/pgsql/bin/createdb test

$

psql is the shell for postgresql, and it allows us to run SQL,
and view the results. To load in some sample data, I will first
create a new table, and then copy the data from a file: see
Listing 3.

The HINT/LOG messages are important, as they point to
some optimizations that can be done in with the postgres
logging. It means that the checkpoints are happening
closely together, which is not optimal for performance.

14 BSD 4/2009

get started Postgresql, shared memory and BSD

15www.bsdmag.org

Changing the checkpoint configuration
parameters would help reduce the
number of checkpoints (by making
each checkpoint handle more data). For
our purposes we are not too concerned
about this, although on a live system we
would be.

The table is now populated with
some data: see Listing 4.

We will be using explain analyze in
order to see what the system is doing
to while running the query, however it
does not provides the best method to
see the total run time (because it can
greatly slow things down, to the point of
taking 10+ hours to anal yze a query that
normally takes 10-15 minutes). This SQL
query counts all the rows in the table, it
does a sequential scan over the entire
table, and takes just about 20 seconds
to run.

After loading in a second table with
some data, some more complicated
queries can be run. Joins are the real
performance killer in most database
applications. This is because they work
by taking a cross product from the two
tables, resulting in a massive number of
rows to be examined(and keeping track
of all these rows takes a lot of resources).
For example: see Listing 5.

This run takes 24000 seconds!
However if the query is run like this: see
Listing 6.

We get a run time of 14 minutes, and
8 seconds (the two select current_time
are added just to give us an idea
how long the query in question took
to actually run). Obviously the two are
slightly different, however both need
to touch the same number of pages.
The added execution time in the
explain version is a result of the added
overhead required for the profiling of
the query.

Of note in the explain, we see that a
sequential scan is run over both tables. If
we try to do another run using database
indices we obtain: see Listing 7.

In this case, the database indices
are not used, even though they exist.
To determine why this is, we need to
look into the shared memory on the
system, and analyze how the memory
and disk is being used during the query
execution. Lets look a little more into
what shared memory does, and what
increasing it might do to help this queries
performance.

Shared Memory
Generally, on any computer, shared
memory is a pool of memory that
different processes can all access in
order to share information amongst
themselves. As memory is a very

limited resource, the operating system
will place limits on how much shared
memory can be set aside for a process
(or a pool of processes). This generally
helps keep the system running as
expected.

Listing 1. Postgresql initialization

$ /usr/local/pgsql/bin/initdb -D /home/postgres/DB

The files belonging to this database system will be owned by user

"postgres".

This user must also own the server process.

The database cluster will be initialized with locale C.

The default database encoding has accordingly been set to SQL_ASCII.

The default text search configuration will be set to "english".

creating directory /home/postgres/DB ... ok

creating subdirectories ... ok

selecting default max_connections ... 40

selecting default shared_buffers/max_fsm_pages ... 28MB/179200

creating configuration files ... ok

creating template1 database in /home/postgres/DB/base/1 ... ok

initializing pg_authid ... ok

initializing dependencies ... ok

creating system views ... ok

loading system objects' descriptions ... ok

creating conversions ... ok

creating dictionaries ... ok

setting privileges on built-in objects ... ok

creating information schema ... ok

vacuuming database template1 ... ok

copying template1 to template0 ... ok

copying template1 to postgres ... ok

WARNING: enabling "trust" authentication for local connections

You can change this by editing pg_hba.conf or using the -A option the

next time you run initdb.

Success. You can now start the database server using:

 /usr/local/pgsql/bin/postgres -D /home/postgres/DB

or

 /usr/local/pgsql/bin/pg_ctl -D /home/postgres/DB -l logfile start

Listing 2. Starting Postgresql

$ /usr/local/pgsql/bin/postgres -D /home/postgres/DB -i &

$ LOG: database system was shut down at 2009-05-04 12:39:17 EDT

LOG: database system is ready to accept connections

LOG: autovacuum launcher started

Table 1. Some Postgresql shared memory parameter

Name Use
shared_buffers The amount of memorythat is used to cache data
max_fsm_pages The maximum number of free pages that will be tracked.

16 BSD 4/2009

get started

17www.bsdmag.org

Postgresql, shared memory and BSD

Some applications though require
a lot of shared memory. A DBMS is
one of them. The speed killer for any
DBMS is disk access. A large table will
require many disk accesses in order to

run a sequential scan over it (even if it
is doing an index scan, we are still in
the same boat, millions and billions of
rows result in very large indices on the
columns). Once all the pages of a table

are read, they will be in memory. Now if
another query is run that accesses the
same table, it would be nice if the pages
of the table that had just been read into
memory could be reused by this new
process. Shared memory allows this
to happen. It allows a database system
cache of disk pages to be accessed by
any future query, thus minimizing the
number of disk accesses. Of course,
there is not infinite memory, so the
cache can be filled up, so there is an
algorithm that will remove pages from
the cache, and they may need to be
reloaded from disk (which in turn will
slow down a query compared to if all
the pages are in memory). This is the
motivation for having a large pool of
shared memory (and physical memory!)
available on a system running a large
database.

The postgresql.conf file defines all
the engine settings; shared memory, port,
logging etc. This is the main file that you
need to know and love. For the purposes
of this article, the shared memory
parameters are most relevant, and only a
couple will actually be changed. The full
list of parameters can be found at: http:
//www.postgresql.org/docs/8.3/static/
kernel-resources.html (see Table 1).

However, a key component are the
operating system settings for shared
memory. These are the key elements at
the OS level (http://www.postgresql.org/
docs/8.3/static/kernel-resources.html):
see Table 2.

The default settings for FreeBSD
are low, and only practical on a small
database. The impact of changing these
settings on FreeBSDwill provide us with
a baseline to compare with NetBSD and
OpenBSD in the next article.

The settings on the FreeBSD system
while the above queries were run was:
see Listing 8

$ sysctl kern.ipc.shmall

kern.ipc.shmall: 8192

$ sysctl kern.ipc.shmmax

kern.ipc.shmmax: 33554432

$ sysctl kern.ipc.semmap

kern.ipc.semmap: 30

$

They were changed as follows:

kern.ipc.shm_use_phys=1

kern.ipc.shmmax=1073741824

Listing 3. Creating a table, and loading in test data

$ /usr/local/pgsql/bin/psql test

Welcome to psql 8.3.7, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms

 \h for help with SQL commands

 \? for help with psql commands

 \g or terminate with semicolon to execute query

 \q to quit

test=# create table data1 (id int,c1 int,c2 int,c3 int,c4 int);

CREATE TABLE

test=# copy data1 from '/home/postgres/data1';

LOG: checkpoints are occurring too frequently (8 seconds apart)

HINT: Consider increasing the configuration parameter "checkpoint_

segments".

LOG: checkpoints are occurring too frequently (6 seconds apart)

HINT: Consider increasing the configuration parameter "checkpoint_

segments".

LOG: checkpoints are occurring too frequently (5 seconds apart)

HINT: Consider increasing the configuration parameter "checkpoint_

segments".

LOG: checkpoints are occurring too frequently (6 seconds apart)

HINT: Consider increasing the configuration parameter "checkpoint_

segments".

LOG: checkpoints are occurring too frequently (6 seconds apart)

HINT: Consider increasing the configuration parameter "checkpoint_

segments".

LOG: checkpoints are occurring too frequently (5 seconds apart)

HINT: Consider increasing the configuration parameter "checkpoint_

segments".

COPY 4895928

test=#

Listing 4. Running a SQL query, and seeing what happens

test=# explain analyze select count(*) from data1;

 QUERY PLAN

--

--

 Aggregate (cost=90000.00..90000.01 rows=1 width=0) (actual time=19814.63

3..19814.635 rows=1 loops=1)

 -> Seq Scan on data1 (cost=0.00..77760.00 rows=4896000 width=0)

(actual time=3.548..9943.798 rows=4895928 loops=1)

 Total runtime: 19815.852 ms

(3 rows)

test=#

16 BSD 4/2009

get started

17www.bsdmag.org

Postgresql, shared memory and BSD

kern.ipc.shmall=262144

kern.ipc.semmsl=512

kern.ipc.semmap=256

The shm_use_phys will attempt to lock
in the shared memory, to avoid it

from being swapped to disk. This will
ideally reduce the swapping of the
database page cache, and improve
performance.

When setting the system level
settings, it is important to evaluate what

else the system is doing.If is it primarily
a database server, then allowing for the
majority of the memory to be used by the
database engine makes sense. However
if it is running a variety of important
tasks, in addition to the database engine,

Listing 5. A join

test=# explain analyze select a.id from data1 a,data2

b where a.id=b.id;

 QUERY PLAN

--

 Merge Join (cost=1594911.78..81866227.29

rows=5349790523 width=4) (actual time=61963.732..18002

935.774 rows=2978820010 loops=1)

 Merge Cond: (a.id = b.id)

 -> Sort (cost=797500.75..809740.75 rows=4896000

width=4) (actual time=28694.640..38499.480

rows=4895928 loops=1)

 Sort Key: a.id

 Sort Method: external merge Disk: 76528kB

 -> Seq Scan on data1 a (cost=0.00..77760.00

rows=4896000 width=4) (actual time=10.984..15228.646

rows=4895928 loops=1)

 -> Materialize (cost=797391.08..858582.44

rows=4895309 width=4) (actual time=33269.086..6020020.

575 rows=2978819821 loops=1)

 -> Sort (cost=797391.08..809629.35

rows=4895309 width=4) (actual time=33269.082..43071.65

6 rows=4895928 loops=1)

 Sort Key: b.id

 Sort Method: external merge Disk:

76528kB

 -> Seq Scan on data2 b

(cost=0.00..77753.09 rows=4895309 width=4) (actual

time=0.803..17650.072 rows=4895928 loops=1)

 Total runtime: 23971003.015 ms

(12 rows)

test=#

Listing 6. A join, without the explain

test=# select current_time;select count(a.id) from

data1 a,data2 b where a.id=b.id;select current_time;

 timetz

 21:00:25.4649-04

(1 row)

 count

 2978820010

(1 row)

 timetz

 21:14:33.841233-04

(1 row)

Listing 7. A join with database indices added to the join columns

test=# create index data1_id_index on data1(id);

CREATE INDEX

test=# create index data2_id_index on data2(id);

CREATE INDEX

test=# explain analyze select a.id from data1 a,data2

b where a.id=b.id;

 QUERY PLAN

--

 Merge Join (cost=1595002.97..81875284.90

rows=5350388308 width=4) (actual time=52353.445..17993

383.348 rows=2978820010 loops=1)

 Merge Cond: (a.id = b.id)

 -> Sort (cost=797491.51..809731.33 rows=4895928

width=4) (actual time=24912.966..34717.616

rows=4895928 loops=1)

 Sort Key: a.id

 Sort Method: external merge Disk: 76528kB

 -> Seq Scan on data1 a (cost=0.00..77759.28

rows=4895928 width=4) (actual time=10.255..13085.619

rows=4895928 loops=1)

 -> Materialize (cost=797491.51..858690.61

rows=4895928 width=4) (actual time=27440.473..6014191.

429 rows=2978819821 loops=1)

 -> Sort (cost=797491.51..809731.33

rows=4895928 width=4) (actual time=27440.470..37244.00

7 rows=4895928 loops=1)

 Sort Key: b.id

 Sort Method: external merge Disk:

76528kB

 -> Seq Scan on data2 b

(cost=0.00..77759.28 rows=4895928 width=4) (actual

time=3.964..13975.471 rows=4895928 loops=1)

 Total runtime: 23961505.737 ms

(12 rows)

test=#

18 BSD 4/2009

get started

19www.bsdmag.org

Postgresql, shared memory and BSD

then careful planning will be required to
ensure that one set of tasks does not
negatively affect any other.

For the next series of SQL queries,
the Postgresql shared memory settings
were changed to be:

shared_buffers = 756MB

temp_buffers = 128MB

work_mem = 128MB

max_fsm_pages = 17920000

The database server was then
restarted. Setting these parameters
is part science, part art, and a touch
of luck. The science portion of the
equation stems from the fact that the
total amount of memory is known, and
the size of the high access tables in the
database may also be known. This will
provide some sense as to how much
shared memory if required (assuming
a fairly straight forward installation).
The art stems from the fact that a
database is rarely static, and your
initial assumptions will soon be void.
Thus you must use some judgment and
experience to factor in the intangible
factors involved.Luck also plays a role,
especially on systems that have other
important processes running, as you
can never be 100% sure of what the
other processes will be doing at any
given time, nor can you tell for sure
what might happen to the database
as users get a hold of it. Revisiting the
configuration parameters is likely on a
real world system.

If these settings are way off,
generally nothing too bad will happen.
Things might run slower than you
hoped, or, the engine might not even
start. For example, if max_fsm_pages is
too high: see Listing 8.

If this message appears, then your
eyes were bigger than your stomach,
and you will need to reduce the values
a bit.

The settings that were chosen in the
above configuration were chosen more
ad hoc than by hard calculation, as this
system is not a production system, but a
test system being used to see how the
lack of shared memory affects query
performance.

Running our test join query: see
Listing 9.

We see no improvement!What could
be the reason for this? The answer lies
in watching how the memory is being
used while this query runs. Looking at
the output of vmstat (every couple of
seconds) through the majority of the
query run time (ie. after the initial set of
disks accesses that occurs to load in the
table from disk), we see something like:
see Listing 10.

So there is very little paging
happening for the vast majority of the
query run time (the pi and po columns
are the number of pages read in/out

Listing 8. Postgresql requests too much shared memory

$ /usr/local/pgsql/bin/postgres -D /home/postgres/DB -i

FATAL: could not create shared memory segment: Invalid argument

DETAIL: Failed system call was shmget(key=5432001, size=1154555904,

03600).

HINT: This error usually means that PostgreSQL's request for a shared

memory segment exceeded your kernel's SHMMAX parameter. You can either

reduce the request size or reconfigure the kernel with larger SHMMAX. To

reduce the request size (currently 1154555904 bytes), reduce PostgreSQL's

shared_buffers parameter (currently 96768) and/or its max_connections

parameter (currently 43).

 If the request size is already small, it's possible that it

is less than your kernel's SHMMIN parameter, in which case raising the

request size or reconfiguring SHMMIN is called for.

 The PostgreSQL documentation contains more information about

shared memory configuration.

$

Listing 9. A join with more hared memory

test=# explain analyze select a.id from data1 a,data2 b where a.id=b.id;

 QUERY

PLAN

--

 Merge Join (cost=1360712.97..81640994.90 rows=5350388308 width=4)

(actual time=56038.472..17997549.197 rows=2978820010 loops=1)

 Merge Cond: (a.id = b.id)

 -> Sort (cost=680346.51..692586.33 rows=4895928 width=4) (actual

time=27685.239..37493.809 rows=4895928 loops=1)

 Sort Key: a.id

 Sort Method: external merge Disk: 76544kB

 -> Seq Scan on data1 a (cost=0.00..77759.28 rows=4895928

width=4) (actual time=7.031..12175.891 rows=4895928 loops=1)

 -> Materialize (cost=680346.51..741545.61 rows=4895928 width=4)

(actual time=28353.126..6015294.046 rows=2978819821 loops=1)

 -> Sort (cost=680346.51..692586.33 rows=4895928 width=4)

(actual time=28353.122..38160.727 rows=4895928 loops=1)

 Sort Key: b.id

 Sort Method: external merge Disk: 76544kB

 -> Seq Scan on data2 b (cost=0.00..77759.28 rows=4895928

width=4) (actual time=6.085..12125.387 rows=4895928 loops=1)

 Total runtime: 23965801.345 ms

(12 rows)

Table 2. FreeBSD shared memory parameters

Name Description
SHMMAX Maximum size of shared memory segment (bytes)

SHMALL Total amount of shared memory available (bytes or pages)

18 BSD 4/2009

get started

19www.bsdmag.org

Postgresql, shared memory and BSD

Listing 10. vmstat output while the query is running. Very little paging is occuring

Listing 11. Running a count, without any pages cached

test=# select current_time;select count(*) from

datat;select current_time;

 timetz

 20:57:13.459257-04

(1 row)

 count

 29375568

(1 row)

 timetz

 20:57:31.609562-04

(1 row)

test=#

Listing 12. Running another count, with pages cached

test=# select current_time;select count(*) from

datat;select current_time;

 timetz

 20:57:39.897516-04

(1 row)

 count

 29375568

(1 row)

 timetz

 20:57:47.151574-04

(1 row)

test=#

 procs memory page disk faults cpu

 r b w avm fre flt re pi po fr sr ad0 in sy cs us sy id

 2 0 0 1778M 318M 36 0 0 0 31 0 0 2 21598 401 1 66 33

 1 0 0 1778M 318M 1 0 0 0 0 0 1 3 574530 494 1 99 0

 1 0 0 1778M 318M 0 0 0 0 0 0 0 2 558781 400 2 98 0

 1 0 0 1778M 318M 0 0 0 0 2 0 5 7 594514 415 1 99 0

 1 0 0 1778M 318M 0 0 0 0 1 0 0 2 586000 402 1 99 0

 1 0 0 1778M 318M 0 0 0 0 0 0 0 1 565347 414 1 99 0

 1 0 0 1778M 318M 0 0 0 0 0 0 0 3 561447 415 1 99 0

 1 0 0 1778M 318M 0 0 0 0 0 0 0 2 572229 415 2 98 0

 1 0 0 1778M 318M 0 0 0 0 2 0 2 3 594159 395 1 99 0

Listing 13. Running an average, without any pages cached, compared to
with pages cached

test=# select current_time;select avg(id) from

datat;select current_time;

 timetz

 05:19:18.395715-04

(1 row)

 avg

 127273.413337982095

(1 row)

 timetz

 05:19:27.290473-04

(1 row)

test=# select current_time;select avg(id) from

datat;select current_time;

 timetz

 05:19:33.635784-04

(1 row)

 avg

 127273.413337982095

(1 row)

 timetz

 05:19:42.425779-04

(1 row)

20 BSD 4/2009

get started

21www.bsdmag.org

Postgresql, shared memory and BSD

during the interval). This means that the
tables are in memory, and that most of
the query time is spend simply dealing
with the join complexity (all of the
cross product pairs). Meaning, a faster
computer would help in the running

time, but more shared memory will
not.The astute observer will notice that
most of the cpu time it spent on system
time, and not user time. This is an issue
that will be examined closer in a future
article.

Examining all of the traces for each run,
we see that they are very similar, in fact the
database index is never used, even when
one is available. The reasons for this get
into the query optimizer for postgres, and
that is a fairly complicated topic, however

Listing 14. Running a count on distinct entries in a row (no cache vs cached)

test=# select current_time;select count(distinct(id))

from datat;select current_time;

 timetz

 05:20:06.933674-04

(1 row)

 count

 150146

(1 row)

 timetz

 05:20:58.923578-04

(1 row)

test=# select current_time;select count(distinct(id))

from datat;select current_time;

 timetz

 05:21:15.381181-04

(1 row)

 count

 150146

(1 row)

 timetz

 05:22:06.505639-04

(1 row)

test=#

Listing 15. Running the join under higher shared memory settings (no
pages cached)

test=# select current_time;select count(a.id) from

data1 a,data2 b where a.id=b.id;select current_time;

 timetz

 21:00:25.4649-04

(1 row)

 count

 2978820010

(1 row)

 timetz

 21:14:33.841233-04

(1 row)

test=#

Listing 16. Running the join under higher shared memory settings with
pages cached

test=# select current_time;select count(a.id) from

data1 a,data2 b where a.id=b.id;select current_time;

 timetz

 21:15:16.905288-04

(1 row)

 count

 2978820010

(1 row)

 timetz

 21:29:02.414675-04

(1 row)

test=#

Listing 17. Running a count with a very low shared memory configuration
(no pages cached)

test=# select current_time;select count(*) from

datat;select current_time;

 timetz

 21:54:46.095708-04

(1 row)

 count

 29375568

(1 row)

 timetz

 21:55:19.721834-04

(1 row)

test=#

20 BSD 4/2009

get started

21www.bsdmag.org

Postgresql, shared memory and BSD

in our case, as all the data is already in
memory, there is no need to use the index,
it will not speed anything up. If the table
was very large, then it might make sense to
use an index on the join column, because
the index would likely be a lot smaller than
the main table (however that is not always

the case, there are parameters to adjust
the optimizers behavior, however changing
it is not always recommended; again this
is a broader topic though).

So now that we have found out
how adjusting the shared memory
parameters can give us very little

performance benefit, when would it give
us a large benefit?

Lets look at an even larger table, and
see how things are handled:

test=# select count(*) from datat;

count

Listing 18. Running a count with a very low shared memory configuration (with pages cached)

test=# select current_time;select count(*) from

datat;select current_time;

 timetz

 21:55:48.775529-04

(1 row)

 count

 29375568

(1 row)

 timetz

 21:56:11.23004-04

(1 row)

test=#

Listing 19. Running an average, with a low shared memory configuration
(uncached vs. cached)

test=# select current_time;select avg(id) from

datat;select current_time;

 timetz

 05:08:20.228458-04

(1 row)

 avg

 127273.413337982095

(1 row)

 timetz

 05:08:35.549252-04

(1 row)

test=#

test=# select current_time;select avg(id) from

datat;select current_time;

 timetz

 05:08:46.134212-04

(1 row)

 avg

 127273.413337982095

(1 row)

 timetz

 05:08:55.048271-04

(1 row)

Listing 20. Running an count on distinct entires, with a low shared
memory configuration (uncached vs. cached)

test=# select current_time;select count(distinct(id))

from datat;select current_time;

 timetz

 05:13:46.329221-04

(1 row)

 count

 150146

(1 row)

 timetz

 05:14:54.122289-04

(1 row)

test=#

test=# select current_time;select count(distinct(id))

from datat;select current_time;

 timetz

 05:15:13.467694-04

(1 row)

 count

 150146

(1 row)

 timetz

 05:16:17.952668-04

(1 row)

test=#

22 BSD 4/2009

get started

 29375568

(1 row)

After restarting the database engine (so
nothing is cached), running a count gives
us: see Listing 11.

So it takes about 18 seconds. Running
the same query again immediately
afterwards gives us: see Listing 12.

So the count now takes 8 seconds,
so it is 10 seconds faster. The difference
in speed is accounted for by the fact
that the pages for the table are now in
memory. If the more of a table that will
fit into memory, the faster subsequent
queries run on that table will run.

Examining how some other aggregate
functions behave: see Listing 13.

The initial run took around 9 seconds,
while the second run took also took
around 9 seconds.

A more complicated query, which
counts the number of distinct id entries:
see Listing 14.

The initial run takes 52 seconds, and
the second run takes a out the same time.

Returning to the join query, when we
run it with the larger shared memory
settings: see Listing 15.

The running time is pretty much
in line with what we saw before, (with
the default configuration) 14 min and 8
seconds.If we run it immediately after:
see Listing 16.

We see no speed increase, this is
because all the pages already fit into
memory before the shared memory
parameters were increased. So
increasing them did not improve the
performance.

Examining a low shared
memory configuration
Adjusting the shared memory parameters
to be very low will allow us to test the
hypothesis that the execution time for
aggregate queries will be much slower
than any previous run, because the table
will not fit into memory:

shared_buffers = 1MB

temp_buffers = 1MB

work_mem = 1MB

max_fsm_pages = 17000

With this low configuration, we see that
the count query over table datat is much
slower: see Listing 17.

So it took 33 seconds for the initial
run, and then the subsequent try: see
Listing 18.

Took 23 seconds. Which is 3 times
slower than during the high shared
memory configuration.

For the other aggregate functions:
see Listing 19.

The run time for the initial run is
15 seconds, while the second run is 9
seconds. The initial run a 6 seconds
slower than the initial run in the high
shared memory configuration, but the
second is equal.

For the count the number of distinct
id rows: see Listing 20.

The first run takes 68 seconds and
the second run takes 64 seconds.So
they are both fairly close. The high
shared memory took 52 seconds, so
this query is 18-19% slower with the low
shared memory settings.

The join query behaves exactly the
same way as we saw previously: see
Listing 21.

The join query took around 14
minutes.

Conclusion
Given the small survey of queries, with two
different shared memory configurations,
we can conclude that having higher
shared memory settings will increase the
speed of a large number of queries.

The join query did not see much
performance change over the various
shared memory configurations.The next
article in this series will compare the
same queries over a NetBSD and an
OpenBSD installation to see what impact
the operating system might have (on the
same hardware configuration). Then the
issue of the join query performance will
be investigated in greater detail.

Table 3. Summary of results

Query Low shared mem High shared mem
count 23 – 33 seconds 8 – 18 seconds

avg 9 – 15 seconds 9 seconds

count distinct id 53 – 64 seconds 53 seconds

Listing 21. The join with a low shared memory configuration

test=# select current_time;select count(a.id) from data1 a,data2 b where

a.id=b.id;select current_time;

 timetz

 21:57:08.122083-04

(1 row)

 count

 2978820010

(1 row)

 timetz

 22:10:43.551956-04

(1 row)

test=#

Barry Fox is a system administrator and
software developer. He has been working
with various flavors of BSD since the
release of FreeBSD 2 in 1995.

About the Author

EuroBSDCon 2009
Cambridge, UK. 18-20 September 2009

The eighth European BSD conference is a great opportunity to
present new ideas to the community and to meet some of the
developers behind the different BSDs.
The two day conference program (September 19 - 20) will be
complemented by a tutorial day preceeding the conference (Sept 18).
The conference will take place at the University of Cambridge,
England.

http://2009.euroBSDcon.org/

24 BSD 4/2009

how-to's Triple booting

25www.bsdmag.org

Triple booting
Windows 7, Ubuntu 9.04 and
PC-BSD 7.1
In this article we will give a step-by-step guide to installing three different operating
systems on the same hard drive.

Jan Stedehouder

Windows 7 is the upcoming new operating system
of Microsoft, Ubuntu 9.04 and PC-BSD 7.1 have
just been released. Getting a multi boot system
is a great way to test out new operating systems

on your hardware, while at the same time keeping a stable
system to continue your regular work.

Disks, partitions and slices
Each of the three operating systems (OS) in this article
provides an easy to use graphical installer, but some
background knowledge about partitions and slices is needed
to make proper use of them. It is possible to partition (or
divide) a hard drive into four primary partitions maximum. We
can create more partitions by setting up one primary partition
as a extended partition, which in turn can have multiple logical
partitions. Keep in mind that in FreeBSD-speak a partition is

called a slice. FreeBSD, and thus PC-BSD, needs a primary
partition (or slice), which in turn will be divided into logical
partitions during installation.

Windows also requires a primary partition and it has a
very strong preference for the first primary partition of the
first hard drive (when using multiple hard drives). The new
Windows 7 behaves somewhat different when installing on
a clean hard drive. The OS creates two primary partitions
(see Figure 1) as default , with the first primary partition
amounting to 100 Mb and the second primary partition
for the actual operating system (Apparently, this setup
can be bypassed by not allowing Windows 7 to create
additional partitions during the installation. The Windows
Recovery Environment will then be installed in the root of the
installation partition. However, we will have to wait for the
final release to check this out).

Figure 1. Windows 7 creates two primary partitions by default when installing
on a blank hard drive Figure 2. The partition manager of the Windows 7 installer

24 BSD 4/2009

how-to's Triple booting

25www.bsdmag.org

Ubuntu, and Linux in general, does
not require a primary partition and can
be installed on logical partitions without
problem.

For this article I created a new
virtual machine in VirtualBox with a
250 Gb hard drive. When we look at
the various screenshots, you will notice
the different conventions being used
for this hard drive. Windows 7 uses
Disk 0 and refers to the partitions
as Partition 1 en Partition 2. PC-BSD
uses ad0, ad0s1 and ad0s2 respectively,
while Ubuntu refers to the disks and
partitions as sda, sda1 and sda2. And,
while we are at it , GParted, to be used
later on, goes for hda, hda1 and hda2.
When discussing the various steps
we will use the conventions as they
are used by each OS as they appear
on-screen.

One last remark, for the sake of being
complete I will describe the various steps
for installing each OS, including Windows
7 and Ubuntu 9.04.

Step 1: Installing Windows 7
Windows 7 is the upcoming OS by
Microsoft and at the time of writing the
public release candidate was available.
This release candidate will work until
June 1st 2010 (which puts it way
beyond the life span of any OS on my
box). The Windows installer first asks
you to select the language, the time
and currency format and the layout of
your keyboard. Click Install Now and
then select which version of Windows
7 you want to install. In this article we
use Windows 7 Professional. You need
to agree with the license agreement.
In the next step Windows 7 offers the
choice between Upgrade and Custom
(advanced). Select Custom for a clean
install.

The question Where do you want
to install Windows? appears with our
new, clean hard drive in the box (Disk 0
Unallocated Space, see Figure 2). Click
on Drive options (advanced). This reveals
the option to create a new partition
(New). Click New and enter the size of
the new partition for Windows 7 (in this
case: 80 Gb). The installer notifies us
that to ensure that all Windows features
work properly, it will create additional
partitions for systems files. Click OK
and the new partition table reveals itself
(see Figure 1).

Now simply follow the next steps in
the wizard.

Wrong tangents
Before continuing with steps that will
result in a working multi boot system,
let us first show two possible routes
that won't work. Linux users are familiar
with installing their favorite OS alongside
Windows and Ubuntu has made it very
easy to do so. It even offers to migrate

personal settings and documents from
Windows to Ubuntu. Figure 3 shows a
new partition table with three partitions
for Ubuntu: sda5 for root, sda6 for /home
and sda7 for swap.

The next step would be to install
PC-BSD, but this won't work. Figure 4
shows it's graphical installer and how
it sees the partition table. There is
no sign of the three logical partitions
whatsoever.

Figure 3. The partition table of a Windows- Ubuntu dual boot system...

Figure 4. … but the PC-BSD installer doesn't recognize the Linux partitions this way

Figure 5. With the PC-BSD partitioner we can setup the disk partitions fine...

26 BSD 4/2009

how-to's

27www.bsdmag.org

Triple booting

Changing the sequence and first
installing PC-BSD won't work either. In
Figure 5 we can see the slice and the
logical partitions created via the PC-
BSD installer. One root partition (ad0s3a)
and a swap partition (ad0s3b), but as
Figure 6 shows, the Ubuntu installer only
sees one large space of an unknown file
system.

The easiest solution is first to create a
primary partition that will be used by PC-
BSD. We will use GParted for this, but you
can use your favorite partition manager
as well.

Step 2: Preparing a primary
partition with GParted
Gparted (http://gparted.sourceforge.net/)
stands for Gnome Partition Editor and
you can download a live cd of live usb
image from the website. Reboot the
computer (I used the cd) and select
'GParted Live' in the boot menu. The
wizard asks questions about the keymap
(keyboard) and whether you wish to
boot into a graphical desktop (X) or the
command line. GParted scans the hard
drive (or drives when you have more than
one disk in your computer) and shows
the current partition table. We installed
Windows 7 first, so GParted shows hda1
and hda2 with the NTFS file system (see
Figure 7).

Now, click on unallocated and then
on New. With this we create the new
primary partition that will hold PC-BSD.
For the article I use a 30 Gb partition,
which should be large enough for
extensive tests with PC-BSD. As file
system I selected NTFS. It is only a
dummy partition and will be reformatted
in a later step. This will allow the Ubuntu
installer to see this partition and install
Ubuntu in the free space next to it.
The rest of the unallocated space is
converted into an extended partition.
We now have a new partition table with
three primary partitions and one primary
partition used as an extended partition
(see Figure 8).

Step 3: Installing Ubuntu 9.04
Change the GParted disk from the cd/
dvd drive for the Ubuntu 9.04 cd and
reboot the computer. You choose on
the languages and then select Install
Ubuntu which will launch the wizard
instead of the complete live desktop.
The wizard again asks you for the

Figure 6. … but Ubuntu can't make heads or tails of them

Figure 7. GParted scans the hard drive and shows the partitions used by Windows 7

Figure 8. The new partition table as needed for installing first Ubuntu, and then PC-BSD

26 BSD 4/2009

how-to's

27www.bsdmag.org

Triple booting

language you would like to use. The
next step deals with the time. Select
the proper region and time zone here.
The installer suggests a keyboard

layout based on this choice, but you
can alter it by ticking Choose you
own and selecting one of the options.
Click Forward to launch the partitioner.

The partitioner recognizes the various
NTFS partitions we created and the
empty space in the extended partition
(see Figure 9).

We will create the needed partitions
manually, so tick Specify partitions
manually (advanced) and click Forward.
Then click on Free Space and then New
partition. We will create three new logical
partitions: root (/), /home (for user data)
and swap. Root and /home will use the
ext3 file system (see Figure 10).

As you can see we didn't use the
entire hard drive. The current table, with
80 Gb for Windows 7, 30 Gb for PC-BSD,
20 Gb for Ubuntu root and 30 Gb for
user data was sufficient for me. This way
there is some room to install additional
Linux distributions or other operating
systems in the future. Of course, feel free
to change the size of the partition to suit
your own needs.

Why didn't we use this partitioner to
create the primary partition for PC-BSD?
It is possible to use it, but I find it horribly
slow in recalculating the partition table
after each change. And it doesn't clearly
show that you have made an extended
partition as container for the logical
partitions, as does GParted.

From here click Forward to continue
the installation. The wizard asks for you
name, your username and password, the
name for your computer and whether
the user can log in automatically or not.
We will allow Ubuntu to install GRUB, the
Grand Unified Bootloader, the boot menu
which can launch both Windows 7 and
Ubuntu. Once Ubuntu finished installing,
remove the cd and replace it by the PC-
BSD cd or dvd.

Step 4: Installing PC-BSD 7.1
PC-BSD also has a graphical installer.
The first step in the wizard deals with
the system language, keyboard settings,
the time zone and the question whether
you wish to submit anonymous usage
statistics to bsdstats.org, followed by
the license agreement. In the Selection
installation choice screen we opt for
a fresh install. In step 4 you enter the
root password and add the first user.
Click next to prepare the hard drive for
installing PC-BSD.

Figure 11 reveals that the PC-BSD
installer sees the NTFS partition (/dev/
ad0s3) that we prepared with GParted (and
it is completely oblivious of the extended

Figure 9. The partition table before installing Ubuntu

Figure 10. The partition table after adding the partitions for Ubuntu

Figure 11. The new partition table as seen by the PC-BSD installer

28 BSD 4/2009

how-to's

29www.bsdmag.org

Triple booting

partition and the logical partitions in use
by Ubuntu). In order to install PC-BSD for
a proper multi boot environment do the
following (see Figure 12):

• click on /dec/ad0s3;
• remove the mark in the tickbox Install

the PC-BSD bootloader, and
• mark the box Customize the partition

layout. (Advanced).

We won't use the PC-BSD bootloader as
it will not be able to boot Ubuntu.

Clicking next shows the logical
partitions that PC-BSD has made in slice
ad0s3 (see Figure 13). Experienced users
can alter the logical partitions at this point.

The next step deals with additional
system components that we wish to
install, after which we can install PC-BSD.
When the installation is finished, remove
the cd or dvd and reboot the system.

Step 5: Setting up the
bootloader
At this point we have three operating
systems and a bootloader, GRUB. When
rebooting our computer we see that
GRUB (see Figure 14) only has entries for
two operating systems: Ubuntu 9.04 and
Windows Vista (actually Windows 7).

We need to add PC-BSD to GRUB in
order to be able to use it. Please launch
Ubuntu 9.04 and then open a terminal.
Enter the following command:

$ sudo gedit /boot/grub/menu.lst

This command will open the file menu.list
in the editor gedit with administrator
rights. Menu.lst holds the entries for
GRUB and points the bootloader to the
proper partitions with boot sectors. Go to
the end of the document, where we see
the entry:

This entry automatically added by

the Debian installer for a non-linux

OS

on /dev/sda

title Windows

Vista (loader)

rootnoverify (hd0,0)

savedefault

makeactive

chainloader +1

For GRUB to boot PC-BSD add the
following lines:

Figure 12. These are the proper selections for creating a working multiboot system during partitioning

Figure 13. The logical partitions created by PC-BSD

Figure 14. The bootloader GRUB doesn't have an entry for PC-BSD yet

Figure 15. The 'new' GRUB with an entry for PC-BSD

28 BSD 4/2009

how-to's

29www.bsdmag.org

Triple booting

This entry was manually added by me

to boot PC-BSD

on /dev/sda

title PC-BSD

rootnoverify (hd0,2)

savedefault

makeactive

chainloader +1

GRUB points to (hd 0,0) to boot Windows
7, which would translate into sda1 or
ad0s1. (hd 0,1) (sda2 or ad0s2) holds the
actual Windows OS. We installed PC-
BSD on primary partition sda3 or ad0s3,
thus the use of (hd0,2). With this GRUB
now has an entry capable of booting PC-
BSD (see Figure 15).

Alternative bootloader
If this were only a one-time installation
using GRUB would be fine. But, once you
get into multiboot installations, chances
are that you do want to change one or
more operating systems, or add new
ones to the mix. The Windows 7 release

candidate is valid until June 2010, but the
moment you install the final release (or
revert back to Vista or XP) Windows will
overwrite the master boot record (MBR)
and GRUB will be gone. Thus, to create
a more robust multiboot system we do
well to use an alternative bootloader, one
that doesn’t rely on one of the underlying
operating systems.

One alternative is GAG, short for
Gestor de Arranque Grafico, which is
Spanish for Graphical Boot Manager.
GAG (http://gag.sourceforge.net/) is a
third party tool that helps to set up a boot
menu for each of our operating systems.
It is quite versatile and allows a menu for
up to nine different operating systems.
When you download and extract the zip
package from the website, you will find
the file cdrom.iso. Burn it on a cd, put it in
the cd/dvd drive and reboot the machine,
then select the option Install GAG. The
next steps ask for your keyboard type
and language, after which you select the
option Setup GAG keys.

GAG doesn’t automagically scan the
harddrive and add each operating system.
We need to do that manually by selecting
Add a new operating system, which
reveals a list of recognized operating
systems as can be seen in Figure 16.

The keys B and C are NTFS partitions.
As we have noticed before, Windows 7
creates two primary partitions by default,
with the first partition holding the boot
sector. Press B and type your descriptive
name for Windows 7. GAG will ask you
to provide a password. When you don’t
need a password to prevent unwarranted
booting into the operating system, simply
press Enter. In the next step you can
select one of the icons (see Figure 17).

Repeat this step for each operating
system. In our example PC-BSD can be
found under key [D] and Ubuntu under
key [F]. However, booting Ubuntu this
won’t work now. If you plan to use GAG
as a bootloader, you need to install the
bootsector of Ubuntu on it’s root partition.
This option is available in the last step
of Ubuntu’s installation wizard. From here
on you can add new Linux distributions,
each booting from it’s own root partition,
via GAG.

To wrap it up
Creating a multiboot installation isn’t
complicated, simply a matter of keeping
a few basic principles in mind,having
some simple tools and clear mind. True,
using virtual machines often does the
trick, but multiboot installations allow you
to use the full strength of your hardware
for each of the operating systems.

Figure 16. The partition table as recognized by GAG

Figure 17. The GAG icons give an indication of the supported operating systems

Jan Stedehouder writes about open
source software and open standards,
mostly from the perspective of a novice
user who wishes to migrate away from
Windows. He is the author of three books,
contributed to a textbook on open source
and open standards and was co-editor of
the Dutch Open Source Yearbook 2008-
2009. His most recent book Open source
en open standaarden. Voor niets gaat de
zon op? (translated: Open source and
open standards. Is it a free ride?) aims at
introducing the general public to this topic.
According to him, BSD should be seriously
considered for desktop users as well.

About the Author

30 BSD 4/2009

how-to’s

31www.bsdmag.org

BuildaSearch a FreeBSD Web Service

BuildaSearch makes complex
search services simple
by providing users with a
simplified interface and a copy

and paste search for external websites.
The service provides search solutions

for all skill-sets, from the Internet beginner
to a business website looking for on-
demand indexing search services.

Released in late April of 2009,
BuildaSearch Advanced Search (BAS) is
an on-demand indexing search service
which creates the latest search content
from a list of custom domains. Since
BAS is an extremely resource intensive
service always creating, updating,
deleting, searching, and producing fresh

opening up BuildaSearch to virtually any
XML/ RSS based data source.

Taking it a step further data sources
will be able to Search Clash meaning
data sources once totally separate will
be searchable together in synchrony in
one cool search.

We are currently developing the
future of our service which will allow
virtually any distributed data source to
be integrated into BuildaSearch services.
Our Search Clash service will consist
of three components: SDE (Search
Development Environment), Third Party
data sources, and BuildaSearch XML
based API. Continuing the simplicity of
BuildaSearch, our SDE will allow users

results, FreeBSD is the perfect back-end
for such an intensive web service. BAS
is capable of searching anywhere from
one to thousands of websites.

Technologies behind BuildaSearch
services are the following: HTML, CSS,
XML, Javascript, Shell programming, C++,
AJAX, SQL, PHP all working together on
BSD back-ends. BuildaSearch currently
runs on FreeBSD versions 7.0 and 7.1.

In order to provide users with their
choice of custom results the following APIs
are currently used: Yahoo! BOSS, Microsoft
Live, DuckDuckgo.com, Mnogosearch and
Amazon Web Services.

Due out in late May Search Clash
will become the future of BuildaSearch,

BuildaSearch a
FreeBSD Web Service

Diego Montalvo

BuildaSearch is a web service which allows users to build a custom search engine
or site search in less than five minutes. No coding skills are necessary when building
a custom search. Users can customize their colors, backgrounds, logos, and search
results.

Figure 1. User Interface for designing and modifying search layout, search
providers and cool colors

Figure 2. BuildaSearch Advanced Search (BAS) Crawling and Indexing BSD
related sites

30 BSD 4/2009

how-to’s

31www.bsdmag.org

BuildaSearch a FreeBSD Web Service

to build, test, and rollout custom Search
Clashes without any coding.

Third-party data will provide unlimited
content for building custom search
engines. The BuildaSearch API will allow
users to easily integrate their Search
Clash into any blog or business website,
regardless of programming language.

Have seen more XML in eight months
since BuildaSearch was created than I
have in 9 years of programming.

The concept behind BuildaSearch
began with the decision to reuse already
created and tested code for a search
engine project. It was the reusing of
code which began the idea of building a
search service which would allow users
to create a customized search engine
with a few clicks of their mouse.

From the beginning BuildaSearch was
to become a service which would make
search engine creation and customization
as simple as microwaveable popcorn.

BuildaSearch is tied into BSD at every
step of development and deployment.

Initial creation and current
development of BuildaSearch is all done
using MacOS a derivative of FreeBSD.
The great stability of FreeBSD has
allowed BuildaSearch to provide users
with the simplest user interface while

taking care of mission critical tasks. The
first version of BuildaSearch took a couple
of months to create and was released in
August of 2008. Whether you feel like
creating a child-safe search engine or
providing your business website with a
fast-reliable search, BuildaSearch is the
Occam solution.

All in all, as BuildaSearch provides
more and more complex services, our
goal is to always provide users with the
simplest solution regardless of service
complexity. The BuildaSearch motto is
Build a Custom Search in Less Than 5
Minutes.

BuildaSearch was created by Diego
Montalvo a Texas cowboy living in sunny
San Diego. Stephanie Lester of hot-
summer-days Arizona helps with everyday
marketing and creative thinking.

How it all started...
I began to develop database driven web
applications in 2000 and it all began with
ASP and SQL Server. At the time I was
working on a WAP search engine running
on Windows NT, but soon realized that
users manually entering data was never
going to see potential. After a tip off of

something called BSDi from Graham
Toal co-creator of CDDB, I got online and
found that BSDi had a brother FreeBSD.
After ordering a FreeBSD CD, and
installing the operating system, I realized
never again would I use anything on a
server which wasn't BSD. In late 2001
my first web service running on FreeBSD
was released as one of the first WAP
search engines in the world. Throughout
the years FreeBSD has always been my
primary server operating system. Have
tried different distributions of Linux but still
find FreeBSD to be my favorite by far.

DRAFT Notes
In the past it would have been quite
difficult and, but with the inception of
AJAX, BuildaSearch could be created:

• as a search project for a client,
which soon became it's own search
service.

• turned into as many companies
Yahoo! And Microsoft where opening
up their search APIs

• BuildaSearch is entire back-end is
running on FreeBSD version 7.0 and
7.1.

Figure 4. Above is an early example of two different data sources in a search
clash. The screenshot illustrates a designer jeans search provided by the
Yahoo! API and BuildaSearch (BAS) API

Figure 5. Illustration above is our current business logo

Figure 3. BAS search engine of BSD related sites

32 BSD 4/2009

how-to’s Web Servers for Embedded NetBSD

33www.bsdmag.org

Web Servers
for Embedded NetBSD

Web-based user interfaces have become ubiquitous for all sorts of electronic gear
these days. If you are building a network-capable device, chances are you will want
to add a web server to your device's software, as well – it's generally cheaper than a
hardware interface and far easier to change or update.

Donald T. Hayford

These days, the use of analog controls (i.e.,
potentiometers and switches) has pretty much gone
by the wayside and the entire device is controlled
through a software interface, so why not go the next

step and eliminate the front panel altogether? Network routers
have been that way for years, and other companies are also
making the change. The Agilent (www.home.agilent.com)
6000L series of rackmounted oscilloscopes, for example,
have no display, relying mostly on a built-in web interface
for user interaction and display of captured data (though, in
truth, there is something contradictory about a 'scope without
a scope). Note the important distinction here: this is not an
instrument that plugs into a PC slot or USB port and has a
graphical user interface. Rather, the device itself is the web
server and the only function of the PC is to host the browser.
Besides saving you money in production, a web server
can also provide an easy window into your device during
development at the cost of a few web pages and a little bit of
code development.

According to Netcraft (www.netcraft.com), the most popular
web server on the planet is Apache, running on 45% of all
servers, followed by MS-IIS on an additional 30%. If you're
setting up a desktop server with lots of RAM and disk space,
you can certainly use either of these as a web server. But if you
are building, say, a small device with an ARM processor and
16 to 32 MB of memory, what do you use? As it turns out, there
are a number of choices for lightweight web servers that run
on NetBSD, several of which are included as part of NetBSD's
standard package system. In this article, we'll show you how
to get, build, and run several web servers on your embedded
NetBSD system.

The light part of lightweight servers can be defined
in several ways – absolute size of the server application,
the number of files that must be installed to make the

server work, or the impact the application has on system
performance through factors like memory and swap-space
usage, speed of accessing peripherals, and the like. Built for
the ARM processor, the Apache executable file is more than
a megabyte in size. And installing Apache involves putting a
lot of files into numerous locations – certainly a non-trivial
task even with an installer. The five servers we will look at
compare favorably to Apache in all of these aspects. Table
1 shows the names and websites for each server, along
with the versions and release dates I looked at here. If you
want to learn about even more small web servers, check out
References 1 and 2.

Most modern web servers offer two features that are
important to your system – chroot and CGI. The first stands
for change root, and causes the program in question to
act as if the specified directory is root, loosing the ability to
access directories at a higher level. This very positive feature
means that, should there be some security problem with the
server, the damage will probably be limited to the directory in
question. This may be particularly important when working with
web servers that offer a CGI capability, as well. CGI stands for
Common Gateway Interface and is a method by which you
(the web server programmer) can allow the user to run certain
types of scripts (programs) on the server machine to provide
a more dynamic web interface. There are some security
implications with allowing CGI and being able to chroot the
server can help protect your machine. Of the web servers
examined here, all offer CGI services, and all but one allow
chrooting.

What you'll need:

• An embedded processor running NetBSD. This can be
an old Pentium machine, a Linksys NSLU2 (my personal
choice), or one of the many other embedded processors

32 BSD 4/2009

how-to’s Web Servers for Embedded NetBSD

33www.bsdmag.org

that run NetBSD. It's up to you to get
NetBSD running on this machine,

but there are lot's of examples
and tutorials to work from. See the

NetBSD wiki (wiki.NetBSD.se) for
more information, or earlier issues
of this magazine. I assume that
your embedded machine has a disk
drive for compiling the necessary
applications; if not, you'll need to
use your development environment
to build the web servers described
below.

• The latest version of pkgsrc. See
Listing 1 for the command line
entries required to get the latest
stable version of pkgsrc (at the time
of this writing).

• A favorite web page that you would
like to use for testing. If you're a web
guru, you can make up your own.
If not, you can use the web page
contained in Listing 2. This page
displays an image and a little text,
then updates itself every second
so you can see how your machine
will perform with a modest load
without having to continuously click
the reload button. If you have your
own image you'd like to display, then
rename it test.jpg (assuming it is a
jpeg image) and save it in the proper
folder. I borrowed an image from the
web page for BSD magazine. To do
this with Firefox, go to the web site
(www.bsdmag.org, for example) and
select Save Image As... when you
right-click your mouse on the image
of the magazine cover. Save it as
test.jpg. The browser view for this
web page is shown in Figure 1.

• A modern web browser. Any browser
based on Mozilla will work, as will
Internet Explorer.

I tested the web servers on a Linksys
NSLU2, with a 200 MHz ARM processor,
32 MB of RAM, and a 100-Base-T
ethernet port, running version 4.99.61 of
NetBSD. Five different browser windows
were used to request the test page in
Listing 2. Since the page causes the
browser to request an update from the
server once a second, the web server
ends up serving 18000 pages every
hour. I used the program top to keep
track of memory and total CPU usage
over a 12 hour period, during which
time the server delivered approximately
216,000 page requests. While five pages
a second doesn't pose much of a burder
for a mainframe web server that can
handle hundreds or thousands of pages Figure 1. The output of the test web page sent by the Boa web server displayed using Firefox

Table 1. Web servers examined in this article

Software Title Version Release Date Web Page
nginx 0.5.35 01/08/08 nginx.net

boa 0.94.14-rc21 02/23/05 www.boa.org

thttpd 2.25b 12/01/03 www.acme.com/software/thttpd

lighttpd 1.4.20 09/30/08 www.lighttpd.net

Bozohttpd (httpd) 20080303 03/03/08 www.eterna.com.au/bozohttpd
(www.netbsd.org)

Table 2. Web server code size and CPU usage

Software
Title

C/C++
Source
Files

Header
files

Line count
(*.c + *.h)

Compiled
Size
(kB)

Run Size
(kB)

CPU Usage(150
kB/sec -
5 requests/sec)

nginx 94 files
1247 kB

76 files
428 kB

51557 392 1916 5.1

boa 26 files
308 kB

7 files
38 kB

11068 211 1076 5.4

thttpd 8 files
226 kB

10 files
54 kB

9808 78 1260 6.6

lighttpd 91 files
1404 kB

41 files
106 kB

55115 210 1640 5.3

bozohttpd
(httpd)

8 files
102 kB

2 files
9 kB

3768 55 1272 5.3*

*estimated (see text for more details)

34 BSD 4/2009

how-to’s

35www.bsdmag.org

Web Servers for Embedded NetBSD

per second, it iseems a reasonable
expectation for a small processor to
handle without significant performance
degradation.

Nginx
According to Netcraft, Nginx (Figure
2.a) is the fifth most popular web

server in the world, serving more than
six million domains in April, 2009,
including the popular sites hulu.com and
wordpress.com. For all of it's power, it is
surprisingly small, coming in at roughly
392 kB when built for the ARM processor
(see Table 2). According to the wiki
(wiki.nginx.org/Main):

Unlike traditional servers, Nginx
doesn't rely on threads to handle
requests. Instead it uses a much more
scalable event-driven (asynchronous)
architecture. This architecture uses
small, but most importantly, predictable
amounts of memory under load.

Even if you don't expect to handle
thousands of simultaneous requests,
you can still benefit from Nginx's
high-performance and small memory
footprint. Nginx scales in all directions:
from the smallest VPS [note: virtual
private server] all the way up to clusters
of servers.

Best of all, Nginx is easy to build and
install since it's supported by NetBSD's
packages. Follow the instruction in
Listing 2 to build nginx. The source code
for Nginx comes in 170 files with almost
2 MB of code (including comments)
– see Table 2 for more details. The
build script will place the nginx binary
in /usr/pkg/sbin and half a dozen other
files, including the nginx configuration
file nginx.conf, are put in /usr/pkg/etc/
nginx. If you don't make any changes,
nginx expects to find the start-up web
page, index.html, at /usr/pkg/share/

examples/nginx/html. Either change the
configuration file or move your test web
page and data to this location.

To start and stop nginx for testing,
use:

-bash-3.2$ sudo /etc/rc.d/nginx

onestart

and

-bash-3.2$ sudo /etc/rc.d/nginx

onestop.

You need to use the control words
onestart and onestop, instead of start
and stop, because nginx hasn't been
enabled in /etc/rc.conf. Once you're
satisfied with how nginx is running, you
can enable it permanently by adding
the line

nginx=yes

to /etc/rc.conf. Now, nginx will start up
every time you boot NetBSD.

Besides being the largest
executable we will look at, Nginx
also uses the most memory during
execution. Memory usage will jump by

Listing 1. Test web page source code

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/

html4/strict.dtd">

<html><head><meta content="text/html; charset=ISO-8859-1" http-

equiv="content-type"><title>NetBSD Web Server Test Page</title></

head><body>

<table style="text-align: left; width: 100%;" border="0" cellpadding="2"

cellspacing="2">

 <tbody>

 <tr align="center">

 <td style="vertical-align: top;"><big style="font-weight:

bold;"><big>Subscribe to BSD Magazine</big></big>

 </td>

 </tr>

 <tr align="center">

 <td style="vertical-align: top;"><img style="width: 400px; height:

565px;" alt="BSD Magazine Cover" src="test.jpg">

 </td>

 </tr>

 <tr align="center">

 <td style="vertical-align: top;"><big><big>This a test page for the

web server.</big></big>

 </td>

 </tr>

 </tbody>

</table>

<script language="javascript">setTimeout("window.location.reload(true)",10

00);</script>

</body></html>

Listing 2. Getting the latest pkgsrc

-bash-3.2$ cd /usr

-bash-3.2$ su

-bash-3.2# export CVSROOT="anoncvs@anoncvs.netbsd.org:/cvsroot"

-bash-3.2# cvs co -r pkgsrc-2008Q4 -P pkgsrc

Listing 3. Getting and Building the Boa Web Server

-bash-3.2$ mkdir /home/hayford/boa

-bash-3.2$ cd /home/hayford/boa

-bash-3.2$ wget http://www.boa.org/boa-0.94.14rc21.tar.gz

-bash-3.2$ tar -xzvf boa-0.94.14rc21.tar.gz

-bash-3.2$ cd boa-0.94.14rc21/

-bash-3.2$./configure

-bash-3.2$ make

34 BSD 4/2009

how-to’s

35www.bsdmag.org

Web Servers for Embedded NetBSD

about 300 kB for the first web page
request received, then by about 4 kB
for each subsequent page. During a 12-
hr run serving 5 pages/persecond, the
amount of memory used by Nginx grew
to just under 2 MB. Some significant
part of this memory is due to the fact
that Nginx will keep a connection to a
browser alive for some period of time
to speed up subsequent interaction.
The default keepalive timeout for Nginx
is 65 seconds, meaning that Nginx will
keep the connection around for that
long waiting for the browser to make
another request (it saves having to keep
reallocating memory, for one thing). For
an embedded application where only
a single user will connect, that's ok. If
you're using your embedded machine
to serve web pages in a more normal
scenario, you might end up with a lot
of only slightly used connections that
hang around for a while before they are
destroyed and the memory becomes
available for reuse. Adjust the timeout
period in the configuration file if this
becomes an issue.

Serving up our test web page and
image at a rate of 5 pages per minute
takes about 5 percent of the CPU (see
Table 2) for Nginx. As you can see, that's
about the same for all of the servers,
so at least for simple pages, CPU
usage will not be the deciding factor for
selecting among these web servers.

Thttpd
The leading t in thttpd (www.acme.com)
stands for tiny, turbo, or throttling,
depending on your preference.
According to the author, thttpd was the
only web server that could selectively
control the rate at which data is sent to
the browser as far back as 2003. Now,
several servers have that capability but
it still fits the bill quite well as a tiny
web server. Two other servers are also
listed on the web site – mini_httpd and
micro_httpd – the latter written using
only about 200 lines of code. Both are
also available as part of the NetBSD
packages, but were not evaluated here.
One possible problem with thttpd is that
development seems to have stopped
on the software, since the thttpd web
site and source code have not changed
since 2003. One positive selling point
is that thttpd definitely has the coolest
logo, shown in Figure 2.b.

Thttpd is the second smallest of the
five servers discussed here in terms
of code size and compiled size (see
Table 2), and the smallest executable
after allocating the necessary memory.
It was also the slowest, clocking in at
6.6% CPU usage for serving up 5 copies
of the test page (but see the discussion
on bozohttpd). Thttpd is easy to build and
install. Switch to the appropriate directory
(/usr/pkgsrc/www/thttpd) and do the
standard make install clean dance.
When finished, you'll find the executable
(thttpd) in /usr/pkg/sbin and the very
simple configuration file (thttpd.conf) in
/usr/pkg/etc. As with the others, you can
start the web server using the onestart
option or you can enable the server in
rc.conf and reboot.

Lighttpd
Like nginx, lighttpd (Figure 2.d) is used
by a respectable number of web
sites – according to Netcraft, nearly 3
million in January, 2009. Lighttpd has
the largest code base of the servers
examined here, hitting nearly 2 MB of
code. Lighttpd is actively maintained.
Executable size is about half of nginx
at around 200 kB, and the maximum
amount of memory used when serving
five pages per second was 1640 kB.
Building and installing is the same for
lighttpd as for the rest of the packages
available in the package source. The
configuration file is found at /usr/pkg/
etc/lighttpd/lighttpd.conf and the
executable is located in /usr/pkg/sbin.
Start lighttpd by using the onestart

Listing 4. Steps to build nginx

-bash-3.2$ cd /usr /pkgsrc/www/nginx

-bash-3.2$ sudo make install clean

Listing 5. Modifying the Boa configuration file boa.conf

Boa v0.94 configuration file

<snip>

Port: The port Boa runs on. The default port for http servers is 80.

If it is less than 1024, the server must be started as root.

Port 8080

#Port 80

<snip>

ErrorLog: The location of the error log file. If this does not start

with /, it is considered relative to the server root.

Set to /dev/null if you don't want errors logged.

If unset, defaults to /dev/stderr

ErrorLog /home/hayford/boa/error_log

#ErrorLog /var/log/boa/error_log

<snip>

Access logging.

AccessLog /home/hayford/boa/access_log

#AccessLog /var/log/boa/access_log

<snip>

DocumentRoot: The root directory of the HTML documents.

Comment out to disable server non user files.

DocumentRoot /home/hayford/boa

#DocumentRoot /var/www

<snip>

MimeTypes: This is the file that is used to generate mime type pairs

and Content-Type fields for boa.

Set to /dev/null if you do not want to load a mime types file.

Do *not* comment out (better use AddType!)

MimeTypes /home/hayford/boa/mime.types

#MimeTypes /etc/mime.types

<snip>

36 BSD 4/2009

how-to’s

37www.bsdmag.org

Web Servers for Embedded NetBSD

option or enable it in /etc/rc.conf to
start it on boot up.

Boa
Boa (www.boa.org, Figure 2.c) is a
small, single-tasking HTTP server that
operates within a single thread, internally
multiplexing all incoming requests.
According to documentation on the Boa
website, the server can handle several
thousand hits per second on slow 300
MHz Pentiums and dozens of hits per
second on a 20 MHz 386. The strange
selection of hardware in the quoted
benchmarks point out one issue with
Boa – though popular in the embedded
Linux community because of its small
size, Boa does not seem to be under
active development. Version 0.94.13, the
last stable release, came out in 2002
and is available from SourceForge but
that version won't build under NetBSD.
The more recent (2005) version,
0.94.14rc21, will build under NetBSD and
is available from the Boa website. There
are 26 source code files (*.c) and seven
header files (*.h). To get and build Boa,

follow the command line instructions in
Listing 4.

The out-of-the-box build of Boa is
212 kBytes in size – much larger than
what I expected given the amount of
source code. Though I didn't check,
Boa probably includes a largish chunk
of memory that is initialized or static
and thus included in the executable.
The website reports that Boa has
been built as a 32 kB executable on
a uCLinux system, so presumably you
can make it smaller if you work at it.
You'll also need to install Boa manually,
though that's not hard. There are several
items in the configuration file that you'll
need to fix, which you will find in ~/boa/
boa-0.94.14rc21/boa.conf. The lines I
changed are shown in Listing 5, and are
pretty self-explanatory other than the
need for a file that Boa doesn't provide
(but see below for mime.types). Boa
doesn't support chrooting for security
purposes, but relies on the user/group
in the configuration file (if you run as
root) or your user/group identity to
limit the files that Boa can read and

serve. This is probably acceptable
for a server on a limited embedded
processor, but almost certainly not ok
for a more sophisticated system. Don't
forget that if you don't run as root, you
can't use port numbers less than 1024.
Listing 5 assumes you are running Boa
as yourself, so point the browser URL
appropriately (i.e., 192.168.1.240:8080/,
for my particular setup).

One difficulty in running Boa is that it
needs a file mime.types, which in Linux
systems is put in the /etc directory but
doesn't seem to be hanging around
in NetBSD unless you've installed
certain other software. The file itself is
just a listing of file extensions and the
associated mime types so that Boa
knows what to do when asked to send a
certain file type – for example:

 application/octet-stream bin dms lha

lzh exe class so dll img iso

 text/html html htm

 text/parityfec

 text/plain asc txt

text pm el c h cc hh cxx hxx f90

If you don't have the file, Boa will assume
everything is text and the web page will
be displayed as a text file, not as a web
page. You can get a copy of mime.types
from /usr/pkgsrc/mail/sylpheed/files.
As you can see from the boa.conf file, I
put a copy of this file in the directory I
used to build boa.

To run Boa, just put a copy
somewhere in the path (or include the
path in the invocation) and tell it where
the configuration file is located. Boa
moves itself to the background and
continues to monitor the port/address
combination you specified in the
configuration file. To stop Boa, you'll need
to find its process id (use ps waux) and
then kill it. For example:

 -bash-3.2$./boa-0.94.14rc21/src/

boa -c /home/hayford/boa

 <web server is active>

 -bash-3.2$ ps -waux | grep boa

 hayford 27692 0.0 3.1 1008

1000 ttyp0 S

 bash-3.2$ kill 27692

 <web server stops>

bozohttpd (NetBSD httpd)
According to the author, the main
feature of bozohttpd is its lack of Figure 2. Web server logos. (Note: Bozohttpd doesn't have a logo)

Listing 6. Modification to /etc/inetd.conf to run bozohttpd as a inetd resource instead of a daemon

$NetBSD: inetd.conf,v 1.58 2007/10/16 02:47:14 tls Exp $

Internet server configuration database

@(#)inetd.conf 8.2 (Berkeley) 3/18/94

http stream tcp nowait:600 _httpd /usr/libexec/bozohttpd

bozohttpd /var/www

http stream tcp6 nowait:600 _httpd /usr/libexec/bozohttpd

bozohttpd /var/www

#

<snip...>

36 BSD 4/2009

how-to’s

37www.bsdmag.org

Web Servers for Embedded NetBSD

features, thereby reducing code size
and improving security. It is certainly the
smallest of the web servers that we are
examining here – version 20080303
checks in at 55 kB for the compiled
code. It is also unique in that it was
originally written to run on NetBSD and
has now been ported to other *nixes.
It, and it's author, should receive some
kudos just for that. Bozohttpd supports
CGI/1.1 and HTTP/1.1, HTTP/1.0, and
HTTP/0.9. Added to NetBSD-5, meaning
it appears in versions later than 4.99.1,
bozohttpd is the default web server for
NetBSD, appearing as /usr/libexec/

httpd. Note that the name interferes
with Apache, which also calls itself
httpd, though Apache normally installs
itself to /usr/pkg/sbin. It is, however,
still offered as a standalone package in
the source packages for those running
earlier versions under /usr/pkgsrc/

www/bozohttpd. To avoid confusion, we
will continue to refer to the program as
bozohttpd.

Another difference between
bozohttpd and the other web servers
examined here is that bozohttpd will run
just as easily through the inetd server
as it does a stand-alone daemon.
To do this, you must add or modify a
line (or two, if you are using IPV6) in
the file /etc/inetd.conf as shown in
Listing 6. The inetd server in your /
etc/defaults/rc.conf file must also be
enabled. In a nutshell, what this means
is that bozohttpd is normally not running
unless a web request is received on
port 80 (as the default – change this
in inetd.conf if you want a different port).
The tradeoff is that bozohttpd isn't taking

up room in the device's memory space
if nobody is browsing your device, but
the web response is slowed down by
the need to load and run bozohttpd
each time the device receives a request
for a web page. You can, however, run it
as a background daemon by invoking it
on the command line as

 -bash-3.2$ /usr/libexec/bozohttpd -

b -I 8080 /home/hayford/bozohttpd

where -I specifies the port number
that bozohttpd should bind to and the
directory at the end is where bozohttpd
should look for the web pages. The
command line invocation illustrates
a final difference; bozohttpd doesn't
require a configuration file, using the
command line to control the available
settings. Note that port 8080 is used
in this example, and not 80 – you can't
use port values less than 1024 unless
you run bozohttpd as root (as inetd
does). For the comparison that we are
doing here, bozohttpd would show very
poorly if we use the inetd mechanism
rather than running the program as a
daemon – it can't, in fact, even keep
up with the 5 requests per second that
we're using for our test. But, it's a nice
option if you know that it will work for
your application.

Bozohttpd has a few issues. It
appears to spawn a thread for every
web request, so even as a daemon it
runs perceptibly slower than the others.
The data from top, however, doesn't
show this since most of the work is
done in the launched threads and not
in the main process.

Consequently, the time recorded
for bozohttpd is less than it would be
if all of the CPU time was credited to
the main process and I had to estimate
the amount of time spent in the threads
(mainly reading the file and sending it
over the network).

My estimate of 5.3% is probably
a little low, since boa, measured at
6.6%, appears to deliver the web page
faster than bozohttpd; a better timing
mechanism than top would be needed
to measure the time more accurately.
With bozohttpd as the server, the image
display in the web browser would
stutter on occasion, though the display
was rock steady with the other four
servers.

Conclusion
In this article, we've shown how to build,
configure, and run five web servers on
small embedded processors running
NetBSD. All five work pretty well and
can serve as the basis of a powerful
user interface for your next embedded
project. If you are using the web server
to control your device, you'll want a
server that allows CGI; all of the tested
servers do. For embedded applications,
memory size is probably the most
important consideration. Here, httpd (the
built-in server for NetBSD, also known
as bozohttpd) and boa (popular with the
embedded Linux crowd) are the clear
winners. Boa, however, appears no
longer to be under active development
and thus may not be the best choice.
Boa is also the only server that doesn't
support chrooting to another directory,
an important security feature for any
device that will appear on the Internet
instead of a local intranet. If a more
powerful application is required, though
that would be unusual for an embedded
processor, Nginx and Lighttpd are good
choices. Both are powerful and actively
maintained and developed, so security
enhancements and the addition of new
capabilities for these are likely.

NetBSD is already famous for
powering the only network-capable
toaster in the world. Now, if they would
just add a web server ...

• Comparison of lightweight web
servers, http://en.wikipedia.org/wiki/
Tiny_web_servers.

• Another good reference on lightweight
web servers can be found at http:
//www.ibm.com/developerworks/web/
library/wa-ltwebserv.

• Boa web server, www.boa.org.
• Thttpd web server, www.acme.com.
• Lighttpd web server, www.lighttpd.net.
• Nginx web server, nginx.net.
• Bozohttpd (httpd), www.eterna.com.

au/bozohttpd.

References Don Hayford is a Research Leader at
Battelle Memorial Institute, where he
specializes in the development of data
acquisition systems for customers. Don
has been involved with microprocessors
from the time they doubled in size from
four bits to eight, and once knew how to
boot up a PDP-11 using the front panel
switches. In his career, he has written
software for the CP/M, RT-11, MS-DOS,
Apple DOS, Windows, Linux, and BSD
operating systems using assembler, Basic,
C, C++, C#, and Fortran. Married with three
children, Don and his wife like to spend
their free time cooking and travelling.

About the Author

38 BSD 4/2009

how-to’s Out-of-the-box sshfs on NetBSD 5.0

39www.bsdmag.org

Out-of-the-box sshfs on
NetBSD 5.0
Sshfs makes it possible to mount a remote directory tree onto the local machine. Only
ssh access is required for this.

Antti Kantee

The mounted directory tree and the files it contains can
then be accessed and modified by any application on
the system as if the files were local. If only ssh access
to a remote machine is possible, sshfs provides a

much more practical way to access and manage files than
scp'ing them back and forth.

Sshfs is special in that generally use requires no special
setup or planning. If ssh access to a remote machine exists, any
file system subtree the user has access to can be mounted. In
contrast, mounting for example NFS over the internet requires
complex access control and VPN tunnels in order to be secure.

Starting from the recently released NetBSD 5.0, sshfs
support is present out-of-the-box on major architectures (i386,
amd64, sparc64 and macppc). This means that no kernel
compilation or installation of 3rd party packages is required
for use; ssh access and running the sshfs command manually
or via /etc/fstab is simply enough.

The sshfs implementation on NetBSD has been
implemented on top of the NetBSD userspace file systems
framework: puffs. The NetBSD implementation is called puffs
sshfs or psshfs for short. For the remainder of this article we
use the term sshfs to denote the general concept of mounting
a file system over ssh, and psshfs to denote the NetBSD
implementation of sshfs.

This article goes over the basics of using sshfs on NetBSD
5.0. This is followed by an in-depth discussion about tuning
an sshfs mount for maximal performance. Some advanced
use-cases are presented. The article ends by presenting some
features of psshfs currently under development and appearing
after NetBSD 5.0.

Mounting
A file system must be mounted before files on it can be
accessed. For psshfs this is done with the mount_psshfs

command. The syntax is similar to any mount command,
and takes two arguments: the file system source and the
directory the file system will be mounted to. In its simplest
form, a psshfs mount requires running the command
mount_psshfs server.dns.name /mountpoint. This will do
ssh authentication and, if succesful, mount the user's home
directory from the host server.dns.name under the local path
/mountpoint. The remote server can be accessed until the
directory is unmounted. This is done by running umount /

mountpoint.
Next we will go over a subset of noteworthy issues in doing

a psshfs mount. The full usage of the mount_psshfs command
is described in the mount_psshfs(8) manual page.

Mounting as a regular user
Historically, file systems are mounted as root. It is possible
to mount all puffs file systems and therefore psshfs as
regular users. Mounting psshfs as a normal user has two
implications:

• less daemons on the system run with root privileges
• the ssh keys of the user doing the mount are

automatically used

To mount be able to mount as any user on NetBSD 5.0, the
following two tasks must be done by root:

• The sysctl knob vfs.generic.usermount must be set to
non-zero. This can be done either manually with the sysctl
utility after every reboot, or by setting the variable in /etc/
sysctl.conf.

• The user doing the mount must have read/write access
to the file /dev/putter. This can be done by running the
appropriate chmod/chgrp/chown commands. The device

38 BSD 4/2009

how-to’s Out-of-the-box sshfs on NetBSD 5.0

39www.bsdmag.org

node /dev/putter is used only by
puffs on NetBSD 5.0, so changing its
permissions affect only the ability to
mount puffs file systems.

Understanding
and tuning caching
To improve performance, psshfs
caches results from the server locally.
This cached data includes directory
contents, file attributes and file
contents. If all access to the server is
done through the mounted file system,
there is no issue with cache coherency.
However, if access is done via another
route, e.g. with scp, psshfs is unaware
of it and the locally cached copy will
no longer match the reality on the
server. Future access to that data will
be satisfied from the stale information
in the cache.

The sftp protocol does not support
notifications for modified files, so psshfs
uses timeouts to address the caching
issues. By default, directory contents
and the attributes of the files in it are
re-read from the server if over 30
seconds have elapsed since the data
was cached.

The file content cache works
differently. When file attributes are read
from the server, the timestamps of the
files are compared against previously
read values. The cached local
contents for a file are invalidated if the
timestamps do not match. Therefore, it
is possible to have large amounts of
data in the local cache for long periods
of time if the files do not change on the
server.

All the caches implemented by
psshfs may be flushed at any time by
the kernel if the operating system is
undergoing resource shortage. In case
accessing data which is expensive to
read from the server due to e.g. a slow
link, it is worth considering making a
local copy.

It is possible to set the timeout value
for the attribute cache. This is done
with the -t <timeout> command line
parameter. There are three cases:

• no timeout. The attribute cache is
always valid. This option is selected
by setting timeout to -1.

• immediate timeout. The attribute
cache is never valid. This option is
selected by setting timeout to 0. It

should be noted that this will severely
degrade performance. Unless there
is a strong reason, immediate
timeout is not recommended.

• n second timeout. Timeout happens
after the specified number of
seconds. The default is 30.

In all cases, it is possible to force psshfs
to invalidate all cached attributes by
sending SIGHUP to the psshfs process.

When writing, psshfs always flushes
caches immediately, so data will be
available on the server as soon as
it has been transmitted over the ssh
connection. It is therefore possible
to copy a file to a psshfs mount and
access it on the server as soon as cp
exits.

Read-ahead
To speed up sequential reading of files,
the kernel performs read-ahead for file
contents. This means that if sequential
access is detected or suspected, 64kB
blocks are read from subsequent offsets
before applications actually access the
data at those locations. If the read-
ahead speculation was correct, in the
best case the data will be in the local
cache already when the application
requests it.

However, since sftp operates over a
single TCP connection and commands
are processed in-order, a large amount
of read-ahead over a slow channel
will cause other operations to slow
down. For example, if read-ahead
requests for 8x64kB of data were just
sent over a 512kbps link, interactive
commands such as ls would have to
wait approximately 10 seconds before
all the read-ahead data was transferred

and the results for the directory listing
would start arriving.

To mitigate the above, psshfs provides
the -r switch to limit the number of
outstanding read-ahead requests. For
example, in the above example if read-
ahead was set to 2, the wait time would be
reduced to 2.5 seconds. The general rule
is that the value should be set higher as
latency increases and lower as bandwidth
decreases and should be tweaked only if
problems are noticed. There should be no
need for adjustment on a LAN.

Persistent connections
Occasionally, a TCP connection drops.
This is usually due to transient network
errors. The default action of psshfs
is to unmount the file system and
make future access to open files in
the mountpoint fail. However, in some
cases it is desirable to make access
block while a reconnect is attempted.
This, for example, saves from having
to warm the local cache if reconnect
is succesful. On the downside, if
reconnect is not succesful within a
small timeframe, the mountpoint may
appear to hang. Notably, in case ssh
password authentication is used, the
password will have to be re-entered
manually each time a reconnect
happens.

A persistent mount may be specified
with the -p flag. The default is non-
persistent.

ssh options
It is possible to specify any ssh
connection option to a psshfs mount. A
useful example might be compression:
-O compression=yes. All ssh options are
specified using the -O option=value

Figure 1. Simplified psshfs architecture

������ ������

�����

����� ��

����

�����

��� ������ ���

�����

����

����������

40 BSD 4/2009

how-to’s
command line parameters. The possible
ssh options are documented in the ssh_
config(5) manual page.

fstab
Just like with any other file system, it
is possible to specify frequently used
mounts in /etc/fstab. The file system
type to be used in the third column is
psshfs. Other than that, standard fstab
syntax applies. The first column is the
first argument to the mount command,
the second column is the mountpoint
and the fourth column lists options to be
passed to the mount command. Some
examples along with their descriptions
are presented in Listing 1. The examples
have been adapted from the author's
laptop. The common theme with all of
them is noauto, since the laptop might
not be connected to a network at boot-
time.

Options in the fourth column are
as excepted. In fstab the options are

specified with -flag=value. In the case
of an ssh option, value is actually
ssh_option=ssh_value. This leads to
the slightly odd-looking values with two
equals signs. For example, the combo
-O=port=443 specifies that ssh should
use 443 as the port when it connects to
the remote server.

Use case examples
Next we go over some examples of
how to use sshfs. It is not meant as an
exhaustive list, but merely to give some
ideas to the reader.

Sshfs is most useful in a single-
user dynamic environment, such as a
laptop or personal desktop. It is also a
good alternative to nfs for single user
systems. For example, the author has
replaced his nfs mounts on his home
system with sshfs. The advantage of
using sshfs instead of nfs is that the
home server can be mounted from
virtually anywhere with a network

connection without tunnel setups.
Performance especially for the non-
LAN case is the same or even slightly
better (The performance of psshfs as
compared to nfs was measured in
the AsiaBSDCon 2008 paper Send
and Receive of File System Protocols:
Userspace Approach With puffs. The
paper also goes into detail about
the implementation of psshfs and is
recommended reading for anyone with
more interest on the subject.).

In case reading email the old-
fashioned way on a shell server, it is
benefitial to mount the home directory
of the shell server. This way any
attachments can be saved to the shell
server home directory and viewed on the
desktop machine that was used to ssh to
the mail server without any extra copying.
However, accessing the mail spool
directly over psshfs is not recommended,
as mailbox locking has not been verified
to work.

A common case for the author is to
include source code diffs in sent email.
If the mail server is mounted on the
workstation, the output of the vcs diff
command can be redirected onto the
mountpoint without a need for extra local
copies. After the diff has been attached
to the email and sent from another
terminal, it can be removed with rm !$
(on any csh-type shell).

Special case setups
As mentioned in the introduction, the
default case requires no prior setup
before. However, since it is possible to
explicitly disable sshfs support either at
the server side or the client side, we will
go over what needs to be enabled.

Client
The client side, i.e. the host doing the
mount, depends on puffs support.
While the puffs kernel driver is enabled
by default on major architectures on
NetBSD 5.0, it is possible to compile
a custom kernel that lacks support,
such as one derived from pre-5.0
sources. Enabling puffs on NetBSD
5.0 is a matter of two lines in the
kernel configuration file, as illustrated
in Listing 2. After this, the kernel is
normally recompiled and installed.
Early in the NetBSD 5 release cycle it
was necessary to add a configuration
knob do a complete rebuild of the base

Listing 1. psshfs examples for /etc/fstab

my home directory from the CS lab's shell server

theserver.hut.fi /m/school psshfs rw,noauto

home directories on ftp.netbsd.org. Use compression

ftp.netbsd.org:/home /m/nbftp psshfs rw,noauto,-O=compression=yes

home server from ssh port 443. No timeouts.

dungeonmaster:/m/dm /m/dm psshfs rw,noauto,-O=port=443,-t=-1

Listing 2. Enabling puffs in the NetBSD kernel configuration

file-system PUFFS

pseudo-device putter

Listing 3. Enabling sftp in OpenSSH sshd on NetBSD

Subsystem sftp /usr/libexec/sftp-server

Listing 4. Free space reporting in NetBSD 5.0 and NetBSD-current

netbsd-5> df -h /m/dm

Filesystem Size Used Avail %Cap Mounted on

dungeonmaster:/m/dm 0B 0B 0B 100% /m/dm

netbsd-current> df -h /m/dm

Filesystem Size Used Avail %Cap Mounted on

dungeonmaster:/m/dm 456G 337G 120G 73% /m/dm

Out-of-the-box sshfs on NetBSD 5.0

there is an option to open separate sftp
connections for bulk data transfers and
directory operations. This means that
directory operations are now processed
in parallel with reads and writes and do
not have to wait for them to complete
before being processed. On a low-
bandwidth link this can be a significant
win and has been shown to speed
response time by a factor of 30. Multiple
connection mode is enabled with the
-c 2 flag. The default is still one sftp
connection per mount.

system, but this is no longer required for
NetBSD 5.0 – the userspace binaries
necessary for psshfs are now installed
by default.

Server
Sshfs uses the ssh sftp subprotocol for
file access. This is usually on by default
and available for use. An easy way to test
if an ssh server has sftp enabled is to
connect to the remote server using the
sftp command. If sftp has been disabled,
it can be enabled on the server side in
sshd_config as illustrated in Listing 3. This
requires an intervention from the server
admin.

Beyond NetBSD 5.0
While psshfs is fully usable on NetBSD
5.0, there are a couple of interesting
features currently available in the
development branch of NetBSD and
will be making their debut with NetBSD
6.0.

The author is a NetBSD developer and the
author of psshfs and puffs.

About the Author

Free disk space
The standard sftp protocol does not
provide a method for querying free disk
space on the server. However, OpenSSH
provides a protocol extension which
allows to request this information. The
development version of psshfs uses
the OpenSSH protocol extension and
reports the free space at the remote
mountpoint.The difference between
the old and new output is illustrated in
Listing 4. It should be noted that since
sftp does not know about the server's
mountpoints, the figures might be valid
only at the remote mountpoint and not in
any subdirectories, since they might be
in a different file system. Also, free disk
space reporting works only on OpenSSH
servers.

Better interactive performance
As mentioned in the section on read-
ahead, heavy data reads can starve out
directory operations. On NetBSD-current

a d v e r t i s e m e n t

42 BSD 4/2009

security corner FreeBSD Security Event Auditing

43www.bsdmag.org

FreeBSD Security
Event Auditing

Security is increasingly a hot topic in systems administration. Vulnerable systems get
patches, firewalls get set up and password policies are enforced. But in the end, all
these measures cannot eliminate the risk of a system break-in. They can only reduce it.

Christian Brueffer

Thus, care has to be taken that break-ins do not
go unnoticed and the vulnerable point where the
break-in occured can be found. This is where the
security event auditing system, or short audit , can

be of help.

Security Event Auditing
Audit was first introduced in FreeBSD 6.2 and is part of the
default kernel configuration since FreeBSD 7.0. Basically, audit
is a kernel-based logging mechanism. It records interesting
kernel events like program executions and file openings, as
well as events like user logins submitted to the kernel by
privileged userland programs. They are logged into binary
files, so-called audit records, in Sun's BSM file format. These
trail files can then be converted to human-readable output
using the praudit(1) utility. Among audit's key features are the
ability to reliably map events to users, and the fine grained
configurability of which events to log.

Configuration
On systems running at least FreeBSD 7.0, audit is supported
out of the box. On older systems, the kernel has to be built
with options AUDIT. Given that, all it takes to enable audit is
adding

auditd_enable="YES"

to /etc/rc.conf and rebooting, or alternatively running

/etc/rc.d/auditd start

to ensure that the audit daemon is running. It is responsible
for managing the trail files and to pass the configuration of the
audit system on to the kernel.

The system can be configured through files residing in
the /etc/security directory. The main configuration file is
audit_control:

dir:/var/audit

flags:lo

minfree:20

naflags:lo

policy:cnt

filesz:0

The most interesting directives in the above default configuration
are flags and naflags. They specify which classes of events
should be audited for all users (flags), and which of the events
that cannot be attributed to a specific user should be audited
(naflags). These event classes consist of events that fall into
the same broad domain.

For example, events like mounting a file system, setting the
hostname and rebooting the system are all part of the class
for administrative events, ad. Available event classes are listed
in the etc/security/audit_class file.

The events these classes consist of are listed in /etc/
security/audit_event. In the configuration above, the lo class
that stands for login and logout events (lo) is audited in both
cases. Here's an example of a successful login event by user
chris via SSH from IP address 192.168.1.23:

header,94,10,OpenSSH login,0,Thu May 22 08:48:43 2009, +

226 msec

subject,chris,chris,staff,chris,staff,947,947,54084,192.

168.1.23

text,successful login chris

return,success,0

trailer,94

42 BSD 4/2009

security corner FreeBSD Security Event Auditing

43www.bsdmag.org

However, the subsequent attempt to
switch to the root user failed:

header,106,10,su(1),0,Thu May 22 08:

48:46 2009, + 66 msec

subject,chris,root,staff,chris,staff,

955,955,54084,192.168.1.23

text,bad su chris to root on /dev/

ttyp0

return,failure : Operation not

permitted,1

trailer,106

Let's modify the configuration in /etc/
security/audit_control to also audit
program execution, using the ex event
class.

Further, we instruct the audit system
to log the command line arguments,
argv, that are passed on to programs.

flags:lo,ex

policy:cnt,argv

For these changes to take effect, we
need to instruct the system to reload its
configuration. This is done by running the
audit -s command. It sends a trigger
to the audit daemon to synchronize its
configuration, close the current trail file
and open a new one.

Meanwhile, user chris entered the
correct su(1) password and thus switch
to the root user. In the following log he
uses cat(1) to look at the contents of the
/etc/group file:

header,129,10,execve(2),0,Thu May 22

08:57:26 2009, + 487 msec

exec arg,cat,/etc/group

path,/bin/cat

attribute,555,root,wheel,92,12,1784

subject,chris,root,wheel,root,wheel,1

026,1013,55821,192.168.1.23

return,success

trailer,129

This highlights one of the great features of
the audit system: It can track a user even
after he switches to the root user. Looking
at the line beginning with subject, user
chris can still be clearly identified.

If, e.g., the root password of a system
is known to several people, this can
be used to reconstruct the actions of
everyone of them.

Also, since the audit system directly
logs the invocation of the execve(2)
system call, program execution is

recorded reliably and cannot be
circumvented. If arge is added to the
policy options in audit_control, even the
environmental variable argument to the
execve(2) call logged.

Sometimes we only care about
specific users, or want different policies
for different users. In this case, the /etc/
security/audit_user file is of help. It lets
us specify, which event classes always to
audit, and which events never to audit on
a per user basis:

root:lo,+fr:no

This entry tells the audit system to
always record logins and logout, as
well as successful file reads. The never
to audit field just contains the invalid
class no. The + modifier in front of an
event class means, only log successful
actions. Similarly, – means only log failed
attempts.

Analyzing Audit Trails
As already mentioned, audit trails are
stored in a binary format and can be
converted to plain text with praudit(1).

It is important to understand, that
audit trails store information about UIDs,
GIDs and audit in raw format. They are
only converted to human readable form
when run through praudit(1), which
relies on information contained in the
/etc/passwd and /etc/group files, /etc/
security/audit_event and others. This
also means that care has to be taken,
in case UIDs, GIDs or IP address are
reused, as it could change the meaning
of the audit trails later on.

There is a second important
that reads the binary audit trails,
auditreduce(1). It takes one or more audit
files as input, applies the user-supplied
filters and outputs a new binary trail file.
This means we usually want to pipe the
output though praudit:

auditreduce -a 20090519 -c -ex -u

chris /var/audit/20090604064647.20090

604065434 | praudit

This command line prints all of user
chris's failed attempts to execute
commands after or on May 19, 2009.

The auditreduce command is also
useful without the combination with
praudit, e.g. for reducing trail files before
archiving them.

Managing Audit Trails
Depending on how audit is configured
and how busy the system is, the
requirements on available disk space
and CPU time can be significant. For
this reason, the management options for
audit trails are important.

All of these options can be modified
in the /etc/security/audit_control file:

dir:/var/audit

flags:lo

minfree:20

naflags:lo

policy:cnt

filesz:0

By default, the kernel writes audit trail files
to /var/audit. This can be influenced
with the dir directive.

The minimum free space required on
the file system this directory resides on is
enforced with the minfree directive. In the
example above, at least 20% of the file
system have to be free. If this restriction
is violated, the /etc/security/audit_warn
shell script is executed. By default it only
sends a warning message to syslog, but
it could easily be modified to reduce and
compress trail files and send them to an
archive server or burn them on a CD.

The filesz option can be set to set an
approximate maximum size for tail files.
Once the maximum is exceeded, the
audit daemon closes the current trail file
and opens a new one.

Conclusion
This article gave a short introduction
to security event auditing on FreeBSD,
a powerful tool for system monitoring,
intrusion detection and post-mortem
analysis. Since the FreeBSD audit facility
implements the Sun BSM API and file
formats, it is even possible to utilize
already available third party software
written towards these interfaces. When
configured properly, the security event
auditing can be an important part of a
security architecture.

Further Information
FreeBSD handbook chapter: http:
//www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/audit.html.

Manpages: audit(1), auditreduce(1),
praudit(1), bsm(3), audit(4), auditpipe(4),
audit_control(5)

44 BSD 4/2009

security corner Securing OpenSSH server – SSH paranoia

45www.bsdmag.org

Securing
OpenSSH server
OpenSSH is free implementation of SSH suite. Many of us use it on a daily basis and
got so used to it we couldn’t imagine our lives without it.

Marko Milenovic

There are quite a few people who don't know there were
other, not so secure, systems for remote access in the
past – telnet, rlogin, rsh, and rcp. So, what makes
OpenSSH so special? The keyword is security. Unlike

suites used in the past, OpenSSH implements very advanced
security for data protection. Both data and passwords are
encrypted all the time and in a transparent way. The OpenSSH
team has worked really hard to make this tool even better. We'll
be using the latest OpenSSH version in this text – 5.2/5.2p1.

Securing the server itself – sshd_config
Depending on which BSD you use your default OpenSSH
configuration file may differ. In order to avoid confusion, this text
will cover all the configuration tips, and may include some that
are already set. Config file that interests us the most is called
sshd_config and it's usually located at /etc/ssh/sshd_config but
this may differ. For example, if you use OpenSSH-portable on
FreeBSD your config file will be located at /usr/local/etc/ssh/
sshd_config.

Port 9999

Protocol 2

LoginGraceTime 1m

PermitRootLogin no

StrictModes yes

MaxAuthTries 4

MaxSessions 5

AllowUsers johndoe

PermitEmptyPasswords no

Let's see what has been achieved by the changes made above.
First of all listening port has been changed from 22 to 9999. A
few people will argue that there is no real point in changing
this since a skilled attacker may conduct a port scan and find

our SSH service running on port 9999. While true, why not make
things more complicated for our attacker? On the other hand
changing this port will prevent some brute force attempts done
by certain scripts which go for port 22 by default.

The second line ensures that only SSHv2 is used. SSHv1
doesn't offer all the security of SSHv2 thus there is no reason
to use it.

By default server will drop the connection if the user hasn't
logged in within 2 minutes. LoginGraceTime tells our server for
howlong to wait. Putting 0 here makes no time limit.

We definitely don't want our root user to be able to login via
SSH. Though OpenBSD allows root user login by default that
is just so that we may access newly installed system over the
network, add limited user account and then change this. Keep
this in mind.

Putting StrictModes to yes tells out SSH server to check file
modes and ownership of the user's files and home directory
before accepting login. This may be useful because new and
inexperienced users may leave their data world writable.

The next line tells our server after how many failed login
attempts to drop the connection. Once the number of failures
reaches half this value, additional failures are logged. In our case
user may try and login twice, after that his attempts will be logged
and after the fourth attempt the connection will be broken.

MaxSessions tells our server how many sessions user
may open per network connection.

We now state the exact list of users that may login via SSH.
You may also use AllowGroups if you have a lot of users using
SSH. If that number is low using AllowUsers is just fine.

The last line simply disallows paswordless accounts to
access the system.

Our SSH server is now even more secure. Yet, this is not
the end. Let's take a look at a few more options we want to
change.

44 BSD 4/2009

security corner Securing OpenSSH server – SSH paranoia

45www.bsdmag.org

X11Forwarding no

UsePrivilegeSeparation yes

VersionAddendum

X11Forwarding allows our users to run
X11 applications over SSH connection.
If there is no good reason this option
should be set to no.

UsePrivilegeSeparation tells sshd server
to create an unprivileged child process to
deal with incoming network traffic. After
the user has successfuly authenticated
another proces is created that has the
privilege of the authenticated user. The sole
purpose of this option is to prevent privilege
escalation by containing any corruption
within the unprivileged processes.

And finally, let's not say to the
world which OS are we running our
SSH server on. For example, by default
VersionAddendum on FreeBSD says
something like FreeBSD-20080901. Let's
just leave this empty.

Changing configuration of our SSH
server to the values above will make it
more secure but this is not enough.

Changing options per user
Let's asume you might want to change
some options on per user basis. Let
some users have some of the options
turned on or off. To override setting on
per user basis use the following:

Match User johndoe

 X11Forwarding yes

This will allow using X11 for user johndoe.
Note that some of the options can't be
overridden here.

Using keys instead of
passwords
One should try and avoid using system
passwords to login whenever possible.
Thou OpenSSH sends all the data
through an encrypted channel using
system passwords may be dangeorus
since anyone who gets them may
access the system. That is why there is a
much better solution – using SSH keys.

When we edited our sshd_config file
we ommited three lines which you most
probably noticed:

#RSAAuthentication yes

#PubkeyAuthentication yes

#AuthorizedKeysFile .ssh/

authorized_keys

Since we do want to use key based
access do uncomment these lines. Our
second step will be to generate the keys

on our local machine. This may be done
by doing the following: see Listing 1 and
2.

Listing 1. Generating RSA key

ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/johndoe/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/johndoe/.ssh/id_rsa.

Your public key has been saved in /home/johndoe/.ssh/id_rsa.pub.

The key fingerprint is:

92:1c:a3:14:d2:ff:ea:3b:fe:47:f0:f7:42:6d:20:e2 johndoe@localhost

Listing 2. The key's randomart image

+--[RSA 2048]----+

| ... |

| ... |

| ..o |

| . o.+o . . |

| . +oS+ . o |

| .E o o o |

| . . o o |

| o . . . |

| o++.. . |

+-----------------+

Listing 3. Chrooting CSH

cp /bin/csh /chroot/bin/

ldd /bin/csh

/bin/csh:

 libncurses.so.7 => /lib/libncurses.so.7 (0x80067d000)

 libcrypt.so.4 => /lib/libcrypt.so.4 (0x8007c9000)

 libc.so.7 => /lib/libc.so.7 (0x8008e2000)

Figure 1. OpenBSD logo

46 BSD 4/2009

security corner
We have now generated our RSA

keys which we'll be using for accessing
our remote SSH server. Notice the part
that says Enter passphrase (empty for no
passphrase). You may use keys without a
password but one should be used for a
better security.

Our next step is to copy file called id_
rsa.pub to our remote server. This may be
done either by using SCP or SFTP. Once
there just move it to your .ssh directory
on the server and issue the following
commands:

cat id_rsa.pub >> authorized_keys

chmod 600 authorized_keys

It is very important to remember to
configure chmod part. If this file has
any other access rights our key based
authentication won't work. It is time to test
our settings.

ssh -p 9999 johndoe@remoteserver

Enter passphrase for key '/home/

johndoe/.ssh/id_rsa':

It works. If you wish you may disable all
other ways of authentication:

• PasswordAuthentication no
• UsePAM no

This will make sure that without a key no
one will be able to access our remote
server.

Chrooted environment
Wouldn't it be nice if we could lock
our users to certain directory so that

they won't be able to sniff around our
system? That is called chrooting. First
of all we would need to create chrooted
environment for our user. Note that once
the user logs in he will be kept in an
enclosed surroundings thus without any
commands and programmes we don't
give him. Let's say our chrooted directory
is /chroot/. When user logs in he will be
dropped out since that directory is empty
– no shell or any programme at all. For
him there is nothing beyond this /chroot/
directory. This means we would need to
give him some set of commands so that
he may login and work. Let's assume
that our user will be using CSH as his
shell. We find out that CSH is located at
/bin/csh. This means we must create
/chroot/bin/ and copy csh executable
into it. Once we do that we need to check
what libraries are needed so that csh
actually works: see Listing 3.

So, we also need three libraries copied
from /lib into /chroot/lib/. Once we do
this our user will be able to login and... do
nothing. Giving him just csh is not enough.
He will need something more in order to
work normally. Which system commands
will you provide him depends only on you.
It is usually normal to copy: ls, cd, mv, cp...
and similar to /chroot/. Make sure you
check each and every of them using LDD
and to copy all needed libraries into chroot
directory. You will also need to create /
chroot/home/username as his new home
directory. User will be able to work but
won't be able to access our system. When
he issues something like:

cd /

he will be dropped into /chroot/ dir
meaning no access to real root directory
of our system.

The last thing we should do is modify
our SFTP instance. The original line
holds:

Subsystem sftp /usr/local/libexec/

sftp-server

We want this changed to:

Subsystem sftp internal-sftp

Conclusion
The OpenSSH team is doing a really great
job in making sure our favorite remote
access system works good and stays
secure. With just a little good practice
on our side and by using the tools
development team created for us we may
tighten this already secure system. One
may argue that some of the tips given in
this text are a bit too much. When it comes
to security little paranoia nevers, right?

So, is all this enough to feel secure?
Yes, in most cases you should feel rather
secure. You should keep in mind a few
facts. Though OpenSSH is developed by
people devoted to security it is still just a
software. A sofware has bugs and issues.
In order to really be secure it is suggested
you keep an eye on the development of
OpenSSH and do regular updates. The
development team is doing a great job
keeping OpenSSH up to date and fixing
all the issues and security problems as
soon as possible. You may keep an eye
on this page: http://www.openssh.com/
security.html It is a list of all know security
issues within all versions of OpenSSH.
This way you’ll know when is the time to
either look for a patch or a new version
of OpenSSH. Always keep in mind that
your server will be as secure as you are
careful and responsible about the things
you do on it.

Figure 2. Modifying your sshd_conf file

Marko Milenovic works as a security
consultant. He is coordinator of BSD Serbia
– Serbian BSD community and Core team
member of Free Software Foundation
Europe. He works and lives in Belgrade.
You may find his regular security rants at
http://www.sekuritatea.com/

About the Author

47www.bsdmag.org

Imagine the scene. You have a PC running BSD-
based system and Windows. Files access on BSD
certainly takes you few seconds and clicks. Switching
between BSD and Windows does not trouble you any
more. Finally, you easily copy necessary files from the
former OS to the latter one.

Or, alternatively, you have installed BSD derivate on
your virtual machine to make experiments with new
software. Each time whenever you need to access
BSD file you do not launch or configure your virtual
machine. Totally enjoying speed you gain access to
any interested file on it within a moment. It is fantastic
how quickly and easy you drag required files from the
virtual machine running BSD to host Windows!

Does that sound unbelievable? Well, not with UFS Explorer.

UFS Explorer

The lion's share of the top qualitative
desktop software available in the
world computer market is developed
predominantly for Windows application.
As a result, users who already have BSD
operating system are forced to install
Windows as well. Yet, this neighborhood
appears problematic. Continuous
switching from BSD to Windows troubles
data access. Moreover, it is impossible
simply to copy files from BSD to
Windows.

Additionally, many Windows users
who want to change the operating
system to BSD first install it on a
virtual machine. It is accounted for
their intention to test BSD avoiding any
modification in a computer configuration.
However, users face the need to start
and configure a virtual machine so as to
gain access to important BSD files. It is
inevitable unless they have specialized
software.

For UFS Explorer it is a usual
practice to access necessary data on
neighboring BSD-based systems along
with files exchange from BSD to Windows.
Therefore, it is an excellent alternative to
Windows drivers when it goes about
most winning access solution.

Besides, for UFS Explorer products it
is a matter of few seconds and clicks to

access necessary data on neighboring
virtual BSD-based systems. Furthermore,
it is possible to drag files from a virtual
machine running BSD to Windows
desktop.

UFS Explorer can serve as a helping
hand for any corporate user as well. No
matter where BSD is used (workstations
or servers), with UFS Explorer one can
gain fast access to necessary files on a
neighboring BSD and any BSD formatted
external storage medium.

However, the maximum benefit
using UFS Explorer is achieved when
working with back up copies on a
virtual server. The software provides
system administrators with a direct
access to required information on
virtual BSD servers. They can easily
retrieve important data from virtual
server backup files without launch and
configuration of a virtual machine as well
as reconfiguration of a guest operating
system so as to copy BSD files to a
target location.

In comparison with poor data access
a loss of data is a more serious problem.
It has particularly grave consequences
for companies as they take risks of
failure in the event of precious data loss.
BSD data recovery is one of the major
tasks accomplished by UFS Explorer.

With a profound efficiency it enables disc
data recovery on both workstations and
servers running BSD. It yields highest
quality results in case of data loss due
to logical failures such as formating,
software malfunction or accidental
deletion and hardware failures in a RAID
system with sufficient redundancy. UFS
Explorer can be successfully applied to
virtual machines for recovery goals as
well.

For further information about the wide
range of UFS Explorer features, please
visit www.ufsexplorer.com.

About the developer of
UFS Explorer
Utilizing the industry's finest Data
Access&Recovery tools and techno-
logies, LLC SysDev Laboratories works
out qualitative software solutions for all
the variety of operating systems, such as
Windows, Linux, BSD, Mac OS, Novell. A
rich experience in data recovery tasks
allows the company to create reliable
and highly efficient products which are
able to crack crucial data loss problems
within the shortest possible time.

Increase your work efficiency on
BSD systems with UFS Explorer

48 BSD 4/2009

security corner Staying Secure using PC-BSD

49www.bsdmag.org

Staying Secure using

PC-BSD
“Help! Pop-ups are destroying my computer!” I cannot count how many times I have
heard those words come from my brother's mouth.

James T. Nixon III

My first response is usually something like, what
have you downloaded lately? to which he usually
responds, NOTHING!... Of course. Well, he may
not understand that something as trivial as a

free screensaver can include malicious code turning his
computer into a pop-up ad hell. I have warned him countless
times about bad sites, but he can't tell good from bad, which
really shouldn't matter. A user should be able to browse the net
without the constant paranoia of being exploited. His excuse
is usually something like, the pop-up told me I had spyware,
so I just installed this one program to help. Aha! So you did
install something. Virus and SpyWare removal tools only further
condition the user into believing that this is the only safe way to
compute, and that getting infected is normal, like the common
cold.

There is the problem. Some users do not understand
the difference between a pop-up ad and an actual Windows
warning message. This may not apply to the people reading
this magazine, but I am sure we all have a relative or two with
similar issues. PC-BSD is geared towards these users, and
aims to be an easy and secure solution to desktop computing.
PC-BSD comes secure by default, using denyhosts to block
all brute force SSH attacks, pf to filter packets based on the
rules defined in /etc/pf.conf, and of course by requiring
administrator rights to install software. The system is also
kept secure by keeping PC-BSD up-to-date by issuing security
updates with th System Updater utility. This utility notifies the
user if an update is issued so that the user may double-click
the Notifier icon in the system tray and then choose which
updates to download and apply.

I have included the default /etc/pf.conf with comments to
briefly explain what PC-BSD is doing by default. Of course you
may ditch these rules for a set of your own, but at least you
know your child's computer is safe out of the box (Listing 1).

As shown above, PC-BSD is pretty secure by default.
In fact, you cannot SSH into your PC-BSD box unless you
add an exception to the firewall. To add an exception to
the firewall, go to menu>System Settings>Firewall, then click
'Run in Administrator Mode' and enter the administrator/root
password. This should bring up a window titled Firewall – KDE
Control Module. You may define whether the firewall should
run at startup. You can also stop, start, or restart the firewall by
clicking the corresponding buttons. To allow remote ssh into
the box, click the Exceptions tab and then click the Add Entry
button on the bottom left. From here you can select SSH from
the drop-down menu, which should default to port 22. Make
sure Direction is set to incoming, Protocol is set to TCP, and
that you have the correct interface selected. Now click Ok and
you should be able to SSH into your secure PC-BSD box. What
did this do exactly? Well, let's take a look at /etc/pf.conf and
find out.

from /etc/pf.conf

pass in on em0 proto tcp from any to (em0) port 22 keep

state

So the Firewall tool in PC-BSD is a simple front-end to add
rules to /etc/pf.conf. Good to know! In the above rule you can
see how it is set to allow TCP connections from anyone to port
22. This is what makes running PC-BSD great. You get all the
power, stability, and security of FreeBSD, without the hassle of
teaching your mother about manpages. This is why I suggest
PC-BSD to my entire family (and then quickly turn off my cell
phone...). I hope this brief overview on how PC-BSD keeps
itself safe from script-kiddies and Windows targeted malware
brings more people to PC-BSD. Remember, submit those bug
reports!

48 BSD 4/2009

security corner Staying Secure using PC-BSD

49www.bsdmag.org

Listing 1. /etc/pf.conf

from /etc/pf.conf

skip all packets on localhost

set block-policy return

drops packets with inconsistencies

scrub in all

setting the policy to be default deny and log

anything that isn't accepted

block in log

only allow packets on the interface from its network

antispoof quick for lo0 inet

block non-routable IP addresses

block in from no-route to any

everything outband is allowed

pass out keep state

 # everything in this table is loaded when pf

loads

 table <blacklist> persist file "/etc/

blacklist"

Allow icmp out from anybody to anywhere

pass inet proto icmp from any to any

Allowing anybody to connect to your machine with

either protocol from the specified port range

pass in proto {tcp,udp} from any to any port 49152:

65535 keep state

block everyone in the table, could be IP addresses

or IP ranges, etc..

block from <blacklist> to any

the following blocks can be written many ways. Here

we have each interface split up to pass the specified

UDP/TCP ports.

Filtering rules for the em0 interface

pass in on em0 proto udp from any to (em0) port 137

keep state

pass in on em0 proto udp from any to (em0) port 138

keep state

pass in on em0 proto tcp from any to (em0) port 445 keep

state

pass in on em0 proto tcp from any to (em0) port 137 keep

state

pass in on em0 proto tcp from any to (em0) port 139 keep

state

Filtering rules for the dc0 interface

pass in on dc0 proto udp from any to (dc0) port 137 keep

state

pass in on dc0 proto udp from any to (dc0) port 138 keep

state

pass in on dc0 proto tcp from any to (dc0) port 445 keep

state

pass in on dc0 proto tcp from any to (dc0) port 137 keep

state

pass in on dc0 proto tcp from any to (dc0) port 139 keep

state

Filtering rules for the fwe0 interface

pass in on fwe0 proto udp from any to (fwe0) port 137

keep state

pass in on fwe0 proto udp from any to (fwe0) port 138

keep state

pass in on fwe0 proto tcp from any to (fwe0) port 445

keep state

pass in on fwe0 proto tcp from any to (fwe0) port 137

keep state

pass in on fwe0 proto tcp from any to (fwe0) port 139

keep state

Filtering rules for the fwip0 interface

pass in on fwip0 proto udp from any to (fwip0) port 137

keep state

pass in on fwip0 proto udp from any to (fwip0) port 138

keep state

pass in on fwip0 proto tcp from any to (fwip0) port 445

keep state

pass in on fwip0 proto tcp from any to (fwip0) port 137

keep state

pass in on fwip0 proto tcp from any to (fwip0) port 139

keep state

Here is a simple example of a similar configuration,

but with less opportunity for commenting.

pass in on { em0, dc0, fwe0, fwip0 } proto { tcp, udp }

from any to { em0, dc0, fwe0, fwip0 } port { 137, 138,

445, 137, 139 } keep state

50 BSD 4/2009

security corner Stop Hackers With Protection Script

51www.bsdmag.org

Stop Hackers
With Protection Script
I suppose you have a border server that is freely accessible from the internet or you
just want to have a secure machine. Whichever the case is, I will tell you my story.

Svetoslav P. Chukov

I have a server that offers some services on the internet
and I was happy to have it up and running for long
time. But, one day, the server started crashing without
a reason. Actually, there was a reason, and the reason

was that the server was under attack. I saw many lines with
messages in my logs that reported for a login attempts
from different locations around the world. That was the end
of my good time and the beginning of the fight against the
hackers.

A server that is accessible from the internet is hard to
be secure properly. Many people prefer to put the machine
behind a router and firewall but even in this case there are
many vulnerabilities and security holes that are available for
exploitation by hackers. Let's take the real example of my
server. The server offers SSH as a remote access service
and you can imagine how many attempts for SSH login I had
every day... Many attempts...

The accent of this article will be about using simple
methods to protect your machine. One of those methods is just
our console shell – SHELL. Probably you know that SHELL is just
a shell. It can not improve the security or protect the machine
from hack attempts, right? Or probably not, SHELL can be used
to monitor certain events in the system and trigger actions
depending on the event's results.

Actually, when I say SHELL I mean that this will be done via a
SHELL script. SHELL can not do anything just by itself, you should
instruct it what to do.

I have the following objectives in this article. To show you:

• A typical login attempt coming from a suspicious IP
address.

• How to protect yourself from such an intrusion.
• Explanation of the used method.
• The result.

A typical login attempt coming from a suspicious IP address.

• Feb 10 18:21:37 view sshd[20851]: input_userauth_

request: invalid user root
• Feb 10 18:21:37 view unix_chkpwd[20852]: password

check failed for user (root)
• Feb 10 18:21:37 view sshd[20850]: pam_unix(sshd:auth):

authentication failure; logname= uid=0 euid=0 tty=ssh

ruser= rhost=xxx.xxx.xxx.xxx user=root

• Feb 10 18:21:39 view sshd[20851]: Connection closed by
xxx.xxx.xxx.xxx

• Feb 10 18:21:39 view sshd[20850]: Failed password for
invalid user root from xxx.xxx.xxx.xxx port 55835 ssh2

If you have similar lines in your log files, then be sure that
someone is trying to login to your machine without your
permission. Most of the hackers regularly scan large pools
of internet hosts for possible vulnerabilities and weaknesses.
An open and accessible SSH is a weakness that should be
solved if you wish your machine to survive on the internet. In
this article you have the opportunity to see a real live example.
From this example you can gain much knowledge and you can
use it to protect your systems.

The following example is about the SSH but actually any
server with login access is vulnerable for this kind of an attack.
It is hard to classify it as an attack, because it is just login from
an unknown host somewhere in the world. This is the most
simplest case of an intrusion attempt but if successful this
attempt is enough to compromise your server and security
hole.

How to protect yourself from such intrusion
Here is the place where SHELL comes in help. For my
security I created a SHELL script that handles those kind of

50 BSD 4/2009

security corner Stop Hackers With Protection Script

51www.bsdmag.org

Listing 1a. Protection-script.sh

 This script will help you to stop and detect failed logins via SSH. It can be slightly modified to support many

other types of logins – FTP, and others.

 Copyright (C) May 4, 2009 Svetoslav Chukov <svetoslav.chukov@gmail.com>

 This program is free software: you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

#!/bin/sh

allowed_ips="192.168.0.2"

while read line

do

 list='echo $line | grep "invalid user" | awk '//{print $13}''

 echo $line >> /var/log/auth0

 for i in $list

 do

 is_exists='cat /etc/pf.conf | grep $i | grep block'

 for a in $allowed_ips

 do

 if expr "$a" : "\(.*$i.*\)";

 then

 echo "$i is allowed to connect to us. We forgive it!"

 echo "$i is allowed to connect to us. We forgive it!" >> /var/log/auth1

 break 2;

 fi

 done

 length='${#is_exists}'

 echo $length

 if expr "$length" "<" "1";

 then

 echo "$i just crossed the line. This source IP has been blocked!"

 echo "$i just crossed the line. This source IP has been blocked!" >> /var/log/auth2

 #echo "block in from $i" >> /etc/pf.conf

 echo "ipfw -q add deny all from $i to any" >> /etc/ipfw.rules

 ipfw -q add deny all from $i to any

 fi

 done

done < /var/log/auth.pipe

52 BSD 4/2009

security corner

issues. There are many options you
can use, but basically the most useful
way is to cut all connections to your
machine immediately after an intrusion
is detected. That is the best you can
do and it is what I do. To protect my
systems I need fast and reliable method
to recognize such attacks, fast response,
detailed log and report.

How can we recognize an attack?
How can we recognize it, since the
communication client <-> server is
encrypted via a secure shell? Then,
in this case we obviously can not use
any of the known Intrusion Detection
Systems. And also, we are not that
advanced to have such a knowledge
to use an IDS. An IDS also can not
recognize a login attempt and can not
work in our case.

My solution to solve this problem is
simple and elegant. I based the entire
protection of my server on a SHELL script.
Let's explain the way how SHELL did the
work in my case.

An explanation
of the used method
When the machine registered a failed
login attempt, a message for the issue
is logged in the log file. So, this is our
key factor to recognize and stop the
attack.

The SSH daemon prompts usually 3
times for username and password and
after each of the failed logins it logs a
message. To protect my system on-the-
fly I created a script that handles this
messages via a named pipe directly
from the syslog daemon. Then, this script
just takes some actions and inserts an
firewall rule.

That results in a direct drop of all
the packets from this source IP to my
machine. After the first failed login, the
intruder is dropped and any further
attempts to access my server are
impossible. Simple and elegant!!!

Without using any complicated
systems and methods, with this simple
SHELL script I improved the security

of my server. I hope it will be useful
for you! Please, have a look at the
following script source code here: see
Listing 1.

The result
For almost 2 months while this script is
working on my server it blocked more
than 110 IP addresses from accessing
my computer. So, you decide how
effective it is!

There are many ways to build high
security but it is interesting to know the
best way, the easiest, and the most
effective one.

Let's have a look at the following
situation. One has a server and wants
the maximum security for that server.
Actually, there is no guarantee that this
server will not be hacked in the future,
everything is possible. So, one has to
achieve 3 basic crucial points:

• As more effective as possible
intrusion detection.

Listing 1b. Protection-script.sh

Please add or modify this line in your /etc/syslog.conf

auth.info;authpriv.info /var/log/auth.pipe

This will instruct syslog daemon to report data in the named pipe. This pipe will be our bridge to protection-

.sh script.

Then you have to create the named pipe with this command:

mkfifo /var/log/auth.pipe

Listing 2. Log files

/var/log/auth0

Jun 16 20:15:30 pcbsd sshd[29933]: Invalid user cesar from 192.168.1.6

Jun 16 20:15:33 pcbsd sshd[29933]: error: PAM: authentication error for illegal user cesar from freebsd1

Jun 16 20:15:33 pcbsd sshd[29933]: Failed keyboard-interactive/pam for invalid user cesar from 192.168.1.6 port

60758 ssh2

Jun 16 20:15:37 pcbsd sshd[30014]: Invalid user merlin from 192.168.1.7

Jun 16 20:15:48 pcbsd sshd[30014]: error: PAM: authentication error for illegal user merlin from freebsd2

Jun 16 20:15:48 pcbsd sshd[30014]: Failed keyboard-interactive/pam for invalid user merlin from 192.168.1.7 port

62605 ssh2

/var/log/auth2

192.168.1.6 just crossed the line. This source IP has been blocked!

192.168.1.7 just crossed the line. This source IP has been blocked!

53www.bsdmag.org

Stop Hackers With Protection Script

• Fast response to the attack.
• Make sure the hacker will not come

again.

Now, let's have a look at our script. It
detects attempts of logins with invalid
user names. Immediately after the
attempts are made, the script will make
an action. It will add a drop rule to the
firewall and it will also log the issue.
With those actions the attacker will be
banned any further attempts to reach
our machine from this source IP will be
impossible.

The defensive action will be triggered
immediately after the first wrong login.
Probably it is too drastic but the defense
of the machine should be strong and it is
better to stop the attacks in the beginning
instead to recover broken systems later.

Let’s see now the real results in the
log files. There are 2 log files that will
indicate an attack has been stopped.
/var/log/auth0 contains just a copy of
authpriv.* log messages. More interesting
is /var/log/auth2, it contains information
about dropped IP addresses. Let’s have
a look: see Listing 2.

Voila! Any further attempts for our
machine to be reached from this source
IP are impossible.

So, we have 3 types of logs. A general
log file with all the information about the
authentication issues. A log file with the
information about the banned IPs and a
log file with the information about what
IP is granted to reach our machine.

There are a lot of features that can be
included in this script. It is a very simple
and easy to use script but it is also very
powerful. It protects the machine on-the-
fly, without the need to scan log files or
regularly update the firewall rules. It
works right after the issue is reported
to syslog. The attacker will have only 1
chance to connect to us. This will protect
us from future attacks from this IP and
also will prevent other types of attacks
against us.

I called this script Protection Script
because of the work it does. So, the
name of the script is Protection Script
but also it’s work is to be a protection
script. Protection Script can be modified
to handle any type of a service. It is not
intended to be only a protection for SSH.
It can handle also FTP, SFTP or any other
service that exists. To extend it to handle
FTP, one has to modify just the matching
parameter for the log.

That means one has to add support
to match against this line of log:

Jun 16 20:15:48 pcbsd sshd[30014]:

Failed keyboard-interactive/pam for

invalid user merlin from 192.168.1.7

port 62605 ssh2

This line is log for an unsuccessful login
attempt for SSH. If one wants to add
support for FTP in Protection Script, he/
she should match the criteria of detection
against the same log line for FTP.

It can also be done for FTPS, telnet,
and etc...

Svetoslav Chukov is programmer and
administrator of BSD and Linux systems.
The interesting thing about him is that
he is also an experimenter with BSD. He
does interesting and crazy things that the
other people don’t even think about. Hi is
very big fan of NetBSD and OpenBSD but
actually he prefers NetBSD. He is also a
big supporter of PC-BSD, and even one of
his servers is running PC-BSD.

About the Author

a d v e r t i s e m e n t

Why subscribe?
• save $20
• 4 issues delivered directly to you
• never miss an issue

great

subscription

offer

Get your copy of BSD mag and save $20 of the shop prices

SAVE $20!

• visit:
 www.bsdmag.org

• call:
 1 917 338 36 31

• fill in the form and post it

3 EASY WAYS
to subscribe:

Order information
(□ individual user/ □ company)

Title
Name and surname
address

postcode
tel no.
email
Date

Company name
Tax Identification Number
Office position
Client’s ID*
Signed**

□ Yes, I’d like to subscribe to BSD
 magazine starting with issue:
□ 1/2008(1) FreeBSD Ins & Outs
□ 2/2008(2) OpenBSD in the Limelight
□ 1/2009(3) Explore NetBSD
□ 2/2009(4) PC-BSD Uncovered
□ 3/2009(5) Guide to FreeBSD
□ 4/2009(6) BSD Security/OpenBSD
□ 1/2010(7)
□ 2/2010(8)
□ 3/2010(9)

I understand that I will receive 4 issues over the next 12 months.
Contact Information:

Software Media LLC
1521 Concord Pike, Suite 301
Brandywine Executive Center
Wilmington, DE 19803
USA

Subscription Service
email: subscription_support@bsdmag.org
phone: 1 917 338 36 31

Payment details:
□ USA $39.99
□ Europe 29.99€
□ World 39.99€

BSD magazine
ORDER FORM

56 BSD 4/2009

mms OpenBSD on the Sharp Zaurus

57www.bsdmag.org

OpenBSD
on the Sharp Zaurus

If you look at the OpenBSD Platforms page (http://openbsd.org/plat.html) you'll see
Zaurus down at the bottom. Is it there just so that the OpenBSD team can safely say
that they support a multitude of platforms, from Alpha to Zaurus?

Michael Hernandez

That may be, but the Zaurus isn't something the
OpenBSD folks made up it's a brand of PDA created
by Sharp, and you may be surprised to find that it
could prove to be more than a novelty item in your pile

of electronics.
Sharp released the SLC3000 in 2004 which had 416MHz

Intel XScale CPU 4GB hard disk and USB Host support (prior
to the SLC3000 you could use the Zaurus as a USB device
but not plug USB devices into it), along with 64MB of RAM
and 16MB Flash ROM. It's 4.5” x 3.25” when closed, and when
opened it's 3.5” tall. The SLC3100 is the same except that it has
128MB Flash ROM. In 2006 Sharp Released the latest (and
possibly last) version of the clamshell Zaurus, the SLC3200,
which boasts a 6GB hard disk, but otherwise is the same
as its predecessors. OpenBSD runs on all 3 of the SLC3x00
models.

I first took note of the Zaurus in around 2003 when
a friend showed me his SLC860. It was one of the first
clamshell models, and I was excited just to see a BASH
prompt on a little handheld device. It was so exciting to see
what basically was a baby laptop running Linux. I bought
one almost immediately after seeing his and enjoyed it
so much that I bought an SLC3000 shortly after it was
released. To get my Zaurus I had to find an online reseller
because the Zaurus clamshell models were (and still are)
only sold in Japan.

When I got my Zaurus there were not too many OS
options available. Basically, you could run the default Linux
installation (which had PDA features and not much more)
or you could run a custom ROM like pdaXrom (http://
www.pdaxrom.org/) or OpenZaurus (now Ĺngström, http://w
ww.angstromdistribution.org/). Using the custom distributions
was fun, but something didn't feel quite right... Even though I
had much more freedom with a custom ROM than with the

default Linux installation, I still felt somehow limited. I wanted
my Zaurus to be more like the little laptop that it appeared
to be, not just an overgrown PDA. Around the time I bought
my Zaurus, I had also started experimenting with FreeBSD
on my desktop and had also been using OpenBSD as a
firewall OS at my office. When I learned that OpenBSD was
released for the Zaurus I was overjoyed – unlike Linux, which
can vary greatly from one distribution to another, I knew the
OpenBSD would remain pretty much the same regardless
of the platform I ran it on. What could the consistency and
security of OpenBSD be like on my Zaurus? As far as I was
concerned, it could only be good.

The installation of OpenBSD on the Zaurus is fairly
straightforward. I found though, that to use the full disk for
OpenBSD, some tricks were needed. Luckily I was able to find
help on the OESF Forums, in a thread started by a a forum
member named iamasmith (http://www.oesf.org/forum/index.p
hp?showtopic=17213). In this thread he describes the process
by which you can safely install OpenBSD on the entire disk of
your Zaurus. It's not very difficult,

Once you have OpenBSD installed on your Zaurus, you
basically can do anything that you could with a computer,
only smaller. The operating system isn't stripped down
or limited in any way. There are fewer packages for the
Zaurus than for some other platforms, but you'll find that the
package list is extensive, with over 4100 prebuilt packages
available to be installed. The potential of this system doesn't
really need explanation – there's an OpenBSD installation in
your pocket! I think even Duncan Steele (the main character
of Z4CK, a novel by Kevin Milne, which Kevin wrote on his
Zaurus) would agree that OpenBSD on the Zaurus opens
up a world of almost limitless possibilities. I use it as a mini
web server with a full complement of PHP 5 extensions. I
think it's great to be able to quickly test a code idea, or

56 BSD 4/2009

mms OpenBSD on the Sharp Zaurus

57www.bsdmag.org

read a manpage on the go. I keep a
subversion checkout of projects I'm
working on with me, so that if I get a
flash of insight while I'm on the subway,
I can try it out in moments, instead of
waiting until I get home. Then, once
I'm home, or at any wifihotspot, I
can check my code back into the
repository. A crowded subway is no
place for a laptop, or even a netbook.
The small size of the Zaurus makes it
ideal – it's just large enough for me to
read and type comfortably, but smaller
than an average paperback novel. The
Zaurus also makes a decent, although
somewhat bulky, media player. If you
think about it , I'm sure you could find
very interesting ways to make use of
the tiny OpenBSD machine.

However, I'm not advocating that
you run out to get a Zaurus as soon
as you finish this article. While a
very useful tool (especially running
OpenBSD) there are some caveats,
some of which might be dealbreakers
for you. First of all, the Zaurus is not a
cheap device. The SLC3200 can cost
nearly 600 Euro. That's almost $900
US, and that's not including tax and
shipping. For the same money you can
buy a 17” Dell laptop with 4GB of RAM,
320GB Hard drive, etc. In this time of
a troubled economy, the Zaurus is
definitely a splurge. The fact that you
can't buy a Zaurus in a store outside of
Japan is also concerning. If something
goes wrong, you can't simply walk into
the store you bought it from to ask for
help. As the wikipedia article about the
Zaurus states (http://en.wikipedia.org/
wiki/Sharp_Zaurus):

Since there is no official export
channel from Japan, Sharp offers
no warranty or repair service outside
Japan, so foreign buyers are dependent
on their chosen reseller to handle
repairs, usually by sending to their
agent in Japan who acts as if the device
was owned and used in Japan in order
to have it repaired by Sharp, before
sending it back to the owner. Whilst
Zauruses are actually quite robust
devices, due to their miniaturization
they are not easily repairable by casual
electronics hobbyists.

I suspect that the price and lack
of easily accessible support might be
enough of a deterrent for most readers.
Unfortunately, the caveats don't end

there. There are some issues related
directly to the OpenBSD operating
system for which you should watch
out. What I have always found most
frustrating about running OpenBSD, is
that at times device support can be
lacking, in terms of easily acquired
products, anyway. This is not a fault
of the operating system, rather it is
the open philosophy to which the
project strictly adheres that keeps
some devices incompatible. Most
often, it is the fault of the vendor, who
refuses to provide documentation or
release code that can be used under
an open license. The real frustration
for me comes when a device such
as the Linksys USB200M is listed as
supported, but I could only get the
USB200M version 1 to work. No matter
what I tried, I could not get a version 2 or
2.1 to work on any OpenBSD machine,
my Zaurus included. The USB200M
is among the easiest devices to find,
they are sold at most stores that sell
computers and accessories. It's always
been frustrating that the most easily
accessible devices are the ones least
likely to work. Again, this is not fault of
the operating system developers, it is
due to a change in chipset that Linksys
(Cisco) used in the device. It also
doesn't affect only OpenBSD. In some
cases devices won't work with any OS
other than MS Windows. It's something
that I got used to over the years I've
been in the *nix world, but I never liked
it . I wish all hardware vendors would

Another issue related to device
support is that the Zaurus does not
provide much power out of its USB port.
This means that in order to run some
devices that expect to get all of their
power from the USB port, you need
to have a powered USB hub. Plugging
in a hub might not seem so bad, until
you need to go and you're tethered to
the electrical outlet. I found that using
a monitor that had a built in USB hub
was convenient, although unfortunately
you cannot use the monitor's display
capabilities with the Zaurus.

If you've ever tried to do a lot with
a 400Mhz CPU and 64MB of RAM, you
know how that experience can be. It's
really not much in terms of resources,
so when you look at the list of available
packages, you should realize that some
of them are just impractical for running

on a Zaurus. Firefox, for example, will
run, however after the base OS takes its
RAM, and X and your window manager
take their RAM, Firefox doesn't have
much to work with, and it shows. It does
work though, if you have the patience.
As a matter of fact, I hardly use X on
the Zaurus because the small amount
of RAM makes it a bit sluggish and not
very fun after a while. I'm a user that
spends most of my time in a terminal
anyway, even when I'm using OS X. I
find that at the console I can get more
accomplished with less resources. With
that philosophy, I hardly start X at all,
and get most of my work done via the
command line, locally on the Zaurus
keyboard or via SSH.

Lastly, you may think that a Zaurus
running a full Unix installation might be
a great PDA, but I find that its ability to
be a PDA has almost been hampered.
The large PIM style applications that run
in X take far too many resources to be
useful. On the command line you could
attempt to duplicate PDA style features,
but I have found it much easier to use
my Blackberry.

With all of that said, I still love my
Zaurus, and I'm glad to say that the
OpenBSD team continues to work
on it. I can say in all honesty that it's
helped me out on a few occasions
where I really needed to have a mini
unix machine. As I mentioned, it makes
a decent web server, and it's great for
trying out shell scripts on the go. The
other day some children on the train
mistook my Zaurus for a Nintendo DS.
Look mom! He has a white DS!, they
said. That made me smile to myself. At
the time, I was experimenting with the
Zend PHP Framework, learning how to
use it implement access control for a
web project. The Zaurus looks like it's
meant to play games, but I was getting
work done. Times like that make me
realize how useful it can be, even with all
of its downsides. I wouldn't recommend
a Zaurus for everyone, but I know that
in the right hands, a Zaurus running
OpenBSD can be exactly what it says
on the right side of its screen a Personal
Mobile Tool, and a quite powerful one
at that.

58 BSD 4/2009

column

59www.bsdmag.org

Are there still two competing BSD certification groups? If so, what's the difference?

exams, the two organizations wished
each other well and continued to pursue
their goals separately. As a registered
non-profit, the BSDCG established
bsdcertification.org and the company
continued to use bsdcertification.com.

In late July, 2008, the company re-
contacted the BSDCG indicating that they
were no longer providing an exam and
offered to transfer the .com domain to the

Around the same time the BSDCG
formed in January, 2005, a separate
commercial company started with a
similar goal of assessing BSD system
administration skills. The BSDCG
approached the company to see if the
two organizations should align. Since the
company had already launched an exam
and the BSDCG wanted to concentrate
on creating a standard on which to base

BSDCG. The BSDCG accepted the offer
and now controls both the .org and the .com
domains. Since its founding, the BSDCG
has published the standard for assessing
junior BSD system administration skills
and launched the associated BSDA exam
in February, 2008. The BSDCG is now
creating the standard for advanced BSD
system administration skills which will be
used to create the upcoming BSDP exam.

Has anyone done a comparison of the BSDA and LPIC Certifications? I think that would be helpful
for managers who are not familiar with the BSDA and what it covers.

The BSDA exam is scored for 100
questions covering the following 7
knowledge domains:

• Installing & Upgrading the OS and
Software (13%)

• Securing the Operating System (11%)
• Files, Filesystems, and Disks (15%)
• Users and Accounts Management (16%)
• Basic System Administration (12%)
• Network Administration (15%)
• Basic Unix Skills (17%)

The LPI equivalent is the LPIC-1. Its
knowledge domains cover:

• System Architecture (8%)

Questions and Answer
Session of the BSD
Certification Group Community
Dru Lavigne and Mikel King

Recently, the BSD Certification Group (BSDCG) asked via their mailing lists
for questions regarding the BSDCG or the BSDA exam, offering to answer them
in this issue of BSD Mag.

• Linux Installation and Package
Management (11%)

• GNU and Unix Commands (26%)
• Devices, Linux Filesystems, Filesystem

Hierarchy Standard (15%)
• Shells, Scripting, and Data Mana-

gement (10%)
• User Interfaces and Desktops (5%)
• Administrative Tasks (12%)
• Essential System Services (10%)
• Networking Fundamentals (14%)
• Security (9%)

Both exams cover similar skills, target
the same audience of junior system
administrator, and provide detailed exam
objectives. A major difference can be seen

in the exam cost and delivery method. The
BSDA costs $75 USD and is available
in a paper-based format. The LPIC -1
costs $320 USD (as you have to take 2
exams) and is available through VUE and
Prometric. The cost of the LPIC-1 is due
to the high cost of using the proprietary
services of VUE and Prometric. Three
primary goals of the BSDCG are:

• to provide exams at a globally
affordable price

• where possible, to use open source
delivery solutions

• to work closely with the BSD community
and employers who use BSD to offer and
promote exams that assess BSD skills

58 BSD 4/2009

column

59www.bsdmag.org

How many people have taken the BSDA exam? Where has the exam been offered?

As of this writing:

• 1,114 have registered for a BSDCG ID
(needed to take the exam)

• 102 have taken the exam
• 70 have passed the exam and hold

a valid BSDA
• 9 exams are yet to be scored

Since its launch in February 2008, the
BSDA exam has been hosted at various
conferences around the world. Several
user groups and employers have also
hosted the exam. Past events and their
locations include:

• SCALE: Los Angeles, California
• FOSDEM: Brussels, Belgium
• Linux-Tage Chemnitzer: Chemnitz,

Germany

• Flourish: Chicago, Illinois
• IT360: Toronto, Ontario
• NLUUG: Ede, The Netherlands
• BSDCan: Ottawa, Canada
• CONFidence: Krakow, Poland
• LinuxTag: Berlin, Germany
• RMLL: Mont-de-Marsan, France
• OpenKyiv: Kiev, Ukraine
• LinuxWorld: San Francisco, CA
• FrOSCon: Sankt Augustin, Germany
• Augsburger Computer Forum:

Augsburg, Germany
• Open Source Days: Copenhagen,

Denmark
• NYCBSDCon: NYC, NY
• EuroBSDcon: Strasbourg, France
• CONISLI: Sao Paulo, Brazil
• Brandenburger Linux-Infotag:

Potsdam, Germany
• MeetBSD: Mountain View, CA

• DCBSDCon: Washington, DC
• AsiaBSDCon: Tokyo, Japan
• Atualtec: Boa Vista, Roraima, Brazil
• LinuxFest Northwest: Bellingham, WA
• devGuide: Hamburg, London, and

Amsterdam
• Certified Secure: The Hague,

Netherlands

We have had requests for exams in other
cities and currently have an outstanding
request for an exam event near Morocco.
Hosting an exam event is an excellent
way to show your support for BSD and to
connect with other BSD users.

My company or user group is interested in hosting an exam event. How do we do this?

Excellent! In order to host the exam, you
need to:

• provide a quiet room with sufficient
desks/tables and chairs for up to 10
people to sit comfortably and not too
close to each other

• provide a contact for the proctor
and for exam takers (e.g. to provide
directions to the venue, provide
access to washrooms, etc.)

• demonstrate that at least 4 people
are willing to attend the event (we
will help you find more)

• assist the BSDCG in promoting the
event (e.g. on your website, mailing
lists, etc.)

• give at least 6 weeks notice to
provide ample time to promote the
event, find a proctor, and ship the
exams

The BSDCG will:

• handle registration and payment for
the exam

• find the proctor nearest to the event
location

• provide the exams and pencils
• contact those who take the exam

regarding their results within 3-5 weeks

If you're interested, send an email to
chair@bsdcertification.org to make the

necessary arrangements. It should be
noted that exam proctors are volunteers
who donate their time and travel. Many
take time off from work and pay travel
and accomodation costs to another
city or even another country in order to
promote the BSDA. When sponsoring an
event, let us know if you are able to pass
the hat or wish to sponsor some or all of
the proctor's travel costs. We'll put you in
touch directly with the proctor to make
the necessary arrangements.

Are there any success stories or any sightings of job listings "in the wild" that specifically call for
any BSD certs?

We know of one job candidate who
received a job interview because BSDA
was on his resume. He was subsequently
hired and the same company has paid
for several of their existing employees to
take the exam. We've also had several
large companies express interest
in hosting an exam session for their
employees, for both the BSDA and the
upcoming BSDP.

On the various BSD jobs mailing lists
we have seen a few job postings mention

the BSDA and have noticed that more of
those looking for work are mentioning
their BSDA. We encourage those holding
a BSDA to mention it on their resume and
social networking sites. This helps start the
snowball effect, increases exposure to the
BSDA, and adds value to the certification.

Earlier this year we started two LinkedIn
groups. The BSD Certification group (http://
www.linkedin.com/groups?home=&gid=160
0767) is for anyone interested in BSD system
administration and is a great way to network

with other BSD system administrators.
The BSDA Certified group (http://
www.linkedin.com/groups?gid=1600807) is
limited to those holding a valid BSDA and is
an excellent resource for employers looking
to hire someone with a BSDA. If you're a
BSD sysadmin, we encourage you to join
the group(s).

Questions and Answer Session of the BSD Certification Group Community

60 BSD 4/2009

let's talk

61www.bsdmag.org

Interview with...

Could you please briefly
introduce yourself to our
readers?
My name is Albert Whale, the President
of ABS Computer Technology. I am a
resident of Pittsburgh, PA, and I work with
my company on Security and Consulting
opportunities on an international basis.

I have been a Consultant ever since
my first job out of college in 1985. So
first and foremost I see myself as a
solution provider, a problem solver. The
same is true for my company, ABS
Computer Technology as we are usually
called upon by companies when others
cannot resolve the problem, or do not
know where to start to get their issues
resolved.

I have always seen myself as
the Maverick in the crowd, because I
never followed the path of others, and I
usually have an unconventional or totally
controversial solution to the matter at
hand.

If you continue to use the same tools
techniques and processes as other
companies, are you expecting better
results?

What does ABS Computer
Technology do?

Before I started ABS, I was always
told that the Linux or Open Source
software solutions were great ideas, but
that few businesses would use these
solutions because no one wanted to
support (or offer support) for them.

The final straw was an interview I
heard by Bill Gates. Bill stated that … you
should not upgrade from Windows 3.1 to
Windows 95 if you wanted to fix problems
in the software. Because Windows 95
would not have the same updates that
Windows 3.1 had, you should continue to
pay support for windows 3.1 OS. Bill said,
the way that Microsoft worked on their
software was to take a snapshot of what
was working, and then split their team
for develop of the new software, and
keep the remainder working on the old
software (bug fixes, updates …). While it
made sense for what they were doing, it
also explained why nothing worked the
way I expected.

This historic interview has stuck with
me since I heard it. Most people upgrade
their software to resolve problems, and
get more features. If Microsoft was
selling a newer product but not delivering
a real solution, what good was it?

This type of interview never happened
in the Open Source community, and if

Our specialty is security consulting,
auditing, risk assessments and Network
Design. We specialize in analyzing
the needs of the organizations we are
working for, and design a customized
solution to meet their logical, physical
and organizational needs.

While most of our work is technical
consulting for network design, we also
perform a great deal of consulting for
Linux and Unix systems as well. We have
recently partnered with both Mandriva
and Red Hat for Linux solutions.

We also offer wireless security,
secure web hosting and Spam
elimination for our customers. We have
leveraged our experience for our small
to mid size customers, which help them
as well.

Why did you decide to deliver
solutions for Open Source?
We started offering solutions with Open
Source, because we saw that all of the
solutions in shrink wrap either came
from Open Source beginnings, or were
made better by Open Source software.
I also think that Open Source software
was more stable and had better problem
resolution than software which came
from the Big Software Giants.

Interview with
Albert Whale

60 BSD 4/2009

let's talk

61www.bsdmag.org

Interview with...

the product didn’t work, the issues were
fixed. Functionality never took a backseat
to the Marketing department in the Open
Source community.

What security solution must a
corporation use to fully protect
its data?
There is no One security solution that a
company must use to protect it’s data.
A true security professional will tell you
that it takes multiple tools to protect your
data, including the use of off-site storage,
network scanners, Firewalls, monitoring
and education.

The one factor that is the hardest
one to predict and to protect is the
human factor. However, educating your
employees about their protecting your
data can help to reduce the threat of
Social Engineering.

There is no magic tool that does it all,
especially for everyone. Security is hard.
But then nothing good ever came easily.
Anyone that tells you that security is
easy doesn’t know what they are talking
about.

Is there a possibility to
eliminate the risk at all or just
reduce it to minimum?
Yes, but in doing so you still need to
be able to use the equipment and the
network. Risks can be minimized in
many Layers. Such as, the Application
Layer, the Network Layer, and the human
layer. The more complicated or diverse
the network, the more complex the
solution can be.

Yes the risk can be mitigated to
an acceptable level, but some effort is
required to secure the applications, the
network, provide redundancy, off-site
data storage, and the most important
part, educate the employees as to their
role in security.

The more effort that is put into these
elements, the better the security will be.
If you look at the security of your home,
the old saying is that locks are for honest
people, the professionals are not going
to use the front door.

After all, the efforts of the hackers
are financially motivated. They spend
countless hours developing exploits,
attacks, and new techniques to deliver
their Malware. (or in the case of
employee theft or issues, more difficult
for the security to be broken).

What security tools/measures
do you need for secure
hosting?
We use our Server Safe, Active Defense
and SpamZapper® tools to provide
secure hosting, and Email Security for
our customers.

What is Active Defense? How it
differs from traditional security?
Active Defense is our way to monitor
the connections to the server to verify
that they are used the way that they
are supposed to be. Valid connections
remain active, while connections which
are being abused are terminated. The
hacking performed on connections is
sometimes so intense that the valid
connections are either delayed or unable
to communicate. Active Defense stops
the hackers so that the servers can
continue to communicate.

Do you have any advice for
people to surf the Internet
safely?
Be careful where you connect, what you
download, and what you store on your
computer. I use the No Script plug-in for
Firefox to limit the JavaScript access to
my connection.

I try to download software only from
well-known sites, and I have strong
encryption on my computers to encrypt
the data stored on them.

What is Black Belt Security?
We coined our Security process Black
Belt security, to represent the steps it
takes to achieve a Black Belt in any
Martial art (like Tae Kwon Do). Just as
Tae Kwon Do requires multiple steps
(or belt levels) to achieve a Black Belt,
actual security requires multiple steps
and processes to achieve your goal,
namely security.

Black Belt security is our multi-
layered approach to security for
business. Security is not something
that is easily achieved (you cannot
buy it simply off of the shelf, and then
you’re done). We have heard of different
process, Six Sigma, Lean Six Sigma,
CoBIT, and others, Black Belt is our
named approach to solving the security
needs for business.

Do you have a recommended
toolkit for

a. Diagnosing security problems with
home and small business systems.
Any virus scanner will diagnose the
security problem. The first virus detected
is the best indicator on whether or not
there are security problems. The problem
with using a virus scanner to determine
your security problems is that they are
unreliable, and may not be able to detect
all of the security issues. We use fairly
sophisticated scanning tools when we
investigate our customers’ security needs,
and unfortunately these are not easily used
or understood by most non-professionals.

b. Repairing these found problems
We highly recommend Ad-aware and
Spybot. We have found these two tools to
be highly effective.

c. Preventing future invasions.
We have found an excellent Firewall for PCs
which we recommend for our customers.
Anyone can download it from our website, at
http://www.abs-comptech.com/free-offers/
free-software-firewall-protects-you-better.

I have read that some system
altering programs are near
impossible to detect. Do you
have any way of investigating
these problems and getting rid
of them?
Using our SpamZapper® for email helps
to minimize the potential for receiving these
zero-day exploits, which probably contain
the Malware you are referring to. The Free
firewall will also detect the applications
which are connecting to the internet from
your computer, and will request permission
to permit these connections. Additionally, the
firewall also has a built-in scanner which will
validate all files on access, if you want.

There are more advanced strategies
which we employ, but for the non-
professional these are exceptional tools
which they can easily benefit from.

Albert Whale CHS CISA CISSP is located
in Pittsburgh, PA where he manages
ABS Computer Technology, Inc. and
provides support for their customers. If
you have questions you can reach Albert
at aewhale@ABS-CompTech.com or at
1-412-635-7488 ext. 100

About Albert Whale

62 BSD 4/2009

let's talk

63www.bsdmag.org

Interview with...

Why BSD? I mean what made
you choose BSD as the focus of
this project?
Many years ago, I would have likely given
a fairly common and honest answer:
it's what I found first, and it's what I'm
used to. My skill sets have grown, and
I've had the opportunity to work with
other Unix-like operating systems, and
throughout this experience I've remained
a FreeBSD fan. I enjoy FreeBSD's
centralized configuration, pf, out of box
security, implied simplicity, and most
importantly, the ports collection and ease
of package creation. I also like the idea
that FreeBSD is an operating system with
additional packages, instead of a group
of packages making up an Operating
System. To be fair, if I had to pick a
favorite Linux distribution, I would most
likely pick CentOS.

With all of the other job listing
and search sites already
online such as Dice.com,
Monster.com, TheLadder.com et
cetera... What made you decide
to focus on BSD?
These sites are too complex. They have
actually overwhelmed me many times,
enough for me not to post there (though
I still do). I'm a big believer in the motto
simple and functional. BSDJobs does
just that: it provides a simple method
to connect people with similar needs. It
does only one thing, but it does it well. I
can assure you that BSDJobs will never
look prettier, but it will definitely become
more functional.

systems administrators. My hope is that
BSDJobs will help reduce fear in those
who make Operating System decisions,
and increase the ability to easily find BSD
systems administrators to provide endless
support and replace vacant positions.

Is there a cost for using
BSDJobs.net?
No, and there are no plans to implement
any. The point of BSDJobs is to provide a
free resource for anyone who wishes to
use it, both job posters and job seekers
alike. As the site grows, anti-spam
measures (which has already become
a problem) will need to be increased, as
well as contributions from the community,
but the site should always remain free.

How has the volunteerism in the
BSD Community helped the site?
I've had press releases written. I've had
help with the graphics of the site. BitVenue
Networks, LLC (http://www.bitvenue.com)
donates hosting for the project. There
is much more work to be done, so
volunteers are always welcome. The
more, the merrier.

Do you have any major changes
planned for the site in the near
future?
At some point in the near future, a full
overhaul of the site's code base will
occur. The site will still look the same,
but we'll be adding functionality, such
as better integrated communication,
increased captures to fight spam, listing
edit features, and better searching.

Exactly what BSDs are
supported by BSDJobs.net?
FreeBSD, OpenBSD, NetBSD, and Darwin
(Mac OS X). There is also a non-specific
category. I've made a note to add support
for other BSDs, including DragonFly BSD.

How long has BSDJobs.net
been operational?
The idea began in November, 2004. It was
developed and launched in early 2007.

Do have of any success
stories that you would like to
share with the readers of BSD
Magazine?
I've been working on many projects
lately that I believe have started
showing signs of success. However,
I do have one BSD-specific success
story which I hope will even further show
the importance of BSDJobs. Around the
time BSDJobs was being developed,
I visited Chicago for the first time in
quite a long while. As I was walking
around downtown, I (literally) bumped
into a local resident of the city. In the
few minutes that I spoke with him, we
stumbled upon an important common
ground: he was desperately looking for
a FreeBSD systems administrator to
takeover his abandoned infrastructure,
and I happened to be a FreeBSD
systems administrator looking for
side work. Two years later, I am still
working on that project, and the BSD
infrastructure has grown substantially.

I have heard and experienced
similar stories from other employers and

Interview with
Matt Juszczak

Recently I had the opportunity to sit down with Matt Juszczak creator of BSDJobs.net
and ask him some questions about the project. I would like to thank Matt for taking
the time out of his busy schedule to talk with me about the project. The following is a
synopsis of that Q&A session.

62 BSD 4/2009

let's talk

63www.bsdmag.org

Interview with...

So what version of BSD do you
run the site on?
Right now, FreeBSD 6.3. We are migrating
it to a FreeBSD 7.1 setup this Summer.

What made you choose
FreeBSD over the others for this
project?
The original web server hosting the project
ran FreeBSD. FreeBSD is also my BSD of
choice and the one I'm most familiar with.
I also have experience with OpenBSD and
NetBSD, and I believe either would have
worked just as well for this project.

Do you have any other projects
like this one that you would like
to mention?
It amazes me how many web projects
created this decade seem to focus on
using as much technology as possible
in the wrong ways instead of efficiently
using available technology in the right
ways. I've gotten to the point where I
prefer to use my bank's mobile website
in my normal web browser to get more
accomplished in less time. This attitude
has begun to influence my personal
projects and ideas, and there are
definitely a few in the works!

How have employers responded
to BSDJobs.net?
I haven't had a lot of communication with
users of the website. However, when I
have replied to postings as a job seeker, I
have received replies back, which makes
me think people are seriously about the
website. Furthermore, posts continue to
come in reliably. The site gets anywhere
between 800 and 1600 visits per month.
Any feedback is welcome and can be
submitted via the About page on http:
//www.bsdjobs.net.

Does BSDJobs.net have
a search by specialty or
certification feature?
You can search based on location and
operating system. The BSD Certification
(http://www.bsdcertification.org/) project is
much more active now than it was when
the site was being designed, so I think it
would be wise to add this functionality.

Do you allow recruiters or head
hunters to use the site?
MJ-Yes. The primary goal of BSDJobs is
to fill open positions in the market. While

it would be nice to increase the ability for
employers to connect with job seekers
directly, this isn't always possible or feasible.
If recruiters and head hunters have a BSD-
oriented position they are looking to fill, they
are more than welcome to post.

Name your top 5 favorite Open
Source projects in rank order.
Making a list of the most important open
source projects is somewhat hard for me
to do, considering I use so many on a day
to day basis. As a Systems Administrator, I
find myself working with FreeBSD and Linux
quite often. As a big fan of standardization
and centralized configuration, I often use
OpenLDAP (http://www.openldap.org) to
store system account information and
other data. As a Database Administrator,
MySQL (http://www.mysql.org) has played
an important role in my career. Last but not
least, Nagios (http://www.nagios.org) and
Cacti (http://www.cacti.net) have allowed
me to go to sleep at night knowing servers,
databases, ldap directories, and any other
critical component of a project are running
smoothly.

Since I know that you are a user
of MySql for some projects,
what are your feelings about
Oracles acquisition of Sun
Microsystems?
As I understand it, these projects will now
be housed under the same roof, so to
speak. I worry that this acquisition may
hurt MySQL as a product, but I trust that
this will not be the case. I have used
Oracle and MySQL in the work place. Both
have their strengths and are fundamentally
different. As always, continue to use the
best tool for any given project, but these
two should have no problem co-existing.

Do you have any advice for
anyone wanting to launch an
Open Source project of their
own?
Getting started is the hardest part. Be pro-
active, work with a small team, and do
what you need to do to remain inspired,
even if that means taking your laptop to a
park with a solar-powered laptop charger
and mobile-phone Internet connectivity
until you've solved a problem. Work with
people who share your passion and
interests, but have different backgrounds
and ways to contribute. Finally, attempt to
keep conflict at a minimum.

What are your feelings if any
about the Google Summer of
Code events? Do you feel that
Google has a hidden agenda?
Do you feel that they are truly
beneficial to the Open Source
Community?
I haven’t had enough time to form an
opinion on whether or not there are any
conspiracies going on. I’ve benefited a
lot from GSOC projects. I believe there
are many students in higher education
who find it hard to remain challenged
in their curriculum and gain „real world”
experience, so perhaps this gives them
a good opportunity to grow their skills.
Furthermore, one major weakness in
some open source projects is their lack
of information on how to get involved, so
GSOC can help provide that gateway.

So what is next for Matt
Juszczak? Any personal
achievements, plans or
milestones you would like to
share with the readers?
I am currently residing in Boston, MA after
moving here in late 2007. I am involved
in a large data center migration project
with a company based in New York
City. During that migration, about 75%
of the infrastructure has been moved
to FreeBSD. I am continuing to work on
many web-based projects, including
BSDJobs, as well as a venture that
allows me to consult with other groups
of individuals to help grow their ideas
from the ground up, assisting them in
implementing open source technologies,
data center infrastructure, and a reliable
and easily maintainable code-base.

by Mikel King

Mikel King (http://twitter.com/mikelking) has
been working in the Information Services
field for over 20 years. He is currently the
CEO of Olivent Technologies, a professional
creative services partnership in NY.
Additionally he is currently serving as the
Secretary of the BSD Certification group as
well as a Senior Editor for Daemon News.

About the Author

64 BSD 4/2009

tips&tricks

65www.bsdmag.org

tips&tricks

FreeBSD jails have always been an
attractive way to isolate services from
each other, and provide additional

system security by compartmentalizing
services from each other. In addition to
compartmentalization FreeBSD jails can
provide additional security to services.

Many services that are run on
systems require the service run as the
root user in order for the service to
bind to a privileged port. Using jails,
PF, and virtual ethernet interfaces it is
possible to start services in a jail on a
high numbered port, while still having it
accessible on the expected port to the
outside world. For the sake of this article
apache will be used as the service.
Things you will need:

• FreeBSD
• Apache
• PF
• A jail
• A tap interface

For starters, create a tap interface.

ifconfig tap0 create

Then create a jail (Listing 1). Add the
following to /etc/rc.conf (Listing 2).

Start pf

/etc/rc.d/pf start

Start your jail

/etc/rc.d/jail start

Move in to your jail

jexec 1 csh

Install apache

pkg_add -r apache22

Since we will be running apache as non
root there are some modifications that
need to be done. In particular we must
bind to port 8080, and files that apache
wants to write to at startup must be
writeable by our prefered user.

Change to the www user

su -m www

Start apache

apachectl start

Look for root processes running apache

ps -waux | grep httpd

The rc script that is normally used to start
apache will need some changing to avoid
starting as root, but at this point you have
apache running with no root privileges at
all, listening on port 8080, which thanks
to your firewall gets all traffic bound to
port 80 on the external IP.

In /usr/local/etc/apache22/httpd.conf
set the Listen directive to port 8080,
remove mod_unique_id, and uncomment
out the line at the bottom that sources in
extra/httpd-mpm.conf.

In /usr/local/etc/apache22/extra/

httpd-mpm.conf change the PidFile
to /var/run/apache22/httpd.pid and
the LockFile to /var/run/apache22/
accept.lock. Change the logs to be
owned by our non root user

chown www:www /var/log/httpd*

Create the needed directories for apache
startup

mkdir -m 700 /var/run/apache &&

chown www:www /var/run/apache

Tips&tricks

Listing 1. Create a jail

csup -h cvsup9.freebsd.org /usr/share/examples/cvsup/standard-supfile

cd /usr/src

mkdir -p /usr/jails/www

make buildworld installworld distribution DESTDIR=/usr/jails/www

cp /etc/resolv.conf /usr/jails/www/etc/

touch /etc/fstab.www

Listing 2. /etc/rc.conf

pf_enable="YES

jail_enable="YES"

jail_list="www"

jail_interface="tap0"

jail_www_rootdir="/usr/jails/www"

jail_www_hostname="www.example.org"

jail_www_ip="10.1.1.1"

jail_www_exec_start="/bin/sh /etc/rc"

jail_www_exec_stop="/bin/sh /etc/rc.shutdown"

jail_www_devfs_enable="YES"

jail_www_mount_enable="YES"

jail_www_flags="-l -U root"

jail_www_fstab=""

Create an /etc/ pf.conf

ext_if="em0" # will vary by system

nat on $ext_if from 10.1.1.1 to any -> ($ext_if)

rdr on $ext_if proto tcp from any to any port 80 -> 10.1.1.1 port 8080

FreeBSD Jails by Josh Paetzel

64 BSD 4/2009

tips&tricks

65www.bsdmag.org

tips&tricks

Useful ssh tricks and tips. by Mikel King

Since this months’ issue revolves
around security I thought it a
wise idea to discuss some tips

and tricks that are security related. To
that end I hope to explore some of the
common useful options for ssh. First we
will examine TCP port redirection using
the ssh client, which can generally
only be accomplished via root level
privileges.

Since we are not going to alter the
sshd_config to allow ALL users on the
system the redirection privilege I am
assuming that you have a working
system where you hold the proverbial
keys to the kingdom. If I am mistaken
then perhaps you should download an
ISO of your favorite BSD or even a live
DVD like RoFreesbie so that you can
play along.

First, I would like to discuss why
one might consider creating a ssh TCP
tunnel. Let us decide that you are visiting
a new client for the first time and have
not had a chance to setup your normal
exclusionary firewall rules, and further
that this client’s network is one you do
not entirely trust as of yet.

However, you need to access data
on the intranet back at your office.
This could be some files, or your client
database, or even you jabber server.
While there are numerous methods
available to facilitate this sort of action

we are going to tunnel some TCP via an
ssh connection.

There for in this example let’s
expect that you need to access your
MySql database securely form outside
of your home network. As previously
mentioned we will assume that you
have root level access on the source
system, which is most likely you
personal laptop.

Reading the ssh man page you will
note the -L [bind_address:]port:host:
hostport which may seem cryptic at
first, however, we will deconstruct the
command one parameter at a time.
First consideration is the bind_address,
this is only an issue if your system
has multiple address and you wish
to specify which one to use for the
outgoing connection.

This is the only optional parameter
in the statement one that we can safely
ignore. The port refers to the port on
your local machine at this end of the
tunnel, in other words the port that
you wish to map the service on target
machine to.

The host refers to the address of the
host on the remote side of the tunnel.
This host may the the target machine
itself or another machine available on
the same LAN as the the target. Finally
the hostport is the TCP port that you
wish to connect to.

In this exercise we will be
connecting to our database server
OSIRIS.olivent.com via another server
PTAH.olivent.com.

These machines have appropriate
DNS entries so as to ensure that I can
always connect to them by their proper
name. From here after I’ll simplify
things by only referring to them by
their short names in all capital letters
for clarity.

In the following example I will be
opening a connection to the target
machine ptah as the user sysmgr.

ssh -N -f -L 4406:OSIRIS:3306

sysmgr@PTAH

As you can see that did not really do
very much, now on my local machine
I can direct my MySql client to connect
as follows.

OSIRIS> mysql -h 120.0.0.1 -P 4406 -u

dbadmin -p

Enter password:

Welcome to the MySQL monitor. Commands

end with ; or \g.

Your MySQL connection id is 26621

Server version: 5.0.67-log Source

distribution

Type 'help;' or '\h' for help. Type

'\c' to clear the buffer.

mysql>

���������
��������

������������

����������������������������������

66 BSD 4/2009

tips&tricks

To summarize what thus far we have
successfully established an ssh tunnel
to our target and told ssh that no CLI
access is needed as well as to send the
connection to the background. We were
then able to connect to the MySql database
pretty much as we would if we were sitting
at the console of the server in question, by
simply adding the appropriate host and
port switches as demonstrated above.
Refer to Figure 1 below for more detail.

Suppose, however, you manage
a site and need to allow a vendor to
access and troubleshoot a server, but do
not wish to grant this vendor full access
to the entire network. How do you allow
them to complete their work without being
able to peruse your entire network? The
answer is called a rendezvous point.

In order to facilitate rendezvous point
you need three machines. The server, the
client, and the way station. The server
and client are fairly obvious, but the way
station is the meeting point in this case
we will call that machine HORUS. HORUS
lives on the DMZ and exists solely for
the purpose of facilitating these sorts of
connections. It’s firewall rule prohibit more
external access excluding ssh of course.

In the following example first the
database server OSIRIS is connected to
the way station HORUS.

OSIRIS# ssh -N -f -R 4406:127.0.0.1:

3306 sysmgr@HORUS

Mikel King (http://twitter.com/mikelking)
has been working in the Information
Services field for over 20 years. He is
currently the CEO of Olivent Technologies,
a professional creative services partnership
in NY. Additionally he is currently serving
as the Secretary of the BSD Certification
group as well as a Senior Editor for
Daemon News.

About the Author

Then the vendor on PTAH connects to the
way station as shown.

PTAH# ssh -N -f -L 5506:127.0.0.1:

4406 sysmgr@HORUS

Meanwhile back on PTAH in another
terminal we open the database utility
connecting to the newly bound 5506
port on their local IP address. Refer to the
following CLI excerpt as well as Figure 2
for more details.

PTAH> mysql -h 120.0.0.1 -P 5506 -u

dbadmin -p

Enter password:

Welcome to the MySQL monitor. Commands

end with ; or \g.

Your MySQL connection id is 26626

Server version: 5.0.67-log Source

distribution

Type 'help;' or '\h' for help. Type

'\c' to clear the buffer.

mysql>

As you can see from the demonstration
above the vendor is able to access
the database and perform what ever
maintenance is required within the
limitations of their database utilities. To
further secure this method one could issue
a ssh key pair so that no passwords need
to be exchanged in the first place. What is
nice about this later step is that once the
maintenance has been completed simply

revoke the vendor’s key at the way point
HORUS and terminate the tunnel from
OSIRIS to HORUS.

In addition if the vendor’s account
is compromised in anyway the only
access will be granted to HORUS
which knows absolutely nothing about
your internal network. In fact other than
being a basic BSD server it should know
nothing about databases, DNS, mail or
anything other how to connect to the
internet. Obviously it adds a layer of
complexity to the whole process, as well
as yet another server to maintain, but in
the end is you have a large installation
of vendor supported equipment and
loath the idea of letting them run amuck
about your network it certainly is viable
option.

���������

�����

��������

������������

���

