

4 BSD 1/2009

Contents

5www.bsdmag.org

Dear Readers,

First of all I would like to thank all people who are helping out
with making BSD mag a reliable source of information and
interesting reading for all of you, for devoting their free time and
a great involvement in this project. This magazine is not only a
work of the editorial team, but the work of the community of BSD
users and professionals.

Since it is almost Christmas Time, and we won’t have
another chance to „talk” before it comes, I would like to wish all
of you such passion and devotion you prove being the part of
our team for the next year

and all following years as well. Hopefully some of you will
find this issue as your Christmas present;)

This issue focuses on NetBSD. Since all distros are equally
important for us, we try to share our pages fairly between all
BSD distributions. I am sure each of you will find something
interesting in this issue, independently on the distibution you use.
All in all, it is still BSD!

Patrick Pippen shows you step-by-step how to install NetBSD
4.0 in a form of an easy to use tutorial. Benny and Thorsten
introduce MirBSD -the „peaceful” operating system. Jan look at
live CD’s based on BSD and David prepared a ver interesting
comparison of Opensolaris, FreeBSD and OpenSuse.

In a how-to’s section, our regular contributors, Eric and
Michele show you how to start up the conference room or chat
server for your Jabber service, and Carlos start his series about
GDB with debugging process. The security section is prepared
by Henrik, who goes through the steps needed to implement
Pelude IDS on NetBSD, and Marko shows some of the best
solutions for encrypting in BSD family operating systems. For
those more advanced, Edd demonstrates how to make your
own packages for OpenBSD. In the multimedia section Donald
shows how to teach our Slugs to play music.

As usual, Federico made a great interview with NetBSD
developers: Simon Burge, Antti Kantee and Greg Oster. Last but
nor least, is a great review of Dru Lavigne’s The Best of FreeBSD
Basics by Peter N.M. Hansteen.

I hope you will enjoy this issue!
Merry Christmans and happy New Year to all of you!

all the best

Karolina Lesińska
Executive Editor

Editor in Chief: Ewa Dudzic
ewa.dudzic@bsdmag.org

Executive Editor: Karolina Lesińska
karolina.lesinska@bsdmag.org

Editor Assistant: Ilona Lepieszka
ilona.lepieszka@bsdmag.org

Director: Ewa Dudzic
ewa.dudzic@bsdmag.org

Art Director: Agnieszka Marchocka
DTP Technician:Przemysław Banasiewicz

Prepress technician: Ireneusz Pogroszewski

Contributing: Patrick Pippen, Benny Siegert,
Thorsten Glaser, Jan Stedehouder, David Gurvich,
Eric Schnoebelen, Michele Cranmer, Carlos Neira,

Henrik Lund Kramshøj, Marko Milenovic, Edd
Barrett, Donald T. Hayford, Peter N. M. Hansteen

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

National Sales Manager: Ewa Dudzic
ewa.dudzic@bsdmag.org

Marketing Director: Ewa Dudzic
ewa.dudzic@bsdmag.org

Executive Ad Consultant:
Karolina Lesińska

karolina.lesinska@bsdmag.org
Advertising Sales: Karolina Lesińska

karolina.lesinska@bsdmag.org
Ilona Lepieszka

ilona.lepieszka@bsdmag.org

Production Director: Marta Kurpiewska

Publisher :
Software Wydawnictwo Sp.z.o.o
02-682 Warszawa, Bokserska 1

worldwide publishing

Postal addres:
Software Media LLC

1521 Concord Pike, Suite 301
Brandywine Executive Center

Wilmington, DE 19803
USA

tel: 1 917 338 36 31
www.bsdmag.org

Software-Wydawnictwo Sp zo.o. is looking
for partners from all over the World. If you

are interested in cooperation with us, please
contact us by e-mail: editors@bsdmag.org

Print: 101 Studio, Printed in Poland

Distributed in the USA by: Source Interlink
Fulfillment Division, 27500 Riverview Centre

Boulevard, Suite 400, Bonita Springs, FL 34134
Tel: 239-949-4450.

All trade marks presented in the magazine were
used only for informative purposes. All rights
to trade marks presented in the magazine are
reserved by the companies which own them.

The editors use automatic DTP system

Mathematical formulas created by Design Science
MathType™.

DVDs tested by AntiVirenKit GDATA Software Sp.
z o.o.

Subscription orders can be sent to
subscription@software.com.pl

Customer Service 1 917 338 3631

4 BSD 1/2009

Contents

5www.bsdmag.org

what’s new
BSD news
Short articles devoted to latest news, releases, and

other projects from BSD world.

dvd contents
DVD contents description
A description of DVD content - check what we have

prepared for you this time.

get started
NetBSD install
Patrick Pippen

Patrick Pippen shows step-by-step how to install NetBSD -
one of the four major BSD systems available within the open
source world today.

MirOS BSD:
the peaceful operating system
Benny Siegert, Thorsten Glaser

Benny and Thorsten discuss the installation and configuration
of MirOS BSD - a secure computer operating system from the
BSD family.

BSD live cd’s –
an entry level acquaintance?
Jan Stedehouder

In this article Jan will look at live cd’s based on BSD. Which
cd’s are available and which live-BSD’s exist that might point a
novice BSD-user, albeit with some Linux experience, in the right
direction?

How it works?
Opensolaris, FreeBSD, OpenSuSe
David Gurvich

This article is a comparison of Opensolaris-200805, FreeBSD
7 and OpenSuSe11. The evaluation includes initial installation,
device support, installing additional programs, and ease of
use.

how-to’s
Multi-User Conferencing
Eric Schnoebelen, Michele Cranmer
Eric and Michele introduce you to the process of

configuration of Jabber’s Multi-User Conferencing and show
how to start up the conference room/chat server for your Jabber
server.

GDB and you – part 1
Carlos Neira

This first part of the series asumes a basic knowledge of the
c programming language which is necessary to follow the
examples and because this article is centered in using gdb to
debug C programs.

security corner
Installing Prelude IDS
Henrik Lund Kramshøj

In his article Henrik goes through the steps needed to
implement Prelude IDS on NetBSD as an example of the easy
use of NetBSD and also introduce a mature enterprise system
for logging and detecting bad things.

If it moves! crypt it -
hard drive encryption on BSD
Marko Milenovic

In a world where security has become the highest priority
encryption has become very popular way of protecting sensitive
data. In this article Marko shows some of the best solutions for
encrypting in BSD family of operating systems.

advanced
Packaging Software for OpenBSD -part 1
Edd Barrett

The OpenBSD ports system offers developers a versatile
way to make binary packages for OpenBSD. In this series
of articles Edd demonstrates how you can make your own
packages for OpenBSD.

mms
Play Music on Your Slug With NetBSD
Donald T. Hayford

In an earlier issue of BSD magazine, we learned how to boot
NetBSD on the Linksys NSLU2 (Slug). This time Donald wants
to teach our Slugs to play music, and at the end of the article
he takes a brief look the Slim data protocol.

interview
Interview with Simon Burge,
Antti Kantee, and Greg Oster
Federico Biancuzzi

Simon Burge, Antti Kantee, and Greg Oster talk about WAPBL
(Write Ahead Physical Block Logging) that provides metadata
journaling for file systems and is used with the fast file system
(FFS) to provide rapid file system recovery after a system
outage.

review
Dru Lavigne’s The Best of FreeBSD Basics
Peter N. M. Hansteen

In this article Peter analyses Dru Lavigne’s book – The Best of
FreeBSD Basics.

06

08

10

16

22

28

42

46

50

62

65

32

38

54

6 BSD 1/2009

what’s new BSD Fresh

7www.bsdmag.org

Firewall module for HP ProCurve switches Remember you
can run a highly secure firewall based on OpenBSD directly in
a switch, just a module you plug into an empty slot of an HP
ProCurve chassis. No extra rack space, no cables, no extra
power, multiple gigabit performance, and an integration into
the switch environment. And it is something that has been
designed for production use in enterprise environments with
support and a suitable product portfolio. And it might even help
to replace other vendors you’re unhappy with by a real BSD-
based solution. vantronix released the first firewall for ProCurve
switches with
the Intelligent
EDGE Firewall
module series.
The internal
ethernet ports
are directly
connected to
the switch backplane. The modules can be configured as a
bridging or routing firewall between the switch ports and VLANs.
The typical use of this product is as an Inter-VLAN firewall,
internet gateway, but also to extend the layer 3 networking
capabilities. And of course, redundancy can be provided with
multiple modules thanks to CARP, pf, and the .vantronix CLI
cluster management software. Powered by OpenBSD 4.4 The
engine driving the .vantronix security appliances is based on

Eldorado, Maximus and GSA

iXsystems has announced the release of PC-BSD 7.0
Fibonacci Edition. PC-BSD is a fully functional open source
desktop operating system based on FreeBSD 7.0-STABLE.
PC-BSD has a Push-Button Installer (PBI) wizard developed
exclusively for PC-BSD that lets users download and install
a wide range of available applications with a single-click
graphical installer.

PC-BSD 7.0 Fibonacci Edition is suitable for server as well
as desktop use. The ULE scheduler greatly improves system
performance and responsiveness, giving PC-BSD improved
symmetric multi processing (SMP) performance over Linux.
The Warden, a new administration utility, provides an easy
to use framework for creating and managing FreeBSD Jails,
with 3 control interfaces (GUI, dialog-based, and command-
line). In addition, the improved GUI Installer allows users to
set up a server with ZFS/UFS+J partitions, enabling setup of
a server with ZFS in just a few minutes (including custom
partitioning).

Highlights of the Fibonacci Edition include improved
support and stability for Wine (a compatibility layer for running
Windows programs), improved support with the Firewall
Manager GUI, improved PBI installation support, and an
improved PBI thumbnailer that displays embedded icons for
large installers properly.

“Combining a usable desktop with the advancements of
the FreeBSD 7.0 operating system results in a very fast and

PC-BSD Fibonacci Edition is here!

OpenBSD. The operating system is providing the rock-solid
networking platform and it’s well-known security history with
only two remote holes in more than 10 years. .vantronix is
integrating it in a firewall operating system with a powerful
CLI, management software, and optimization for enterprise
networks. The product upgrade cycle is following the OpenBSD
release cycle with a new major version every sixth month and
security and errata fixes in between. The appliances allow
easy handling of major and minor binary upgrades of the
system. .vantronix is proudly announcing that the latest version

is based on the
new OpenBSD
4.4 „Trial of the
BSD Knights”
release. The
appliances will
benefit from
the improved

networking with pf, loadbalancing, routing, but also many other
changes in system performance and stability. About .vantronix
.vantronix | secure systems GmbH is a vendor of enterprise
security appliances for critical environments; firewalls,
loadbalancers, IPv6 gateways, VPNs, and Anti SPAM solutions.
The company is based in Hannover, Germany, and works with
international partners and customers mostly located in North
America, Europe, and Asia-Pacific.

versatile OS”, says Matt Olander, CTO of iXsystems. “Bringing
PC-BSD up to FreeBSD 7.0 brings massive performance
gains along with an easy to use graphical environment that
makes server tools more widely available. The integration
of the KDE 4.1 desktop window manager has brought a
paradigm shift in productivity and useability.”

6 BSD 1/2009

what’s new BSD Fresh

7www.bsdmag.org

NetBSD 5.0 includes many improvements and changes
since NetBSD 4.0 was released in December 2007.
The following briefly introduces some of the significant
changes.

Rewritten threading based on 1:1 threading model
replaced the Scheduler Activation model. New kernel
synchronization primitives were introduced, and most of
the core kernel was changed to use fine-grained locking or
lock-less algorithms. A new scalable scheduler supporting
real-time and time-sharing classes was added and
support for POSIX real-time extensions, kernel preemption,
processor-sets and thread affinity. The default memory
allocator was replaced with ‘jemalloc’ designed to perform
well in both single and multi-threaded processes. These
changes dramatically improved
performance and scalability on
multiprocessor (SMP) systems.

Also support for POSIX asyn-
chronous I/O and message queues
was added, which al-lows to use
modern and scalable APIs. Write
support was added for the UDF file
system. It can now read and write
files and directories on CD-R, CD-RW,
CD-MRW, DVD-R, DVD+R, DVD-RW,
DVD+RW, DVD+MRW, (USB) flash
media, and harddisc partitions.

The Automated Testing Framework
(ATF) was added to NetBSD to easily define and run test
cases for the operating system. It provides a common
interface to easily run all the tests and reports the results
in a consistent way. Many new tests have been added and
most of the old regression tests were converted to use ATF.

Xen was improved with support for the i386 PAE extention
to Xen3 domU (guest) domains and support for the EM64T/
AMD64 architecture for Xen2 and Xen3 dom0 („host”) and
domU domains.

A new power management framework was added
which includes suspend to RAM on x86 with ACPI-capable
machines. The machine-independent framework also
provides inter-driver messaging support for device drivers.

Metadata journaling for FFS file system was added.
Contributed by Wasabi Systems, WAPBL (Write Ahead

NetBSD 5.0

Physical Block Logging) provides rapid file system consistency
checking after a system outage. And benchmarks show
it faster than softdeps and significantly faster than default
synchronous mounts. Support was added for a per-user /tmp
and magic symlinks gained a real user ID magic string.

Bozohttpd was integrated in NetBSD based as „httpd”.
It provides a minimal HTTP daemon with indexing, ~user
translation, CGI, SSL, dynamic content encoding, basic
authorization, and virtual hosting support.

An additional DHCP client was added: Roy Marples’
dhcpcd. The minimal userland DHCP client daemon is much
smaller and has been shown to use half of the memory while
still supporting standard and advanced DHCP features.

The bootloader can now use an optional configuration
file. It can be used to display menus
to choose boot commands (such
as selecting a kernel), define banner
text, set timeouts, and select console
devices.

The audit-pac kages tools were
rewritten and added to the base. This
is used to download the package
vulnera-bility list and compare and
report security iss-ues for installed
packages.

The Runnable User-space Meta
Program (rump) framework was
added. It allows run-ning kernel code

from userland by emulating portions of the kernel. It can
be used for testing and debugging and supports various
file systems using the Pass-to-Userspace Fra-mework File
System development interface (puffs).

A Video4Linux2 compatible capture interface and
support for USB video capture devices was added. Many
Video4Linux2 applications are supported. The video device
driver is divided into a high-level, machine independent layer
and a low-level hardware dependent layer.
For more recent NetBSD news see:
http://www.netbsd.org/changes/.
For a complete list of changes for NetBSD 5.0 see:
http://www.netbsd.org/changes/changes-5.0.html.

by NetBSD team

BSD Certification Group

 More BSD Associate exams have been held in Augsburg,
Sankt Augustin, San Francisco, Kiev, and Mont-de-Marsan.
If you are interested in taking the BSD Associate exam
just keep up to date with exam locations and events at:
https://register.bsdcertification.org//register/events

 Do you want to take the exam, but can’t get to any
of the upcoming events? If you know of other upcoming
conferences in your area, let us know- we’ll work with the
conference organizers to get a BSDA exam scheduled.

 Also, we are currently working on a college and university
partnership program to make BSD Certification exams
available on a regular basis. If you know of a university or
college (including community colleges) you think might be
interested, send us any contact information you have, and we
will follow it up. Post your note in the „Contact Us” page on the
BSD Certification Group website, www.bsdcertification.org, or
send to info@bsdcertification.org.

8 BSD 1/2009

dvd contents
NetBSD 4.0
NetBSD is a free, secure, and highly
portable Unix-like Open Source
operating system available for many
platforms, from 64-bit Opteron machines
and desktop systems to handheld and
embedded devices. Its clean design
and advanced features make it excellent
in both production and research
environments, and it is user-supported
with complete source. Many applications
are easily available through pkgsrc, the
NetBSD Packages Collection.

Major achievements in NetBSD 4.0
include support for version 3 of the Xen
virtual machine monitor, Bluetooth, many
new device drivers and embedded
platforms based on ARM, PowerPC
and MIPS CPUs. New network services
include iSCSI target (server) code and an
implementation of the Common Address
Redundancy Protocol. Also, system security
was further enhanced with restrictions
of mprotect(2) to enforce W^X policies,
the Kernel Authorization framework, and
improvements of the Veriexec file integrity
subsystem, which can be used to harden
the system against trojan horses and virus
attacks. Please read below for a list of
changes in NetBSD 4.0.

NetBSD 4.0 runs on 54 different
system architectures featuring 17
machine architectures across 17 distinct
CPU families, and is being ported to
more. The NetBSD 4.0 release contains
complete binary releases for 51 different
machine types, with the platforms
amigappc, bebox and ews4800mips
released in source form only. Complete
source and binaries for NetBSD 4.0 are
available for download at many sites
around the world. A list of download
sites providing FTP, AnonCVS, SUP, and
other services may be found at http:
//www.NetBSD.org/mirrors/.

This is a partial list of changes
between 3.0 and 4.0. The complete
list of changes can be found in the
CHANGES and CHANGES-4.0 files in
the top level directory of the NetBSD 4.0
release tree. Some highlights include:

Networking

• agr(4): new pseudo-device driver for
link level aggregation.

• IPv6 support was extended with an
RFC 3542-compliant API and added

for gre(4) tunnels and the tun(4)
device.

• An NDIS-wrapper was added to use
Windows binary drivers on the i386
platform, see ndiscvt(8).

• The IPv4 source-address selection
policy can be set from a number
of algorithms. See „IPSRCSEL” in
options(4) and in_getifa(9).

• Imported wpa_supplicant(8) and
wpa_cli(8). Utilities to connect and
handle aspects of 802.11 WPA
networks.

• Imported hostapd(8). An authenticator
for IEEE 802.11 networks.

• carp(4): imported Common Address
Redundancy Protocol to allow multiple
hosts to share a set of IP addresses
for high availability / redundancy, from
OpenBSD.

• ALTQ support for the PF packet filter.
• etherip(4): new EtherIP tunneling

device. It’s able to tunnel Ethernet traffic
over IPv4 and IPv6 using the EtherIP
protocol specified in RFC 3378.

• ftpd(8) can now run in standalone
mode, instead of from inetd(8).

• tftp(1) now has support for multicast
TFTP operation in open-loop mode,
server is in progress.

• tcp(4): added support for RFC 3465
Appropriate Byte Counting (ABC) and
Explicit Congestion Notification as
defined in RFC 3168.

File systems

• scan_ffs(8), scan_lfs(8): utilities to
find FFSv1/v2 and LFS partitions to
recover lost disklabels on disks and
image files.

• tmpfs: added a new memory-based
file system aimed at replacing mfs.
Contrary to mfs, it is not based on a
disk file system, so it is more efficient
both in overall memory consumption
and speed. See mount_tmpfs(8).

• Added UDF support for optical media
and block devices, see mount_udf(8).
Read-only for now.

• NFS export list handling was changed
to be filesystem independent.

Security

• The FAST_IPSEC IPsec implemen-
tation was extended to use hardware

acceleration for IPv6, in addition to the
hardware accelerated IPv4 that was
available before. See fast_ipsec(4) for
more information.

• mprotect(2) got restrictions to
enforce W^X policies, from PaX.
See options(4), sysctl(3), and
paxctl(8).

• distribution or as third-party LKMs.

This DVD contains the following items:

• NetBSD/i386 4.0 -- The DVD boots to
the install program for NetBSD/4.0 on
the i386 family.

• Source Code for NetBSD 4.0 (/
source-4.0)

• A collection of binary packages
for NetBSD/i386 4.0 as found on
ftp.netbsd.org on September 9, 2008.
(/packages). This does not contain
all of the binary packages found on
ftp.netbsd.org.

See below on how to install
packages to a running system.

• All of pkgsrc (Package Source) for the

2008Q2 branch. (/pkgsrc)
• CD images for NetBSD 4.0 (/iso-4.0)

• i386cd-4.0.iso -- CD image for
the install disk for NetBSD/
i386.

• amd64cd-4.0.iso -- CD image
for the install disk for NetBSD/
amd64.

• i386pkg.iso -- CD image for the
install with limited packages for
NetBSD/i386.

• NetBSD-current as of September 7,
2008 (/current)
• i386cd.iso -- CD image for

NetBSD/i386 -current install.
• amd64cd.iso -- CD image for

NetBSD/amd64 -current install.
• source -- the source for NetBSD-

current

 For more information visit http://www.
netbsd.org or ftp://ftp.netbsd.org.

For more information on the binary
packages visit http://www.pkgsrc.org.

There are more binary packages
are available at ftp://ftp.netbsd.org/pub/
pkgsrc/packages.

dvd contents
Contents description

9www.bsgmag.org

If the DVD content cannot be accessed and the disc is not damaged, try to
run it at least two DVD-ROMs.

1/2009

If you have encountered any problems with DVD, please write to: cd@software.com.pl

get started

10 BSD 1/2009

NetBSD
install

NetBSD is one of the four major BSD systems available within the open source world
today. It prides itself on being secure, and highly portable. This makes it a excellent
multi-architecture system for uses as high-end servers to powerful desktops systems
to handy handhelds and embedded devices.

Patrick Pippen

Honestly, it is the only open source operating system
with a portable package management system. It is
designed to take advantage of the latest high end
hardware systems from Alpha, Motorola PowerPC,

Sparc, and PC computing platforms, yet it still maintains support
for even those older computer systems. And it even supports
more computer platforms than I wish to list in this article.

This is a concise description of NetBSD and since this
article is about installation and configuration of NetBSD. Let's
get started!

Installation
NetBSD is not as difficult to install as you may think, it comes
with an easy to use menu driven program called sysinst to
make installation quick and simple. In reality it's not that
difficult if you take the time to read through the NetBSD Guide
and follow the instructions within it. After some time you'll be
surprise how fast you can get it up and running.

Getting the Media
NetBSD can be installed from a variety of media. Since this
issue comes with a DVD of NetBSD 4.0, I will assume you are
using installing from the DVD itself. If you do not have the DVD,
NetBSD ISO images can be downloaded and burned to a CD
from FTP, HTTP and even BitTorrent that are listed on the official
website. Though I encourage you to purchase a CD as it is the
project's main source of revenue.

Basic system configuration
Log in using root as the user name and the password you set
for root during the installation process.

NetBSD/i386 (Amnesiac) (ttyE0)

login: root

password:

We recommend creating a non-root account and using su(1)

for

root access.

#

Note: su(1): http://netbsd.gw.com/cgi-bin/man-cgi?su+1+
NetBSD-current.

It good system management to not use root for your daily
day-to-day tasks of browsing the web. So, lets create a regular
user account for you to do such daily computing and make
this account apart of the wheel group.

useradd -m -G wheel username

After creating a regular user account for you to use. You
need to set a password for this user as well. Note: Make
sure that you change bitweiler to your desired user name
instead.

passwd username

Next let's go ahead and setup system time.

date 200809191610

Which sets the current date to August 19, 2008 4:10pm
Basic Network Configuration
NetBSD uses /etc/rc.conf for system configuration on

system startup. Understanding this file is very important the
rc.conf (5) manual page will give you a list of all available
options that can be added to this file. The necessary
information needed in your rc.conf file, the installation process
should have all ready set some of the necessary values.

NetBSD install

11www.bsdmag.org

Listing 1. Getting an inital pkgsrc tree and setting up a caching DNS server. (note: after installation)

$ export CVSROOT="anoncvs@anoncvs.NetBSD.org:/cvsroot"
$ export CVS_RSH="ssh"
$ cd /usr
$ cvs checkout -r pkgsrc-2008Q2 -P pkgsrc
Now that you have it, available packages for NetBSD can be found in /usr/pkgsrc.
Let's install a few to give you a fill of it's simplistic usage.
 $ cd /usr/pkgsrc/net/maradns
 $ make install clean
 $ make clean-depends
Okay, I guess we should go ahead and set up a recursive(caching)DNS server for this machine as well.
This is the chroot directory maradns will run from.
$ mkdir -p /etc/maradns/logger
$ vi /etc/mararc
This is maradns configuration file, below are it's config options.
(Note: the documentation has more configuration options than are mention here.)
hide_disclaimer = "YES"
no_fingerprint = 1 # disable MaraDNS fingerprint
verbose_level = 3 # be verbose about query errors and log them.
ipv4_bind_addresses = "192.168.15.1, 127.0.0.1" # address to listen on
chroot_dir = "/etc/maradns"
recursive_acl = "192.168.15.0/24, 127.0.0.1" # addresses that can access this server.
upstream_servers["."] = "12.12.12.12" # your ISP's name server
csv2 = {}
csv2["domain.com."] = "db.domain.com" # our authoritative local zone file
debug_msg_level = 0 # so no info about maradns will be made public.
The default for debug_msg_level is 1 and in my opinion, it shouldn't give out information to
the public about itself when making queries. The default gives out maradns version number.
Consult the mararc man page for more variables that can be set.
Let's create our local zone file which will be in /etc/maradns directory.
vi /etc/maradns/db.domain.com
papa.% 192.168.15.100 # client machine
tango.% 192.168.15.120 # client machine
zulu.% 192.168.15.1 # our dns cache machine
The '%' will append domain.com to the above names when processing it's mara's shortcut for
the lazy at heart.To add MX records you just need to add to the zone file these lines for
each MX record serve.
domain.com. MX 10 mail.domain.com.
mail.domain.com. 192.168.15.130
This sets up mail for domain.com being mailed to mail.domain.com which has the ip address of
192.168.15.130. To be able to do reverse DNS lookups add to the zone file a PTR records.
Which would look like this for our example domain.
100.15.168.192.in-addr-arpa. PTR papa.domain.com.
120.15.168.192.in-addr-arpa. PTR tango.domain.com.
130.15.168.192.in-addr-arpa. PTR mail.domain.com.
1.15.168.192.in-addr-arpa. PTR zulu.domain.com.
To test it do: $ /usr/local/sbin/maradns
Switch to another termial or xterm to see if it running and do a netstat -an
(output edited for brevity)
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
udp 0 0 127.0.0.1.53 *.*
Look for this line, yes I see that the state isn't LISTEN udp services don't be in LISTEN
state. To make this run on boot we need to edit the /etc/rc.local file and add this line.
/etc/rc.local
/usr/local/bin/duende /usr/local/sbin/maradns > /var/log/maradns.log 2>&1
The /var/log/maradns.log 2>&1 isn't really needed but I added it to catch any info that stdout
and stderr might give out that you might would like to see. Be sure to create the
/var/log/maradns.log file before rebooting.
$ touch /var/log/maradns.log
Administration
Contents and permissions of /etc/maradns
$ls -l /etc/maradns
total 10
-rw-r--r-- 1 root wheel 59 Feb 28 16:44 db.domain.com
drwxr-xr-x 2 root wheel 512 Feb 19 08:23 logger
Next do some simple queries using askmara.
$ askmara Ngoogle.com.
$ askmara Nbsdnexus.com.
Maradns logs queries to /var/log/messages let's take a peek.(Again edited for brevity.)
$ more /var/log/messages|egrep dns
Jan 21 05:18:39 zulu /usr/local/sbin/maradns: Query from: 127.0.0.1 Ngoogle.com.
Jan 21 05:18:39 zulu /usr/local/sbin/maradns: Log: Message received, processing
Jan 21 05:19:03 zulu /usr/local/sbin/maradns: Query from: 127.0.0.1 Nbsdforums.com.
Jan 21 05:19:03 zulu /usr/local/sbin/maradns: Log: Message received, processing
If a weird crash or something unsuspected happens to your server check your
/var/log/maradns.log file which should be empty if everything is fine with your setup.
$ ls -l /var/log/maradns.log
-rw-r--r-- 1 root wheel 0 Mar 2 17:03 /var/log/maradns.log

get started

12 BSD 1/2009

To read the manual page on
rc.conf.

man rc.conf

The first modifications to your system
should be to check make sure they exist
within your /etc/rc.conf.

• Set “rc_configured=yes” (the
installation process may have
already did this.)

• Set “dhclient=yes”
• Set “hostname=yourhostname”
• If this computer is connected to a

local network or a router. Set “defa
ultroute=192.168.1.1” for example.
Note:without the quotation marks
though.

From here you can edit the /etc/

resolv.conf file.
You'll need to be able resolve host

names and ip addresses of remote host
systems to do so you just have access
to a local or remote DNS server. Add it to
this file using this syntax.

nameserver 164.253.3.75

Mounting removable media
There's really nothing difficult about
mounting a CD-ROM, floppy, or USB
devices. It just takes reading the all so
helpful mount manual page which even
gives examples of how to use mount
and it's options. Invoking mount by itself
shows you want you the file systems that
you have currently mounted.

mkdir /cdrom

mkdir /floppy

mkdir /usb

Then add to your /etc/fstab file so that
you can easily mount your removable
devices at anytime.

/dev/cd0a /cdrom cd9660 ro,noauto 0 0

 /dev/fd0a /floppy msdos

rw,noauto 0 0

 /dev/sd0e /usb msdos rw,noauto 0 0

No need to reboot you can now mount
your cdrom, floppy, an usb devices and
start using it right away with these simple
commands.

mount /cdrom

mount /floppy

mount /usb

Just remember when your finished using
these devices you have to unmount it or
use eject to umount and eject the cdrom
media to safely remove the cd.

umount /cdrom

umount /floppy

umount /usb

(:optionally you can use the eject

command to umount and eject your cdrom

drive.)

eject /dev/cd0a

Configuring the X server is easily done
with the root user just running xf86cfg to
configure X, but do not start X just yet.

 # xf86cfg

Getting those extra packages
Even though NetBSD comes with
plenty of tools and is usable with just
the base system, you probably would
like a working desktop system to really
see what NetBSD is all about. And
as I mentioned before, pkgsrc is the
most portable package management
system that I ever seen on any open
source operating system. It currently
works with FreeBSD, OpenBSD,
DragonflyBSD, Mac OS X, Linux,
Solaris, plus a few more operating
systems. Pkgsrc originally came from
FreeBSD's ports system and was
developed for NetBSD only, then it
gradually progressed to support more
operating systems.

Okay, I know your ready to dive into
this package management system, so
let's get going.

Because binary packages aren't
always available for different applications,
it is best to get pkgsrc from a CVS
repository . Using the sh or ksh shells
we set it like so: see Listing 1. (Note: use
setenv if your using the csh, “C shell”.)

Firewall configuration
Simply don't allow outside IP addresses
to hit the server on port 53 UDP. Allow
them to hit this server on ports between
15000 – 19095 UDP where the source
port from remote server is 53 UDP. Allow
UDP connections from your clients on
the lan that use the server's cache to hit
port 53 UDP.

Back to installing a couple more
packages now. Go to /usr/pkgsrc/meta-
pkgs/kde3 so you can have a familiar
and comfortable desktop environment.
No need to worry about dependency
checking NetBSD's pkgsrc system takes
care of all the worries for you and install
everything that's needed.

$ cd /usr/pkgsrc/meta-pkgs/kde3

$ make install clean

$ make clean-depends

Afterwards you should add to your
regular user account directory a .xinitrc
file with the following contents.

 # su username

 # cd /home/username

 $ echo startkde > .xinitrc

ln -s .xinitrc .xsession

All so make sure that the root user adds
these line to your /etc/rc.conf file.

 xfs=yes

Also make sure to add this to your /etc/
rc.local file, so kdm starts automatically
on system startup.

$ echo /usr/X11r6/bin/kdm
Reboot and your NetBSD box is

ready to rock hard. From here you can
login through the kdm the X graphical
login manager.

What I've always love about NetBSD,
is that I don't have to buy a new computer
every couples of years or throw away
older computers.

I can keep the machines I've got and
NetBSD works with it perfectly. I could not
possibly cover everything in this article.

Now that you got your system up and
running I suggest you read through the
documentation. A Special thanks goes to
the NetBSD & Pkgsrc

developers for making such a great
open source operating system and
package management tools.

• http://www.netbsd.org/docs/guide/en/
• http://www.netbsd.org/docs/pkgsrc/
• http://wiki.netbsd.se/Main_Page
• http://wiki.netbsd.se/Main_Page

On the ‘Net

NetBSD install

13www.bsdmag.org

Language selection
To start the installation, boot your computer from the DVD. The
installer will load the kernel and show you which devices were
found and are supported.

After that you'll find yourself within the NetBSD installation
program sysinst.

To make a selection on the menu you can use the cursor
keys or just press the letter displayed left of each choice and
confirm your choice by pressing the Return (Enter) Key.

03

Choosing to install to a hard drive media
Since this is a fresh install we are going to choose to Install
NetBSD to hard disk option on the menu. It will also warning
you about backing up important data before taking this step.
Seriously, you should do it, unless you don't care about the
data on the hard disk. Which brings us to the next screen. To
confirm installing the program to the hard disk select Yes.
Next, it shows a list of available hard drives we can install to.
Since I only have one hard drive to install it only shows that
disk named, wd0. If you have more than one disk it would be
labeled wd1 as the second hard drive on your machine. If your
using SCSI or external USB drives it will be labeled sd0 as the
first and sd1 as the second. Sysinst will ask if you want a full,
minimal or custom installation. The default is full so we'll just go
with that. NetBSD will now offer to install a boot selector to your
hard drive so make sure you select yes to this option.

Selection of Keyboard layout
Start by selecting your language you prefer for the installation
procedure naturally I choose US-English, next you will select
your keyboard layout this will bring you to the main menu of
the installation program.

Setting up the hard drive partitioning scheme
Now we can move on to creating the disklabel for this disk
to create partitions or use the existing partition sizes, which
NetBSD is okay with, so select use existing partition sizes.
If your experience tells you something different you can go
ahead and set the partition sizes to your liking.

01

0402

get started

14 BSD 1/2009

Installing a bootblock
After defining the disklabel the menu prompts you to name
your disk which I called NBSD.

This our last chance to abort the installation before
anything is written to hard drive. So let's continue by selecting
yes. The next menu will ask us to select a bootblock, which the
default Use BIOS Console is usually what we want.

07

Selecting the installation media
Now sysinst asks where it can find the installation media,
since we are using the DVD media select the first option for
the CD-ROM/DVD and press return on your keyboard. During
this step sysinst will install all selected sets and create device
nodes and will display a message letting you know that
everything went well. Now hit enter to continue once we get to
this screen:

Install the base system
Give yourself a big pat on the shoulder, you have just completed
the most difficult part of the installation. On to the second half
of the installation process, which is extracting and installing
operating system sets (kern, base, etc, comp....) Sysinst now
asks which verbosity level you would like to use while installing
the sets. Since it's your first time it is best to stick with the
recommended verbosity level: Progress bar. So we can see
what is going on during the installation of the sets.

05

0806

Selection of system
password encryption algorithm
Now lets get down to some of the basic system configuring,
starting with setting up the timezone specific to your area.
Using the cursor to scroll up and down the menu, then hitting
enter to select your timezone, I chose US/Central for my
timezone. The next thing you'll be asked is what encryption
algorithm should be used for your password file. I recommend
for you to use the Blowfish algorithm.

NetBSD install

15www.bsdmag.org

11

Choosing a password for the system manager
Still it is recommended that you go ahead and set your root
password here for security reasons. So, enter it once then
sysinst will ask you to re-enter it again. Next you are asked to
choose a command shell. Traditionally BSD systems ship with
the csh (C shell) as system manager shell. You can choose
that one if you prefer. If you don't have any experience with Unix
shells then select sh as your command interpreter, you can
always change it later.

Setting up the System manager password
After choosing your encryption algorithm, it will ask you to set
your root password. NetBSD does not start any services by
default when booting up after installation.

Selection of a default
command shell for system manage
I went ahead and choose ksh (Korn Shell) during this
installation and you should as well, those more experienced
with Unix shells are free to choose a root shell of your
preference. After choosing your shell, you can now hit enter.
Once you see this screen:

09

1210

Completing the installation
That's it! NetBSD is now installed and you will be able to log

into it right after you remove the DVD and reboot your machine.
Come on now that didn't take hours of time did it?

16 BSD 1/2009

get started MirOS BSD

17www.bsdmag.org

MirOS BSD
the peaceful
operating system
Tired of manual pages that do not contain any information? Tired of having to run
(hotplug) daemons with ever-breaking configuration files for your hardware to work?
Well, we may have an OS for you.

Benny Siegert
Thorsten Glaser

The biggest advantage of the BSD operating
systems is their separation between the base
system and ports or packages for additional,
third-party software. The base system contains

the kernel, shell, tools, etc. These components are all
tested with one another and just fit together. While modern
GNU/Linux distributions pack a lot of complexity beneath
their surface and try to hide it from the user, BSD systems
try to leave you a chance to learn how the system works,
by logically structuring the system internals. Even if you
decide that BSD is not for you, this knowledge can help
you in other OSes.

MirOS BSD is a secure computer operating system
from the BSD family. It is a derivative of OpenBSD. A lot of
code and ideas is taken from NetBSD and other sources.
MirOS was started after some differences in opinion
between Theo de Raadt, the OpenBSD project leader,
and Thorsten Glaser, who is now the lead developer. The
principal maintainer of MirPorts is Benny Siegert . There
are several more persons working as contributors on the
project.

The base system has been trimmed down. Seldomly used
components like NIS, Kerberos, Bind and the BSD games have
been removed. The latter two are installable as ports. Hence,
the focus of MirOS BSD are small servers, appliances, routers,
and developers' desktops.

Using the DVD
The DVD contains a live CD as well as the installation
files. Using the live CD allows you to run MirOS without
any installation. It starts the IceWM window manager by
default and includes a big number of already installed
packages. For starting the live CD with X (the graphical user
interface), the PC should have at least 128 MiB of RAM. For

text mode only, 96 MiB are enough. Keep in mind that these
requirements are only for the live CD, the installed system
can run with less.

After booting your computer from the CD, a boot menu
appears, asking for your choice. During the live CD boot,
you will be asked to set a password for the user live, which
is used for logging in. This is necessary because the live
system can also be accessed over the network using
ssh(1).

Before you install: partitioning
You should plan the organization of your hard disk now
before you do the installation. The BSD operating systems
don't use PC-style partition tables. Instead, they have their
own scheme called a disklabel. Thus, you will normally
create one fdisk(8) partition for MirOS which contains
the disklabel and all the MirOS filesystems. This partition is
then subdivided into so-called slices using the disklabel(8)
editor. Partitions of other operating systems (e.g. ext2fs,
msdos, or ntfs partitions) are usually automatically added to
the disklabel. In fact, MirOS only uses the partition entry to
find its disklabel and to show other operating systems that
the space is used.

The MirOS partition needs to be big enough to hold all the
file systems and the swap partition. At least 2 Gibibytes are
recommended. It needs to be a primary or logical partition
with type 0x27. If you are using a different operating system
now and you are familiar with its partitioning tool (e.g. GNU
fdisk), you can use it to create the partition before you start
the installation. This way, you avoid having to learn a new
partitioning tool and minimise the risk of data loss. In any case,
do a full backup of your data NOW in case anything goes
wrong during the installation or the change of the partition
table.

16 BSD 1/2009

get started MirOS BSD

17www.bsdmag.org

In case you have only one big
partition (for example, if you had only
MS Windows(R) installed before), you
need to either delete or shrink it . For
the latter, tools such as fips, parted or
Partition Magic (commercial) can be
used.

In special cases, you can have
more than one area on the disk for
MirOS. However, you will have to
calculate slice offsets yourself, so do
this only if you know what you are
doing.

In this case, the other partitions
should be of a type otherwise unused
in the system, such as 0xDB (CP/M-
86).

The slices inside the disklabel are
named using letters.

• a – This is always the root filesystem,
i.e. the one from which you boot
and which contains the kernel. For
a full MirOS installation including
XFree86(R), you will need at least
500 MiB of space in this partition
– more if you want to install third-
party applications using MirPorts or
binary packages.

• b – This slice is always for swap
space. As for its size, it used to be
recommended to make it twice
as big as the installed RAM, but
on modern systems, you can use
less (say 300 MiB) to save space.
However, more swap space does
not hurt, and it can be useful for high
loads or compiling big software.

• c – As this slice represents the
whole disk, you cannot change its
size or put a filesystem on it.

• i – Auto-detected partitions from
other operating systems are given
names from i on.

Starting the installation
If you want to install the system on your
hard disk, choose the last option Boot
the MirOS installer in the boot menu
instead.

You will see lots of messages on a
blue background scroll by. These are the
normal kernel startup messages while
your hardware is being probed and the
appropriate drivers are loaded. Once the
kernel has finished loading, you will be
asked:

(I)nstall, (U)pgrade, or (S)hell?

Press the I key to start the installation
procedure.

You will be greeted with a welcome
message: see Listing 1.

Simply press Enter at this prompt.
The next question is:

kbd(8) mapping? ('?' for list) [none]

If you want to use the default US
keyboard table, press Enter. If not, enter
the short code for your keyboard layout
here. It is usually identical to your country
code, for example de for Germany.

This is the point where you should
stop if you do not really want to do the
installation now (see Listing 2). If you are
really sure you want to continue and if
you have planned your disk layout (see
above), then enter yes now to continue.

Enter the name of the hard disk you
want to install MirOS on (Listing 3). The
first IDE hard disk is wd0, while the first
SCSI hard disk is sd0.

The next steps are partitioning with
fdisk(8) and disklabel(8). See the
section above for advice. Enter the
partition scheme you planned earlier
here. If you want to use MirOS exclusively
on the hard disk, say yes on the next
question:

Do you want to use all of wd0 for

MirBSD? [no]

In most cases, you will say no here, so
fdisk(8) will be started. You will get a
prompt from fdisk that looks like this:

fdisk: 1>

The print command will show the
current table. If you think you made
a mistake, use the exit command to
quit fdisk without saving any changes.
quit saves the changes and exit. As an
example of fdisk use, we will create one
partition on an otherwise empty hard
disk here. At the fdisk prompt, we edit the
first entry in the partition table by entering
edit 0 (Listing 4).

It is very important that the first
partition begins on head 1 and not
on head 0 (i.e. at sector 63) to leave
some space for the partition table. As
you see, the prompt in fdisk is now
marked with an asterisk. This means
that the partition table was changed.
Type quit now to save it and quit fdisk
(Listing 5).

To see your current disklabel, use
the p command. To add a slice in the
disklabel editor, enter a followed by the
slice name, for example a a. To create
a slice, enter its offset (the starting
point), size, and mount point. Offset
and size values are in sectors, thus
twice their size in kibibytes. Note that
it is also possible to use a number

Listing 1. Installer welcome screen

Welcome to the MirOS BSD #10/i386 install program.

This program will help you install MirOS. At any prompt except

password prompts you can run a shell command by typing '!foo', or

escape to a shell by typing sometimes there is no default. At any

time you can exit this programme by pressing Control-C and then RE-

TURN, but quitting during an install can leave your system in an

inconsistent state.

Terminal type? [wsvtg]

Listing 2. Are you serious?

IS YOUR DATA BACKED UP? As with anything that modifies disk con-

tents, this program can cause SIGNIFICANT data loss.

It is often helpful to have the installation notes handy. For com-

plex disk configurations, relevant disk hardware manuals and a cal-

culator are useful.

Proceed with install? [no]

18 BSD 1/2009

get started

19www.bsdmag.org

MirOS BSD

and a modifier, for example 256M for a
partition of 256 MiB or 2G for a partition
of 2 Gibibytes.

The default value for the offset is
the beginning of free space, thus it is
the right one if you add the partitions
one after another. The default value for
the size is the remaining space. Always
leave the default when asked for the FS
type. A very simple example with just two
slices follows:

> a a

offset: [63]

size: [1023057] 896000

FS type: [4.2BSD]

mount point: [none] /

> a b

offset: [896063]

size: [127057]

FS type: [swap]

>

NOTE: If you are doing the installation
on a virgin hard disk, you must use the
update command to install a boot loader
into the MBR (Master Boot Record) and

initialise the magic number. Type q to
quit and save your changes or x to quit
without saving if you made a mistake
and want to redo the disklabel or the
partitioning.

After the disklabel is created, the new
filesystems will be initialised (erased):
see Listing 6

This is really your last chance to
abort. To continue, enter yes.

Initial network configuration

System hostname? (short form, e.g.

'foo')

After the creation of the filesystems,
you will be asked for the host name of
the system. This is the name that you
give your computer, without the domain
name. It should be unique on your local
network. Many people use some kind
of naming scheme for their machines,
for example the last names of their
favourite authors.

Configure the network? [yes]

If you say no here, you can skip the whole
network configuration. This is useful if you
do not have a local network or if you want
to configure it by hand later.

Available interfaces are: ne3 plip0

irip0 irip1. Which one do you

wish to initialise? (or 'done') [ne3]

Now, you need to figure out the name
of your local network interface. Under
MirOS, network interfaces have a the
name of their driver plus a number. plip0,
irip0 and irip1 are virtual interfaces,
thus the LAN interface in this example
is 'ne3.

The media options for ne3 are

currently

media: Ethernet autoselect (10baseT)

Do you want to change the media

options? [no]

The default media type of Ethernet
autoselect is sufficient in most cases.
Say yes here if you want to fix the
speed or the cable type manually. The
latter might be necessary for cards
with 10baseT via RJ-45 and 10base2
via coaxial cables, or if your switch is
broken.

IPv4 address for ne3? (or 'none' or

'dhcp')

Enter the IPv4 address of the interface
here. If you want to automatically
configure the parameters using DHCP
(Dynamic Host Configuration Protocol),
enter dhcp. If you do not want to give
the interface an IPv4 address, enter
none. If you are not sure what to do,
ask your network administrator or try
dhcp.

Netmask? [255.255.255.0]

Enter the subnet mask here. In most
cases, you can keep the default. Now
you are brought back to the interface
selector from before, where you can
configure additional network interfaces
if you want. Enter done after you finished
configuring the last one.

DNS Domain name? (e.g. 'bar.com')

[my.domain]

Listing 3. Choose the hard disc

Cool! Let's get into it...

You will now initialise the disk(s) that MirBSD will use. To enable

all available security features you should configure the disk(s) to

allow the creation of separate filesystems for /, /tmp, /var, /usr,

and /home.

Available disks are: wd0. Which disk is the root disk (or 'done')

[wd0]

Listing 4. Partitioning the hard disc

Starting Ending LBA Info:

#: id C H S – C H S [start: size]

!0: 00 0 0 0 – 0 0 0 [0: 0] unused

Partition id ('0' to disable) [0 – FF]: [0] (? for help) 27

Do you wish to edit in CHS mode? [n] y

BIOS Starting cylinder [0 – 1014]: [0] 0

BIOS Starting head [0 – 15]: [0] 1

BIOS Starting sector [1 – 63]: [0] 1

BIOS Ending cylinder [0 – 1014]: [0] 1014

BIOS Ending head [0 – 15]: [0] 15

BIOS Ending sector [1 – 63]: [0] 63

fdisk:*1> flag 0

Partition 0 marked active.

fdisk:*1>

18 BSD 1/2009

get started

19www.bsdmag.org

MirOS BSD

Enter the internet domain name of your
computer here. If you do not have your
own domain, then use something like
invalid, but never enter a domain name
that belongs to someone else.

DNS Nameserver? (IP address or 'none)

[none]

Enter the name of your local domain
name server here. If you used DHCP
before, the nameserver has been
configured automatically, and you can just
leave the default. If you use a DSL router
or something similar, enter the address
your ISP gave you. If you do not want to
use a nameserver now, enter none.

Edit hosts with ed? [no]

If you enter yes here, you can edit the
/etc/hosts file with ed. This file contains
a static table of host names and
corresponding IP addresses. You will
almost never need this.

Installing the sets

Let's install the sets!

The installation sets are compressed
archives that contain the different parts
of MirOS itself.

In this case, the sets will be installed
from the DVD.

Location of sets? (cd disk ftp http

shttp nfs or 'done') [cd]

Just enter cd here and accept the
defaults for the next questions. The
next step is the install set selector. The
available sets are:

• base10.ngz – As the name implies,
this set contains the base files and
directories. You want this.

• bsd – The operating system kernel.
You need this.

• bsd.rd – A kernel image that boots
into a "rescue system" that is
contained within the image itself. A
very handy tool for system recovery
and later upgrades.

• dev10.ngz – The GNU Compiler
Collection, binutils, system headers,
static libraries and manual pages
and associated documentation for
developers. You will need this if you
want to install additional software
using the MirPorts Framework, or
want to develop or compile yourself.
For most normal systems, you will
want this; however, in some cases
(like when building a router), it might
be wise not to install the compiler.

• etc10.ngz – This set installs the
files in /etc as well as the httpd(8)
manual and the default .profile
files.

• gnu10.ngz – Contains those parts
of the base system that are under
less free licences, such as perl,
sendmail, and lynx. You can choose
to not install this set, but your
system will not really be functional
without.

• pkgutl10.ngz – The package tools,
needed to install additional binary
packages contained on the CD.

• ports10.ngz – This set contains the
complete MirPorts framework (see
below) used to install additional
software from source.

• xbase10.ngz – Most of the files
needed for XFree86(R), the graphical
user interface.

• xetc10.ngz – Configuration files for
XFree86(R).

If you are unsure which sets to install,
just enter all. The installation of the
sets is going to take a while. After it has
finished, you will be asked a final set of
questions.

Listing 5. Creating a disclabel

You will now create a MirBSD disklabel inside the MirBSD MBR parti-

tion. The disklabel defines how MirBSD splits up the MBR partition

(rather, the whole disk) into MirBSD slices in which filesystems

and swap space are created.

The offsets used in the disklabel are ABSOLUTE, i.e. relative to

the start of the disk, NOT the start of the MirBSD MBR partition.

If you have created a split space, i.e. one partition of type 27

and one or more partitions of type (e.g.) DB, use the command:

b<return>0<return>*<return> to enable using the entire disk for

MirBSD. Be sure to create slices mapping the filesystems of any

other operating systems in order to not overwrite them.

Inside MBR partition 0: type 27 start 63 (0x3F) size 1023057

(0xF9C51).

Treating sectors 63-1023120 as the MirBSD portion of the disk. You

can use the 'b' command to change this.

Initial label editor (enter '?' for help at any prompt)

>

Listing 6. Last chance to cancel

The root filesystem will be mounted on wd0a. wd0b will be used for

swap space. No more disks to initialise.

MirBSD filesystems:

wd0a /

The next step DESTROYS all existing data on these partitions! Are

you really sure that you're ready to proceed? [no]

20 BSD 1/2009

get started
Start sshd(8) by default? [yes]

ssh (Secure Shell) is a service that allows
secure remote logins with encryption. It
can be very handy for many uses, so say
yes here.

Start ntpd(8) by default? [yes]

The ntp daemon synchronises your
system clock from time servers over
the internet or a local network. NFS and
many other services rely on an exact
time, so answer yes here if the machine
has an internet connection.

Do you expect to run the X Window

System? [yes]

If you ever want to run the X Window
System (the graphical user interface),
answer yes to this question. This setting
affects the machdep.allowaperture
sysctl. If you respond negatively,
you must enable it later in /etc/

sysctl.conf in order to be able to run
XFree86(R).

Next, you must select your local
timezone, for example Europe/Berlin in
Germany. Enter ? to get a list. Finally, the
device nodes which reside in /dev are
created by executing MAKEDEV(8), and the
bootloader is installed.

As the last step if the installation, a
user account is created. This user will
be used for logins after the reboot. In the
default configuration, sudo(1) is used for
administration tasks, root logins are not
allowed.

At the end of the installation, the
installer asks you to reboot. If you
flagged the MirOS partition as bootable
in the beginning, the computer will
automatically boot into MirOS. If you
use a boot manager, you will have to
configure it accordingly to boot the
partition (this is called a chainloader in
LILO and GNU grub).

The default MirOS MBR also
contains a boot manager. To boot the
active partition, just press Return; select
one of the four primary partitions with
the keys 0 to 3, or boot from a floppy by
pressing 5.

Getting started
When you log in for the first time on your
MirOS system, an e-mail will be waiting
in your inbox, telling you about some

of the next steps. The afterboot(7)
manpage also contains some helpful
information, type:

man afterboot

to read it. On many systems, XFree86
can be started without configuring it first,
using the command startx. If this does
not work or if you do want to change the
settings, use the command:

sudo X -configure

Then edit the resulting XF86Config.new file
and copy it to the right place using:

sudo cp XF86Config.new /etc/X11/

XF86Config

Installing binary packages
If you installed the pkgutl10.ngz set,
you can now directly install additional
packages. First, mount the CD using:

sudo mount_cd9660 /dev/cd0c /mnt

Then change to the corresponding
package directory /mnt/packages/i386.
Information about a package can be
obtained using the command:

pkg_info filename

To install a package and its dependencies,
use the command:

pkg_add filename

The command pkg_info without argu-
ments shows all packages installed on
the system. Packages can be deleted
using the command:

pkg_delete packagename

The name can be given with or without
the version number.

Using MirPorts
MirPorts allows to install third-party
software from its source code,
effectively creating your own binary
packages. It is useful for software not
contained on the DVD as a package,
e.g. for licence reasons. If you installed
the ports10.ngz set, all the necessary
files have been unpacked in the
directory /usr/ports on the hard drive.

Before the first use, it has to be set up
using the command:

cd /usr/ports ; make setup

This command installs the package
tools and configures the MirPorts
infrastructure. The ports themselves
are in subdirectories, sorted by
category (e.g. lang/python). Each of
these directories contains a Makefile
with the recipe for installation. The
different targets supported by these
Makefiles are explained in the
bsd.port.mk(5) manpage. Attention,
the make command for MirPorts
(except for the command above) is
called mmake.

Just executing mmake install in
a port directory will download the
source code, compile it , create
a binary package and install it .
Dependencies are automatically
installed when necessary. Some ports
exist in different "flavours", e.g. with
or without X support . To show the
available flavours for a port , execute
the command:

mmake show=FLAVOURS

To select a specific flavour or a
combination, execute a command like
the following:

env FLAVOUR="perl no_x11" mmake

install

Thorsten Glaser initiated the MirOS
Project in 2002, working on everything
he is capable of and more. He admits
being a DOS/GW-BASIC fan, finished
an IT apprenticeship with best grades,
decided university is nothing for him,
and is currently working self-employed
for a software/sysadmin company in
Switzerland. He sometimes wishes he’d
learned a real job instead of CS, and
resides near Bonn, Germany, where the
project idea was born.
Benny Siegert has been a MirOS
developer for five years, working mostly on
MirPorts. He lives in France and is currently
doing his Ph.D. in chemistry.

About the Author

22 BSD 1/2009

get started BSD live cd's

23www.bsdmag.org

BSD live
cd's – an entry level acquaintance?

Linux used to be difficult to install and maintain for novice users. It required some skill to
setup your partitions and go through the installation process. Of course, it was a challenge
that attracted some, but also put off a lot of others that simply wanted 'to try it out'.

Jan Stedehouder

Add hardware issues to the mix and most interested users
safely stuck to Windows. And then there was Knoppix,
one of the first live CD’s. Knoppix was (and is) Debian-
based (arguably not the easiest of Linux distributions).

It came with an unparalleled hardware detection and booted into
a fully functional and usable graphical desktop environment. The
live cd came loaded with KDE applications. Knoppix played an
important role in promoting Linux as a viable desktop alternative.

The live cd has become all but the standard in Linux. The
most popular Linux distributions offer a live desktop as a
stage in the installation process or at least make a live cd/dvd
available for testing purposes. In this article we will look into
live cd's based on BSD. Which cd's are available and which
live-BSD's exist that might point a novice BSD-user, albeit with
some Linux experience, in the right direction?

How to find BSD live cd's?
To try out BSD live cd's we first have to find them. For this various
search engines were used with phrases like live cd BSD, FreeBSD
live, NetBSD live, OpenBSD live and Dragonfly live. It revealed
various attempts to offer live cd's, but only a few have sustained
the test of time. Some projects were greeted with enthusiasm,
but seem have turned defunct after the first few releases and
updates. In some cases it isn't even clear whether the project is
alive or not, or whether it is somewhere between releases.

Along the trail of history
One example is OliveBSD. Distrowatch paid attention to it in
Distrowatch Weekly (issue 140, 27 February 2007) and was
referred to alongside FreeSBIE, Frenzy and Anonym.OS. The
review was not completely flattering as the author struggled with
the rough edges of this OpenBSD 3.8-based disk. The idea was
good however and the use of the IceWM Window manager was
original enough. Sadly, OliveBSD wasn't maintained and updated.

Anonym.OS, also mentioned in the article, is another example.
The concept, provide a live disk for secure and anonymous web
browsing and computer use, was compelling enough for Wired to
pay attention to it (http://www.wired.com/science/discoveries/news/
2006/01/70017). It made use of Tor, a network for anonymous web
surfing, to give an extra layer of security. Anonym.OS was based on
the security-focused OpenBSD 3.8, thus it had a solid foundation to
begin with. The disk was created by kaos.theory/security.research
and there were plans to extend the scope of the project.

The Wired article said:
But kaos.theory members say Anonym.OS is just the first step
in making anonymity widely available. Future versions, they say,
may run on a USB key chain. Additionally, they plan to implement
Enigmail to allow encrypted e-mail for Thunderbird and Gaim Off-
the-Record, which allows users to use instant messaging without
their logs being tied to them.

Figure 1. The Anonym.OS did have a nice appeal

22 BSD 1/2009

get started BSD live cd's

23www.bsdmag.org

The most recent release is dated
January 14, 2006 and the original
developers seem to have moved on to
other projects. Anonym.OS is slowly drifting
back into the anonymity history provides
(Figure 1). FreeBSD Live still tops the list
of the search engines, but it hasn't been
active since 2003. This live cd was created
by the Brazilian FreeBSD User Group, who
released the scripts to build the disk in
2002. The next resource was The LiveCD
List (http://www.livecdlist.com/) which has
a separate entry for BSD disks. This list
mentions 11 BSD-based disks, apart from
the hundreds of Linux-based disks:

• FreeSBIE
• FreeBSD Live CD
• m0n0wall
• Frenzy
• FugIta
• LiveBSD
• NetBoz
• Anonym.OS
• Ging
• NewBIE
• XORP Live CD

The problem with lists like The LiveCD is
they aren't completely up to day. FreeBSD
Live, LiveBSD, NetBoz and Anonym.OS
are no longer active. The status of Ging
– Debian with a FreeBSD kernel- is unclear.
NewBIE seems to be replaced by a Linux-
based live cd. XORP, the eXtensible Open
Router Project, is still active, but one is hard
pressed to find a clear reference to BSD on
the project's website.

The past and the present:
an overview of BSD live cd's
Casting a wider net and digging somewhat
deeper resulted in a list of past and present
projects that offered BSD live cd's. The table
is a reflections of our search. No doubt, it
is far from complete, but it appears to be
most complete list so far. (see document
Table 1 of live distributions)

Live cd's with a desktop focus
The main focus of this article is on
desktop oriented BSD disks. This means
that projects like FreeNAS, pfSense and
m0n0wall (and perhaps also XORP)
fall outside of our scope. They provide
network-oriented services. Frenzy was

not tested further, since it is aiming to
be more sysadmin-oriented. The result
was a somewhat shorter list of disks that
might have the potential to introduce new
users into the benefits of BSD:

• BSD Anywhere
• DragonFly Live
• FuguIta
• OpenBSD Live
• MarBSD
• NetBSD Live
• FreeSBIE
• DesktopBSD
• RoFreeSBIE

We will briefly discuss them here.

BSDanywhere
BSDanywhere is still under development
with a beta 2 version being released in July
2008. The aim is to release a final version
on September 24 during the OpenExpo
2008 Zurich/Winterthur. BSDanywhere is
based on OpenBSD 4.3. Development
began in May 2008 and Stephan Rickauer,
the developer, keeps a good pace in
releasing intermediate versions.

Figure 1. The Anonym.OS did have a nice appeal

Tabela 1. BSD live cd’s

Name release Latest Base URL Status
LiveBSD (1) Unknown Unknown Unknown Inactive(2)

NetBoz 2003 (?) FreeBSD http://www.netboz.net/ Inactive

NewBIE Unknown NetBSD (originally) http://www.fosstools.org/ Inactive

FreeBSD Live November 2003 FreeBSD http://livecd.sourceforge.net/ Inactive

Ging 2005 Debian/ FreeBSD kernel http://glibc-bsd.alioth.debian.org/ging/ Unknown

Anonym.OS January 2006 OpenBSD http://sourceforge.net/projects/anonym-os/ Inactive

FreeSBIE February 2007 FreeBSD http://www.freesbie.org/ Quiet

NetBSD Live September 2007 NetBSD ftp://mirror.planetunix.net/pub/NetBSD/iso/livecd/netbsd-live-2007.iso Quiet

RoFreeSBIE November 2007 FreeBSD http://www.rofreesbie.org/ Quiet

DesktopBSD January 2008 FreeBSD http://www.desktopbsd.net Active

TrueBSD May 2008 FreeBSD http://www.truebsd.org Active

OpenBSD Live June 2008 OpenBSD http://jggimi.homeip.net/ Active

BSDanywhere July 2008 OpenBSD http://bsdanywhere.org Active

Frenzy July 2008 FreeBSD http://frenzy.org.ua/eng/ Active

pfsense July 2008 FreeBSD http://www.pfsense.org Active

XORP July 2008 Unknown (4) http://www.xorp.org Active

FreeNAS August 2008 FreeBSD http://www.freenas.org/ Active

FuguIta August 2008 OpenBSD http://kaw.ath.cx/openbsd/?en/LiveCD Active

m0n0wall August 2008 FreeBSD http://m0n0.ch/wall/ Active

DragonFly Live Recent (3) DragonFly http://www.lolaluci.se/gsoc/index.html Active

MarBSD Recent OpenBSD http://openbsd.maroufi.net Active

(1) There are reference to the LiveBSD project, though no further information is available
(2) The status Inactive means that the project is no longer active. There is no maintenance and no new release scheduled. The status Quiet means that the project appears to be

inactive with very limited recent activity. It is unclear whether a new release is forthcoming.
(3) The release date Recent means that the release is based on a recent version of the the mother BSD. However, the available information is insufficient to pinpoint a more exact

release date.
(4) The XORP website gives no clear indication on which BSD it is based.

24 BSD 1/2009

get started

25www.bsdmag.org

BSD live cd's

The live desktop comes with the
Enlightenment graphical desktop
environment and some user-oriented
software like Firefox, Thunderbird,
The GIMP, Abiword and Audacious.
Enlightenment provides an attractive
and responsive desktop. When looking
at novice users there are two downsides
to BSDanywhere. It doesn't boot into a
graphical environment, which needs to
be launched from the command line.
Installing BSDanywhere on the hard drive
requires using 'bsd.rd' from the command
line and pointing the installer to the
OpenBSD file sets (Figure 2).

Dragonfly Live
The DragonFly LiveDVD is to be con-
sidered experimental, but that shouldn't
stop anyone from trying it out. The
DVD boots into a graphical desktop
environment (Fluxbox) with a small set of
applications (emacs, vim, pidgin, firefox 3,
xpdf, xchat).

A desktop icon provides easy access
to the wizard that guides the installation
on a hard drive It launches two terminal
windows, one with the text-based installer
and one with the log of the various
steps. The screens for each step contain
enough information to help novice users

understand what is happening and what
is required of them. It will be interesting to
see how this project matures into a full and
stable DragonFly Live desktop (Figure 3).

FuguIta
FuguIta is based on OpenBSD and
targets especially Japanese users.
Fortunately, the website contains some
English translation which makes it easier
to understand the purpose of the project.
As the site says, Fugu stands for Blowfish
and Ita can mean both Disk and Cook.

FuguIta offers the user the IceWM
Window Manager and applications like
Emacs, the w3m text-based webbrowser
and MPlayer. The choice of applications
makes this a live disk for more experienced
users and less so for novice users.

OpenBSD Live
The OpenBSD Live project offers the
widest choice of live disks. There are five
different flavors:

• Basic LiveCD
• FluxBox LiveCD
• XFCE LiveCD
• KDE LiveDVD
• GNOME LiveDVD

The Basic LiveCD does have a graphical
interface, though very lightweight with
X and the Fvwm and cwn Window
Managers. It also has no third party
applications. The other flavors offer
progressively fatter desktop enviroments.

Both the KDE and GNOME LiveDVD's
could be interesting options for novice
users, as most Linux users will be
acquainted with either one of these
desktops. The downside is that, although
it does provide the OpenBSD file sets, it
isn't easy to install on a hard drive for
them. On the plus side, the OpenBSD
Live website is one of the few that gives
more than the basic information to it's
visitors (Figure 4).

MarBSD
René Maroufi is responsible for MarBSD.
His work encompasses three different
versions:

• MarBSD-light without a graphical
interface and a limited set of
console-based programs;

• MarBSD-serial which is similar to
MarBSD-light, but uses a serial

Figure 2. BSDanywhere combines OpenBSD with the Enlightenment desktop

Figure 3. The DragonFly installer is easy to use and provides feedback for more experienced users

24 BSD 1/2009

get started

25www.bsdmag.org

BSD live cd's

console instead of a mouse and
keyboard; and

• MarBSD-X, a basic OpenBSD-based
system with a choice of the fvwm
and the cwm Window managers.

Like the OpenBSD Live website, MarBSD's
site provides quite a lot of information,
mostly in German. One of the articles
explains OpenBSD to Linux users and
another one is very instructive for those
who want to build there own OpenBSD-
based live cd.

As an aside, the various builders
of OpenBSD-based live cd's refer to
Kevin Lo's article Building an OpenBSD
Live CD on the OnLamp website (http:
//www.onlamp.com/pub/a/bsd/2005/
07/14/openbsd_live.html). Another (more
recent) resource is Andreas Bihlmaier's
article on the OpenBSD wiki (http:
//www.openbsd-wiki.org/index.php?title=L
iveCD).

NetBSD Live! 2007
The NetBSD Live! 2007 cd is by far the
fastest of the pack. The text-based wizard
at boot requires the user to fill in some
basic questions about language, keyboard,
timezone and DHCP. After that, the login
screen (KDM) bleeps into existence with
the option to login as root or user.

The desktop is fully stocked with KDE
3.4.5 and accompanying applications.
The team threw in extra applications
like Abiword, The GIMP, Dia, Inkscape,
Firefox, XMMS and a few games. It is
a responsive disk. Please forgive the
comparison, but NetBSD Live! 2007 had
the most Knoppix-like experience.

The downside is, also here, that there
is no clear possibility to install it on a hard
drive. On the plus side, it can be used as
a rescue disk for a wide range of systems.
The inclusion of tools to access ext2/ext3-,
Fat-, Macintosh HFS- and NTFS- file systems
makes it easier to access partitions on
systems that have problems (Figure 5).

First conclusions
So far we have discussed live disks based
on OpenBSD, NetBSD and DragonFly.
The various OpenBSD-based live cd's
range from the most basic systems to
full-blown graphical environmens for the
end-user. Sadly, only DragonFly Live is
easy to install on a a hard drive, but it is
still experimental and we will have to see
how it matures over time.

FreeBSD-based live disks
In the final part of this article we will
focus on three FreeBSD-based live disks:
FreeSBIE, DesktopBSD and RoFreeSBIE.
As we will see in a moment, the latter can
be seen as a fusion of the former two.

FreeSBIE
FreeSBIE can be considered the
continuation of the FreeBSD live project
and was first released in 2003. The
most recent release (2.0.1) is already
a year and a half old and is based on
FreeBSD 6.2. FreeSBIE uses the Xfce

desktop environment with Fluxbox as an
alternative.

The set of applications is relatively
small, but complete. Abiword and
GNumeric are available for office
activities. Firefox, Thunderbird, xchat and
GAIM take care of your connection to
the outside world. The GIMP, Inkscape
and GQView make up the graphics
department and Beep Media Player,
BMPx and MPlayer are there for your
multimedia activities. With each live start
you'll also get to see a new desktop
background.

Figure 4. OpenBSD Live comes in various flavors, the KDE desktop being one of them

Figure 5. NetBSD Live! 2007 is one of the fastest and complete live disks

26 BSD 1/2009

get started

27www.bsdmag.org

BSD live cd's

The live cd lacks a hard disk
installer. Distrowatch Weekly (issue
186, 22 January 2007) had an interview
with Matteo Rondato about FreeSBIE
2.0 that was released at the time.
Rondato explained in the interview that
the toolkit for FreeSBIE was completely
rewritten and the hard disk installer
wasn't ported at the time. It wasn't
high on his list of priorities, since he
prefers users to take FreeBSD proper
if they want it installed on their systems
(Figure 6).

DesktopBSD
We discussed DesktopBSD extensively
in BSD Magazine no. 1. Together with PC-
BSD it has a sharp focus on the novice
desktop user. The DesktopBSD tools
make it easier, for instance, to manage
software, take care of the network
connections and mount partitions and
devices on your system.

The KDE desktop environment
has an attractive look and feel. With
a 1.5 GB ISO image there is room for
extra applications. Thus you can find
OpenOffice.org, Firefox and Thunderbird
apart from a large collection of KDE-
based applications (Figure 7).

RoFreeSBIE
RoFreeSBIE is an adaptation of -
unsurprisingly- FreeSBIE. The most
recent release followed FreeSBIE by
eight months. This extra time was used
to create a larger disk and more polished
live desktop.

Where FreeSBIE uses the Xfce
desktop as a default, RoFreeSBIE
selected KDE 3.5. The Xfce desktop is
available on the live disk, but definitely
lacks the finish of either it's own KDE
desktop or FreeSBIE's Xfce desktop
(Figure 8).

The KDE menu is changed into a very
tidy and accessible menu tree. With Knoppix
you can get overwhelmed because of a
very crowded menu due to the large set of
applications. RoFreeSBIE slashed the main
entries back to but a few:

• Software, the applications
• RoFreeSBIE tools,
• DesktopBSD tools,
• Utilities
• Computer operations, like logging off

and rebooting,
• Control Center (for KDE settings)
• etcetera

Under RoFreeSBIE tools we find a
collection of interesting programs. The
entry Configuration shows tools to setup
your network, the firewall, manage users,
get your TV card and wifi connections up
and running. The entry Antivirus is one
you won't find often on either a Linux or
BSD-disk, but both ClamAV and F-Prot
are there. Ubuntu users will be interested
in the Add Remove Programs entry, but
the FreeBSD Ports Browser (FPB) is unlike
their tool to install software the easy way.
Still, FPB is nice graphical front-end to
either installing the port or the package
of the software you are looking for.

Figure 6. FreeSBIE uses the Xfce desktop
environment

Figure 7. DesktopBSD offers a wide collection of software

Figure 8. RoFreeSBIE's Xfce desktop won't win it many prices....

26 BSD 1/2009

get started

27www.bsdmag.org

BSD live cd's

The main entry DesktopBSD tools
shows that RoFreeSBIE incorporated
the work of DesktopBSD in it's
release as well. The entry Software
Management launches the Package
Manager, an alternative tot FPB. We
have two graphical front ends for the
same function.

RoFreeSBIE does that with other
applications as well. You get three
web browsers (Firefox, Opera and
Konquerer), two office suits (KOffice and
OpenOffice.org), two IM clients (Pidgin and
Kopete). Overall, it provides an extensive
look into major applications.

It is possible to install RoFreeSBIE
on your hard drive Under RoFreeSBIE
Tools -> Installations tools we find the
RoFreeSBIE installer. The installer is a
graphical wizard guiding you through the
steps of preparing your hard drive and
actually installing the files. Once installed
you'll find that root still doesn't need a
password (Figure 10).

Conclusions
The main question of this article was
whether there were live cd's based on
BSD that could lower the barrier for
Linux and Windows users, so they can

get acquainted with BSD in an easier
way. Of course, one might wonder if
providing a complete and functional
graphical desktop environment with
familiar applications and an easy
installer is suitable as an introduction
to BSD. Once loaded, it is hard to
distinguish BSD live disks from it's
Linux-based counterparts. But, if
anything, they do show that BSD is
well-suited for most day-to-day tasks.
The benefits and strength of the
underlying operating systems need to
be explained later.

Looking at the various projects
the conclusions is that most are not
really focused on end-users, let alone
novice desktop users. The majority
caters to fellow experienced BSD. That
might also explain why most project
websites provide minimal information
or documentation and why easy hard
disk installers are absent, at least for
those who lack the needed skills and
experience. Your BSD friends already
know how to care of themselves.

The development of Linux is
sometimes frantic, to point of some-
times sacrificing stability for novelty.
Compared to that, the development
of the BSD-based live disks is almost
glacial. When we look at desktop-
oriented live disks, we notice that
most of them were released in 2007,
sometimes early 2007. There are some
hints that the FreeBSD-based disks
are moving towards the 7.0-RELEASE.
The FreeSBIE mailing list briefly refers
to work being done on it in November
2007, but no progress report since.
DesktopBSD has released an early
snapshot in March 2008. Of course,
the choice between a stable and well-
developed KDE 3 desktop and the
innovative, sometimes controversial
KDE 4 desktop, complicates matters
somewhat.

NetBSD Live! 2007, RoFreeSBIE and
DesktopBSD offer the best experience
for novice users who want to get a
taste of a BSD-based desktop. The work
that is being done on BSDanywhere
and DragonFly Live could provide
interesting alternatives in the near
future. For BSDanywhere I do hope that
an easy to use hard disk installer will be
added to the compelling combination
of OpenBSD and the Enlightenment
desktop.

Figure 9. ... though the polish on the KDE desktop could be a source of inspiration for others

Figure 10. The RoFreeSBIE installer should be no problem for those who know DesktopBSD

28 BSD 1/2009

get started Opensolaris, FreeBSD, OpenSuSe

29www.bsdmag.org

How it works?
Opensolaris, FreeBSD, OpenSuSe

This article is a comparison of Opensolaris-200805, FreeBSD7 and OpenSuSe11. The
evaluation includes initial installation, device support, installing additional programs,
and ease of use. The main considerations are ease, stability, and speed.

David Gurvich

The install media consists of downloadable isos. The
boot process may be discussed if a significant issue
exists. When possible a livecd of the operating system
is used to see how the systems react first. It is good

technique/less risky to do so before installation. The two
machines used have the following configuration: see Table 1.

All of the systems are setup with a root password and a
non-root user. Opensolaris and OpenSuSE require a desktop
installation, GNOME for Opensolaris and KDE4 for OpenSuSE.
In fact, not installing a desktop would require some effort with
both Opensolaris and OpenSuSE. FreeBSD requires manual
installation and configuration for any desktop, the default is a
console login. I used KDE3 in FreeBSD. KDE4 is also available
on FreeBSD7 and a brief test was made.

Opensolaris
The Opensolaris livecd boots up into a normal GNOME
desktop. A graphical tool for detecting hardware and
available drivers is on the desktop. Click on the Device
Driver Utility and a window opens providing information on
what hardware is detected and what driver supports that
hardware. There has not been a better tool for the purpose.
There were only a few issues with hardware support on
these systems. Opensolaris does not come with drivers
for many sound cards. You can solve this problem easily
by using the open sound system drivers from 4front. This
solution worked well with both systems. Another problem in
Opensolaris with the desktop system is the lack of a driver
for the ralink rt2561/rt61 chipset. There are no plans for
such a driver. On the plus side, those drivers that do exist
work very well (Figure 1).

Network configuration uses nwam, a network wizard
daemon. The wizard works well for ethernet and unencrypted
wireless, but fails on encrypted wireless. The option offered for

entering a wep key does not work. For encrypted wireless one
must disable nwam and use the console tools, either dladm
or wificonfig.

Opensolaris uses pkg for program maintenance. There
is a graphical interface that is slow and buggy, rendering
it unuseable. In fact, later versions crash immediately. The
command line tool is quite good and works well. Package
installation and updates are easy for any supported software.
The main difficulty is installing programs from alternative
repositories. Attempts to install a build environment for SFE, a
set of spec files for various programs that are not supplied in
the opensolaris repositories, all fail to build a single program.
Installing prebuilt packages from the repository has worked.
It cannot play commercial dvds, nor install the packages to
do so. Perhaps the instructions for the build environment
have not kept pace with the changes in Opensolaris since
an earlier Solaris(b67) attempt to setup a build environment
worked.

Figure 1. Drivers

28 BSD 1/2009

get started Opensolaris, FreeBSD, OpenSuSe

29www.bsdmag.org

No review with Opensolaris would
be complete without a mention of zfs.
You may have heard of zfs, the best new
filesystem ever, repairs errors before
they happen, allows infinite storage and
cures cancer. Just kidding. In reality,
zfs is very good and would certainly
justify using Opensolaris for any server
system. Backups, rollbacks, directory
level compression, and more work well
and are very fine-grained. The only place
a normal desktop user might notice
zfs is during a system update. System
updates get written to a new pool and
the bootloader is updated to use that. If
there is some error, you can rollback the
update very quickly and easily. Backups
are handled similarly. Other uses would
rarely be seen by normal desktop users.

Opensolaris works very well on
supported hardware and not at all on
unsupported hardware. Installing the
nvidia driver, flash, Openoffice, Sun Studio,
and a java environment were effortless
and all worked with no problems. An
updated wine, an important tool for those
wishing to use Windows programs, was

one of the few programs that installs
properly from SFE. Multimedia codecs,
commercial DVD playback, and other oft
used packages were either not available
as packages or did not work. This test
makes no attempt to build directly from
the source tarballs, only the spec files.

FreeBSD7
The desktop FreeBSD7 installation
requires updating from a FreeBSD6
iso. The FreeBSD7 iso results in instant
reboots (DesktopBSD, PC-BSD, and
Freesbie all have liveCD isos based on
FreeBSD6 and alpha or beta isos on
FreeBSD7. Freesbie is the most complete
but does not offer a trivial install. PC-BSD
and DesktopBSD make configuring a
graphical environment slightly easier.
All of them had problems booting on
multiple systems) necessitating a more
convoluted install. The laptop does not
require any special means to install
FreeBSD7. After updating, problems
arise if the nvidia module and all the
sound modules are added to loader.conf.
Only after booting with a rescue cd and

modifying the /boot/loader.conf file to
NOT load nvidia and to load only the
specific sound driver for the system
would a console boot on both systems.

FreeBSD comes in two parts, the
base system and everything else. The
ports tree contains everything else,
either as a prebuilt package or a set
of recipes for building from source. The
ports system makes source installation
very simple, change to the directory of
the port you wish to build and make
install clean. If you wish to modify the
default configuration then make config
first. The sources will be downloaded
and package configured, built, and
installed with all required dependencies
handled and an update to the
package database for easy package
management. If you do not wish to build
from source (because, for instance,
both of these systems can be quite
slow for building OpenOffice) FreeBSD
comes with pkg_add for fetching a binary
package from a remote repository and
installing it. There exist multiple tools for
ports management.

Figure 2. Screenshot from softpedia

30 BSD 1/2009

get started

31www.bsdmag.org

Opensolaris, FreeBSD, OpenSuSe

Network configuration is done through
a text config file in /etc/ called rc.conf.
There is no similar component to nwam
in Opensolaris or networkmanager in
OpenSuSE on FreeBSD7. For a trivial
network configuration that does not
change, including wep encryption, rc.conf
is enough, just add a line for each interface
you wish to configure. For wireless roaming
or encrypted networks you need to write a
wpa_supplicant.conf file and place that
in /etc, adding WPA to the interface line
in rc.conf. More complex situations
require customized startup scripts.
Changing from wireless to wired requires
manual intervention and, just like wireless
roaming, fails to reset the routing table.
Switching from wireless to wired requires
elaborate contortions. The only method

that works for wireless roaming was to
set wpa_supplicant.conf with multiple
entries though that did not work particularly
well. Rebooting in a new location works
for wireless roaming and disabling the
wireless interface in rc.conf+restarting
network interfaces works for wired.

Although the hardware support on
FreeBSD is greater than on Opensolaris,
there are more problems. There are
issues with the pcmcia slots on the
laptop concerning the cardbus bridge
and the nvidia driver on the desktop.
There appears to be a bizarre bug in
FreeBSD7 that causes connections
on the laptop and on the desktop to
disconnect at random intervals. There
were no error messages and bringing
the interfaces down and up restores

the connections. The cause is unlikely
to be bad hardware as Opensolaris and
OpenSuSE have no issue.

The evaluation above uses KDE3.5.8.
KDE4.1 is now available in FreeBSD7.
Only the laptop is evaluated with
KDE4,installed from packages, and
manually configure to start from kdm.
The KDE4 desktop looked good but
consumed more resources over time,
eventually making KDE4 unusable. There
seems to be a bug in konqueror for
KDE4 that causes processes to never
quit on FreeBSD7. The same issue does
not occur on OpenSuSE. Only individual
programs crash and not KDE4 as a
whole. KDE4 on OpenSuSE is much
more polished, easier to use, and install.
OpenSuSE clearly puts many more
resources into making KDE4 better. If one
wishes to test out KDE4, OpenSuSE is
the clear choice.

Installing multimedia codecs and
DVD playback requires minimal effort.
To use a recent version of flash, wine
needs to be installed. That allows using
Windows firefox+flash. That combination
works surprisingly well and uses the
same amount of resources as the native
firefox+flash combination on Opensolaris
and OpenSuSE. Wine has to be built from
the port as there is some incompatibility
in the prebuilt package that causes wine
to crash. A similar problem occurs with
firefox. Some packages are not built
with required flags and these need to be
rebuilt. Installing a java jdk or jre is very
annoying (I had to download 4 separate
files from 3 different sites to build the
native java version);the package does
not work well.

The largest single issue facing
FreeBSD is the lack of maintainers for
large packages, as compared to Linux.
You may have noted the version of KDE
is 3.5.8 while the kde website shows
that 3.5.10 is out and 3.5.9 has been
out for quite some time. There is no
official package for Openoffice. Either
a matching package for your running
system must be found, or you must build
from source.

The most annoying aspect of FreeBSD
deals with networking. Interfaces must be
restarted or reconfigured constantly. All
other aspects were bearable and either
had no solution or a one-time solution.
Most likely no alternative would need to
be considered without that problem. The

Figure 3. Knetworkmanager

Figure 4. Main menu

30 BSD 1/2009

get started

31www.bsdmag.org

Opensolaris, FreeBSD, OpenSuSe

networking problems create doubt about
the viability of using FreeBSD7 as a
server solution. Perhaps that is why most
hosting companies still use FreeBSD6
and have not migrated to 7 or 8.

OpenSuSE
The installation uses the most recent
OpenSuSE-11.0 KDE4 liveCD. KDE4
was up after the shortest boot of the
3 operating systems. One interesting
aspect of the liveCD environment is
the ability to install new packages.
Wine, flash, and firmware for the rt2561
card are all easily installed. Windows
applications, viewing flash sites, and
browsing the internet, all work well (see
Figure 2).

The actual KDE4 liveCD screen is
similar in color and theme, but not the
same as the screenshot, where an
earlier version of KDE4 is used. There is
an install icon that starts a very simple
install using the liveCD environment as
the base. The account name, password,
root password, keyboard, and location
are set during install. In addition, the
partitioning can also be changed (for
desktop use, a single large partition and
a swap partition were created). As the
boot is the shortest, so is the install. It
took under 20 minutes from first boot to
rebooting into the new system.

Networking is managed using a
much improved networkmanager and
knetworkmanager applet. In the past
networkmanager was slow and buggy,
with very limited functionality. Now one
can set up most common encryption,
save settings for individual networks,
and change networks easily. There is
no problem switching between wired

and wireless networks and roaming
is trivial. There are no problems with
the networking that required disabling
networkmanager and writing config
scripts. Unbelievably, It just works! That
cannot be said for FreeBSD, Opensolaris,
or earlier Linux systems. There is no
problem with networking on these two
systems.

OpenSuSE uses YAST, yet another
setup tool, for every configuration task.
If you have not seen YAST, imagine
a Windows Control Panel done right.
YAST is wonderful with the only flaw
being it's speed. That flaw is now gone.
Every part of YAST is much faster than
before. A package management system
is included as one of the YAST modules.
There is a system tray icon for updates
and a separate software management
frontend. Repositories are trivial to
manage and supply many packages
not available directly from OpenSuSE.
The package management system can
add repositories for KDE4 updates, the
OpenSuSE build service, Wine, packman
(a multimedia repository), and others.

Enabling dvd playback and installing
codecs requires that one first uninstall
the libraries provided by OpenSuSE. In
particular, the xine library is built without
support for most multimedia formats. If
these libraries are not uninstalled, the
package management system will not
replace them with working versions from
the alternative repositories. Flash does
not work well on OpenSuSE. The only
version that works is the beta version of
flash10 from adobe. That version requires
libcurl3.

The KDE4 window manager on
OpenSuSE includes many features that

once required installing compiz. These
work quite well and have not crashed
the system. In fact, the laptop has far too
little video memory to consider compiz.
However, if you wish the rotating cube,
compiz for kde4 is available.

Some of the programs that are
included with KDE4 are simply not ready.
Konqueror is a fine tool for everything else
but crashes constantly when accessing
websites. Install firefox3 and set that as
the default web browser. Replace the
beta of Koffice2 with OpenOffice. Koffice2
crashes far too often while OpenOffice
has yet to crash.

Conclusions
Opensolaris allows very fine-grained
control of the entire system and only
supports hardware that works well.
These aspects make Opensolaris a
wonderful server operating system,
especially when one considers the
existence of zfs, but necessitates a
steep learning curve. Opensolaris on
the desktop leaves much to be desired.
Multimedia playback, random hardware
support, suspend/resume, and the steep
learning curve are just some of the
problems facing a normal user.

FreeBSD7 is the only one of the 3
systems that could be installed on a
486 class machine and run with 16MB
of ram. The ports system and installer
allows for minimal installs, with only those
packages installed that are required for
a particular task. Multimedia playback,
speed, and support for a large number
of systems are all positives for FreeBSD7.
Desktop users will have difficulty with
configuration of a desktop environment,
networking, and certain hardware.

OpenSuSE-11 has the easiest and
fastest install, the easiest networking
tool, the easiest system controller in
YAST. In fact, easy might be the best
description of OpenSuSE. The only
flaws were in multimedia and flash.
Both of these require one-time fixes.
There are two hardware issues, both
on the desktop. Firmware needed to
be manually extracted from an archive,
downloaded from the ralink website,
and installed in /lib/firmware. Suspend/
Resume fails miserably on the desktop,
requiring a reboot. Suspend/Resume on
the laptop requires creating a /etc/pm/
sleep.d/99sound file to handle the sound
modules.

Table 1. Thinkpad T23 & A7N266 motherboard with Nforce1 chipset

Thinkpad T23 A7N266 motherboard with
Nforce1 chipset

Processor Intel P3 1Ghz Athlon-XP 2Ghz

Ram 1GB 1GB

Video Card Savage Nvidia

Video Memory 8MB 128MB

Hard Drive 120GB Western Digital(IDE) 120GB Seagate (IDE)

Ethernet Intel 100 3COM 905b

Wireless Intel Pro 2100 (802.11b) MSI (802.11g) ralink rt2561

Sound Intel 82801CA Onboard

Other ports 2 usb1, 2pcmcia, s-video, ps2
mouse, dock, vga, serial, parallel,
modem, rj45, headphone jack

4 usb1, serial, parallel, ps2
mouse + keyboard, vga, rj45,
headphone

32 BSD 1/2009

how-to’s How to get the family into one room!

33www.bsdmag.org

Multi-User
Conferencing

So you've gone and done it, taken the plunge, and adopted Jabber as your instant
messaging system. You've even built a couple of transports to keep connected with
those less enlightened people who continue to use the 'walled garden' networks.

Eric Schnoebelen
Michele Cranmer

Now you want to be able to bring all your jabber
using friends and family (don't laugh, on our server,
we have a room just for the family) into a single
(virtual) room, or maybe set up different rooms for

different groups using your server. How are we going to do
that?

Fortunately, the XMPP Foundation (and the Jabber
Foundation before them) defined a standard for Multi-User
Conferencing (XEP-0045). Jabber's Multi-User Conferencing
is very powerful, and it's not restricted to the users of just
one server. Assuming correct DNS entries, you can connect
to a conference room on any Jabber server in the world, and
any Jabber user can connect to your conference rooms to
chat.

Multi-User Conferencing
Most of the commercial or quasi-commercial XMPP servers
(OpenFire, ejabberd, Jabber Inc) have built in conferencing
packages. Unfortunately, the jabber server I run (and have
been using in this series), the Open Source jabberd2
server, lacks a multi-user conference component (as does
jabberd1.)

At the time of writing, we're aware of two component
implementations of XEP-0045, usable with jabberd2. The first
is mu-conference, originally written as an internal component
for the orignal Jabber implementation, jabberd1 (now known
as jabberd16). A component library was created from the
jabberd1 source to allow it to operate as a component using
jabberd2's component protocols.

The second XEP-0045 component implementation is
palaver, written in python, using the twisted framework.
(you should remember twisted from the transports article,
where several of the transports are based on the twisted
libraries.)

We're going to take a look at building, installing and
configuring both mu-conference and palaver.

Obligatory pkgsrc
mu-conference 0.6.0 is in pkgsrc/chat/mu-conference. I've
packaged the updated 0.7.0 version in pkgsrc-wip on Source
Forge, as wip/mu-conference palaver is in wip/py-jabber-palaver.

It uses/depends upon the editions of twisted in wip/
twisted-core and wip/twisted-words.

To build from pkgsrc (assuming you've bootstrapped
pkgsrc on your non-NetBSD platform), change the
appropriate directory, and install the software by typing
"[b]make install".

FreeBSD has mu-conference in the ports collection as net-
im/mu-conference.

Figure 1. Service Discovery in Psi, note „Public Chatrooms” and „Multi-User
Chat Service”, implemented by mu-conference and palaver respectively

32 BSD 1/2009

how-to’s How to get the family into one room!

33www.bsdmag.org

Listing 1. Working muc-jcr.xml configuration file for mu-conference

<jcr>

 <!--

 This is a config file for a copy of MU-

Conference, compiled against

 the Jabber Component Runtime (JCR). This is the

same file that I use

 to connect to my development server, running

jabberd2 beta2

 In order to connect to a jabberd v1.4 server,

simply change the

 <name> value to muclinker, and make sure the

muclinker section is in

 your main jabber.xml file, as per the MU-

Conference README file.

 -->

 <!-- the jid of your component -->

 <name>conference.jabber.cirr.com</name>

 <!-- this should be the same as above -->

 <host>conference.jabber.cirr.com</host>

 <!-- adress of the jabber server -->

 <ip>jabber.cirr.com</ip>

 <!-- port used to connect the service to the jabber

server -->

 <port>5347</port>

 <!-- secret shared with the jabber server -->

 <secret>***************</secret>

 <!-- directory containing the rooms data -->

 <spool>/var/spool/jabberd/muc</spool>

 <!-- directory containing the debug log

 (the file is called mu-conference.log) -->

 <logdir>/var/log/jabberd</logdir>

 <!-- file that will contain the PID of the process

-->

 <pidfile>/var/run/jabberd/mu-conference.pid</pidfile>

 <!-- uncomment to also send log to stderr -->

 <!-- <logstderr/> -->

 <!-- log verbosity, 255 for very verbose, 0 for

quiet -->

 <loglevel>124</loglevel>

 <conference xmlns="jabber:config:conference">

 <!-- rooms are public when created,

 comment to make them private by default -->

 <public/>

 <!-- the vCard section contains the vCard of the

service -->

 <vCard>

 <FN>Public Chatrooms</FN>

 <DESC>This service is for public chatrooms.</

DESC>

 <URL>http://jabber.cirr.com/conferences</URL>

 </vCard>

 <!-- maximum numbers of history lines send when

joining a room -->

 <history>40</history>

 <!-- where to store the room logs -->

 <logdir>/var/spool/jabberd/muc-logs/</logdir>

 <!--URL of the log stylesheet -->

 <stylesheet>../style.css</stylesheet>

 <!-- default text to send to legacy clients,

 will also be used in the logs -->

 <notice>

 <join>has become available</join>

 <leave>has left</leave>

 <rename>is now known as</rename>

 </notice>

 <!-- lists of admins of the service, add a

<user/> tag by admin -->

 <sadmin>

 <user>eric@jabber.cirr.com</user>

 </sadmin>

 <!-- when uncommented, only dynamic rooms can be

created -->

 <!-- <dynamic/> -->

 <!-- persistent rooms will be created, overide

<dynamic/> -->

 <!-- <persistent/> -->

 <!-- enforce the user nickname to the user part

of his jid -->

 <!-- <locknicks/> -->

 <!-- uncomment to allow only admins to create

rooms -->

 <!-- <roomlock/> -->

 <!-- configuration of MySQL,

 only used if the MySQL exports is

activated,

 see README.sql -->

 <!--

 <mysql>

 <user>root</user>

 <pass/>

 <database>chat</database>

 <host>localhost</host>

 </mysql>

 -->

 </conference>

</jcr>

34 BSD 1/2009

how-to’s

35www.bsdmag.org

How to get the family into one room!

Building
mu-conference the Hard Way
mu-conference can be downloaded from
http://download.gna.org/mu-conference

/mu-conference_0.7.tgz. mu-conference
requires the libidn, expat and glib2
libraries. Install as appropriate, either
from source, or your OS's packaging

system. (and of course, the compiler
suite.)

Change directories into mu-

conference_0.7/src, remove mysql.o

Listing 2. Twisted --help output, note „palaver” in the output

/usr/pkg/lib/python2.4/site-packages/twisted/plugins/

palaver.py:1: DeprecationWarning: mktap and related

support modules are deprecated as of Twisted 8.0.

Use Twisted Application Plugins with the 'twistd'

command directly, as described in 'Writing a Twisted

Application Plugin for twistd' chapter of the Developer

Guide.

 from twisted.scripts.mktap import _tapHelper

Usage: twistd [options]

Options:

 --savestats save the Stats object rather

than the text output of

 the profiler.

 -o, --no_save do not save state on shutdown

 -e, --encrypted The specified tap/aos/xml file

is encrypted.

 --nothotshot DEPRECATED. Don't use the

'hotshot' profiler even if

 it's available.

 -n, --nodaemon don't daemonize

 -q, --quiet No-op for backwards

compatibility.

 --originalname Don't try to change the

process name

 --syslog Log to syslog, not to file

 --euid Set only effective user-id

rather than real user-id.

 (This option has no effect

unless the server is running

 as root, in which case it

means not to shed all

 privileges after binding

ports, retaining the option to

 regain privileges in cases

such as spawning processes.

 Use with caution.)

 -l, --logfile= log to a specified file, – for

stdout

 -p, --profile= Run in profile mode, dumping

results to specified file

 --profiler= Name of the profiler to use,

'hotshot' or 'profile'.

 [default: hotshot]

 -f, --file= read the given .tap file

[default: twistd.tap]

 -y, --python= read an application from

within a Python file (implies

 -o)

 -x, --xml= Read an application from a

.tax file (Marmalade

 format).

 -s, --source= Read an application from a

.tas file (AOT format).

 -d, --rundir= Change to a supplied directory

before running [default:

 .]

 --report-profile= DEPRECATED.

 Manage --report-profile option,

which does nothing currently.

 --prefix= use the given prefix when

syslogging [default: twisted]

 --pidfile= Name of the pidfile [default:

twistd.pid]

 --chroot= Chroot to a supplied directory

before running

 -u, --uid= The uid to run as.

 -g, --gid= The gid to run as.

 --help-reactors Display a list of possibly

available reactor names.

 --version Print version information and

exit.

 --spew Print an insanely verbose log

of everything that

 happens. Useful when debugging

freezes or locks in

 complex code.

 -b, --debug run the application in the

Python Debugger (implies

 nodaemon), sending SIGUSR2

will drop into debugger

 -r, --reactor= Which reactor to use (see --

help-reactors for a list of

 possibilities)

 --help Display this help and exit.

Commands:

 ftp An FTP server.

 telnet A simple, telnet-based remote

debugging service.

 socks A SOCKSv4 proxy service.

 manhole-old An interactive remote debugger

service.

 portforward A simple port-forwarder.

 web A general-purpose web server which

can serve from a

 filesystem or application resource.

 inetd An inetd(8) replacement.

 words A modern words server

 toc An AIM TOC service.

 palaver A multi-user chat jabber

component.

34 BSD 1/2009

how-to’s

35www.bsdmag.org

How to get the family into one room!

from the list of conference_OBJECTS,
remove mysql_config --libs from LIBS,
and update the include and library
search paths in LIBS and CFLAGS to
make sure glib, expat, and libidn can
be found. Similar changes need to be
made to the Makefiles in jabberd and
jcomp. Once those changes are made,
type make.

After make completes, an executable
named mu-conference should exist. There

is no install target, so copy the binary
to a suitable directory, maybe ~jabber/bin,
or /usr/local/bin.

Configuring mu-conference
In the mu-conference_0.7 directory
(above where we build the binary) is the
file muc-default.xml. This is a prototype
configuration file for mu-conference.
Pick some directory to install the
configuration file, perhaps /usr/local/

etc/jabberd, as muc.xml (or something
similar.)

Open the configuration file in your
favorite editor. Nearly every tag set is
going to need some attention.

<name></name> should be the Jabber
ID (service hostname) for the service.
The hostname needs to be in DNS if you
wish off-site users to be able to use the
conference server.

<host></host> (as the comment
says) should match <name></name>.

<ip></ip> should be the hostname
or IP address of the jabber server that's
providing the parent service.

<port></port> should be set to the
port required to connect to the router
on <ip/>. The default is incorrect, at
least for jabberd2. It should be set to
5347.

<secret></secret> needs to be set to
the shared secret for legacy component
connections in your jabberd2 router.xml
configuration file.

<spool></spool> should be changed
to an absolute path. Probably something
like /var/spool/jabberd/mu-conference.

<logdir></logdir> should be
changed to an absolute path. Probably
something like /var/log/jabberd/mu-

conference.log.
The final entry that *must* be changed

is <pidfile></pidfile>. It should be changed
to an absolute path, probably something
like /var/run/mu-conference.pid.

The remainder of the configuration
file is minor things that can be tweaked
to control administrators, how rooms are
created, and other default settings. As
provide they are suitable for use.

Listing 1 is the mu-conference
configuration running on conference.jab
ber.cirr.com.

A live production instance that you
can reach out and touch with your
Jabber client.

Running mu-conference
Now that you've got the configuration
file tweaked, it's time to start up the
conference room/chat server for your
Jabber server.

Start mu-conference by using the
following command line (as your jabber
user, or whoever you wish to own the
spool files):

mu-conference -c /usr/local/etc/

jabberd/muc.xml &

Listing 3. Working palaver.xml configuration file for palaver

<muc>

 <!--

 This is a config file for palaver.

 This format is currectly backwards compatible with the JCR mu-conference

 config file format, as long as you surround the file with the <muc> tag.

 If you switching to palaver from JCR mu-conference, just add the

 surrounding <muc> and </muc> tags and you can use the same file.

 Note: several JCR fields may be unused in palaver. This file

 includes only options that are actually used.

 -->

 <name>chat.jabber.cirr.com</name> <!-- the name of our component -->

 <ip>jabber.cirr.com</ip> <!-- the server to connect to -->

 <port>5347</port> <!-- the port to connect to -->

 <secret>***************</secret> <!-- the secret :) -->

 <!-- the storage backend configuration -->

 <backend>

 <type>dir</type> <!-- possibilities are: dir, memory -->

 </backend>

 <!-- postgresql storage mechanism -->

 <!--

 <backend>

 <type>pgsql</type>

 <dbuser>muc</dbuser>

 <dbname>muc</dbname>

 <dbpass>secret</dbpass>

 <dbhostname>localhost</dbhostname>

 </backend>

 -->

 <!-- spool is the directory where filesystem based backends store data

-->

 <spool>/var/spool/jabberd/chat</spool>

 <conference xmlns="jabber:config:conference">

 <sadmin>

 <user>eric@jabber.cirr.com</user>

 </sadmin>

 </conference>

</muc>

36 BSD 1/2009

how-to’s
The prompt will return and mu-
conference will be running in the
background. (if you don't force it into
the background with the ampersand, it
will continue running in the foreground,
effectively locking the terminal
window.)

Picking your favorite Jabber client
(mine is Psi), do service discovery on
your server. You should now see a
Public Chatrooms entry in your service
discovery list.

Figure 1 shows the service discovery
list on jabber.cirr.com. (via my favorite
client Psi.) Public Chatrooms (the
highlighted entry) is the mu-conference
service.

Building palaver the Hard Way
Palaver is an application written for
the twistd framework. The needed
components are Twistd-Core and Tistd-
Words, along with pyOpenSSL. Assuming
you've got twistd installed from last
issues articles on transports, we'll forge
a head.

Grab palaver from http://
onlinegamegroup.com/releases/palaver/
palaver-0.5.tgz, and extract it into a working
directory.

Change into the palaver-0.5 directory,
and do the standard python installation
dance:

 python setup.py build

 sudo python setup.py install

You can verify that palaver has been
properly installed by running the following
command:

 sudo twistd --help

At the bottom will be a list of commands,
you should see palaver listed. (see
Listing 2 for the full output of twistd -
-help).

Configuring palaver
There are two ways to configure palaver.
One is with an XML configuration file,
and the other is via individual command
line arguments to the palaver twisted
component.

For this article, we're going to focus
on the XML configuration file. palaver
claims to be compatible with the mu-
conference configuration file format, if
it is wrapped in <muc></muc> tags. (mu-

conference wraps the configuration in
<jcr></jcr> tags.)

In the palaver directory, you'll find a
file, example-config.xml. Copy it to your
jabber configuration directory (/usr/
local/etc/jabber?) as palaver.xml, and
edit using your favorite editor.

<name></name> should be the Jabber
ID (service hostname) for the service.
The hostname needs to be in DNS if you
wish off-site users to be able to use the
conference server.

<ip></ip> should be the hostname
or IP address of the jabber server that's
providing the parent service.

<port></port> should be set to the
port required to connect to the router
on <ip/>. The default is correct for
jabberd2.

<secret></secret> needs to be set to
the shared secret for legacy component
connections in your jabberd2 router.xml
configuration file.

Delete the section for the pgsql
backend, it's poorly formatted xml, and
will cause palaver to complain loudly if
not removed.

<spool></spool> should be changed
to an absolute path. Probably something
like /var/spool/jabberd/palaver.

Finally, set the <sadmin></sadmin>
block to contain your Jabber ID as an
administrator.

Running palaver
Starting palaver is pretty straight forward.
Start twistd specifying palaver as the
subcommand as in:

 twistd -u jabber \

 -l /var/log/jabber/palaver \

 --pidfile=/var/run/palaver.pid \

 palaver \

 --config /usr/local/etc/jabberd/

palaver.xml

Listing 3 is a working configuration file
for palaver.

Figure 1 shows the service discovery
list on jabber.cirr.com. (via my favorite
client Psi.) Multi-User Chat Service is the
palaver service.

Using the conferencing service
How you access the conferencing service
depends on your client. In most clients
(I've checked Psi, Pidgen and JBother (a
very nice client written in Java, and web-
startable)) find the Join Group Chat item
on their pulldown menu. Fill in the Room
with a name (without spaces), a if the
room doesn't exist, it will be created.

Then fill in the Host or Server field
with the host name of your chat service
(in my case, chat.jabber.cirr.com.) Fill in
the Nickname field with the name you
want to use in the room.

Finally, if you know the room doesn't
exist, or the room is moderated or
invitation only, enter a password. (The
password is used when the room is
made invitation only.)

Once you've created the room, there
are a number of options that can be
set, including a short description, the
maximum number of room members,
room moderation status, and room
persistency.

Now that you've got your conferencing
software all set up and tested, call the
family around the (virtual?) fireplace, and
have a nice family chat!

Eric Schnoebelen is a 25 year veteran of the UNIX wars, using both System V and BSD
derived systems. He's spent more than 20 years working with and contributing to various
open source projects, such as NetBSD, sendmail, tcsh, and jabberd2. He operates a
UNIX consultancy, and a small, NetBSD powered ISP. His prefered OS is NetBSD, which
he has running on Alpha, UltraSPARC, SPARC, amd64 and i386.
Michele Cranmer is a relativity new user to UNIX and Jabber, having been basically
forced into learning it when she met Eric. After having been a loyal Windows and
Yahoo Messenger user for many years, she finds that she prefers the new systems
to the others because of ease of use and reliability. Being a college student,
getting her degree in Special Education, she plans on using the new systems in
her classroom as a way of teaching the children that there are many different ways
to do things other then the normal ways and those ways are no more strange or
unusual then they are.

About the Author

38 BSD 1/2009

how-to’s GDB and you

39www.bsdmag.org

GDB and you
Part 1

Segmentation fault, core dump, if you were lucky enough you would get one and work
in the obvious or sometimes not so obvious problem, when you were not so lucky
data would be silently corrupted and blood would be spilled (generally yours) if your
application started exhibiting this erratious behaviour in a production setting.

Carlos Neira

This first part of the series asumes a basic knowledge
of the c programming language which is necesary
to follow the examples and because this article is
centered in using gdb to debug C programs.

The function of a debugger is to allow you to see what is
going on inside a program while it executes, or to see what
was doing another program when it crashed, gdb can:

• Start your program, passing the arguments necessary for
the execution or the program

• Make your program stop on specified conditions.
• Examine what has happened when your program has

stopped.
• Change data in your program as it executes to reproduce

an error condition.

Enough for an introduction, let's get to work:
The first thing you should do to start debugging
a c application (if you have the source code, if you don't
is beyond the scope of this tutorial, you could at least use
the disas command in gdb to see the code generated), is
compiling with debug symbols if your compiler of choice
is gcc the -ggdb flag does the trick, if your using another
compiler -g works ok, the -ggdb flag is exclusive for gcc
according to the manpage gdb(1):

 -ggdb

Produce debugging information for use by GDB. This means
to use the most expressive format available (DWARF 2, stabs,
or the native format if neither of those are supported), including
GDB extensions if at all possible.

Make sure that in your makefile you are not using STRIP(1),
as the name says it would strip your binary of the debugging

information generated by the compiler with the -ggdb or -g flag,
lets see an example (Listing 1). There are fatal flaws in this
code, but is good to test some features of gdb.

compile this with debugging symbols as explained earlier.
Now execute the program you should have a segmentation

Listing 1. Buggy program

/* example for testing gdb */

#include<stdio.h>

#include<string.h>

void print_string(char* sz_string)

{

 char msg[16];

 sprintf(msg,"this is what you need printed

%.*s\n",strlen(sz_string),

 sz_string);

 printf("Yaay i got :%s",msg);

}

int main(int argc, char** argv)

{

 char blah[16];

 char bleh[16];

 memset(bleh,'B',10);

 memset(blah,'A',17);

 print_string(blah);

}

38 BSD 1/2009

how-to’s GDB and you

39www.bsdmag.org

fault, something like this: see Figure 1.
To start a debugging session with gdb
just do:

gdb <name_of_program>

in this case we have a core file so, after
loading gdb we use the command:

core <name_of_core_file>.

Or all in just one line: gdb example2

example2.core

help tips refering a command are
accessed through the help menu just
type:

help <command you need reference>

This look pretty bad,the backtrace does
not look so usefull,so we start setting
some break points, you can set a
breakpoint in a specific line in the source

code or at a function: to set a breakpoint
at a function just type :

break <name_of_function>, or just b

<name_of_function>

to set a breakpoint at a source code line
number just type:

break source.c:<line>, example : break

example2.c:1

if we have the source in the same
directory of the application being
debuged, we can see a window with the
source code just typing : wi src

when you are done setting
breakpoints hit r to run the program.

Let's get started
What we have just done? well first we
set a breakpoint at main, then one at
function print_string, then one at line

20 of example2.c (Listing 2), typing r
begins execution of the program and
stops in the first breakpoint (main),
then you can resume execution by
pressing n (next) or s (step) to advance
one instruction at a time if you want to
advance to the next breakpoint type c
(continue).

Acording to the help menu :

next (n):

• Step program, proceeding through
subroutine calls.

• Like the step command as long
as subroutine calls do not happen;
when they do, the call is treated as
one instruction.

• Argument N means do this N times
(or till program stops for another
reason).

continue (c) :

• Continue program being debugged,
after signal or breakpoint.

• If proceeding from breakpoint, a
number N may be used as an
argument, which means to set the
ignore count of that breakpoint
to N – 1 (so that the breakpoint Figure 1. Your segmentation fault

Figure 2. gdb Backtrace with the bt or backtrace command

Listing 2. Buggy program fixed

#include<stdio.h>

#include<string.h>

void print_string(char* sz_string)

{

 char msg[64];

 sprintf(msg,"this is

what you need printed :%.*s\

n",strlen(sz_string),sz_string);

 printf("Yaay i got :

%s",msg);

}

int main(int argc, char** argv)

{

 char blah[16];

 char bleh[16];

 memset(bleh,'B',16);

 memset(blah,'A',16);

 print_string(blah);

}

40 BSD 1/2009

how-to’s
won't break until the Nth time it is
reached).

step (s):

• Step program until it reaches a
different source line.

• Argument N means do this N times
(or till program stops for another
reason).

The next breakpoint we hit is at line
20, wait! look at the memset and the
size of the blah array, we check the
content of it with the print command
(p), guess what is in the content of the
byte at blah[16]!, C arrays start at 0 so
the 16 position is just the content of the
memory at that address that happens
to be A, nice! one bug found, imagine
having a variable which holds money

at that memory address suddenly
overwritten....

Let see that !, modify the source code
to: see Listing 3

See what value a10 takes !!
Now back to the original program,

we hit line 7 just in the sprintf instruction,
let see what is the string length of the
sz_string, just call strlen and print the
result!: p strlen(sz_string) the result
28 ?? so you were passing not a NUL
terminated array as a parameter see the
manpage STRLEN(3).

So to test this we just use the set
command:

(gdb) help set variable
Evaluate expression EXP and assign result
to variable VAR, using assignment syntax
appropriate for the current language (VAR
= EXP or VAR := EXP for example). VAR

may be a debugger convenience variable
(names starting with $), a register (a few
standard names starting with $), or an
actual variable in the program being
debugged. EXP is any valid expression.

This may usually be abbreviated to
simply set.

So now we dont a have a
segmentation fault and all is working ok
(did you fixed the memset that we saw
earlier?, if you did not is just a matter of
“luck” if your program works or not), the
day (and maybe your job) is saved !

Figure 3. Setting some breakpoints in your source code

Listing 3. Example of a variable being
overwritten

#include<stdio.h>

#include<string.h>

void print_string(char* sz_string)

{

 char msg[64];

 sprintf(msg,"this is

what you need printed :%.*s\

n",strlen(sz_string),sz_string);

 printf("Yaay i got :

%s",msg);

}

int main(int argc, char** argv)

{

 int a=0 ;

 int a1=0 ;

 int a2=0 ;

 int a3=0 ;

 char blah[16];

 int a4=0 ;

 char bleh[16];

 int a5=0 ;

 int a6=0 ;

 int a7=0 ;

 int a8=0 ;

 int a9=0 ;

 int a10=0 ;

 memset(bleh,'B',16);

 memset(blah,'A',17);

 printf("%p %p %p %p %p

%p %p %p %p %p %p %p

%p\n",&a,&a1,&a2,&a3,&a4,&a5,&a6,&a

7,&a8,&a9,&a10,&blah[16]);

printf("a9 %d mydebts %d\

n",a9,a10);

 print_string(blah);

}

Figure 4. Setting some breakpoints in your source code

42 BSD 1/2009

security corner Installing Prelude IDS

43www.bsdmag.org

Installing
Prelude IDS

Protecting and securing an IT infrastructure takes a lot of time – and who knows if it
is secure now and stays secure in the future. We cannot reach 100% security when
connecting servers to the internet, running servers inside our company – or even
protect our laptops when moving from one untrusted wireless LAN to another.

Henrik Lund Kramshøj

The best we can do is implement defense in depth
and try our best to keep everything updated and
configured sensibly. One things that helps though is
operating systems that aim to be secure by default

– like NetBSD. This foundation is great for a lot of systems and
I will go through the steps needed to implement Prelude IDS on
NetBSD as an example of the ease of use of NetBSD and also
introduce a mature enterprise system for logging and detecting
bad things. The operating system is NetBSD and the system
I will be installing is Prelude which is a Universal Security
Information Management (SIM) system. As described on the
home page this system of applications collects, normalizes,
sorts, aggregates, correlates and reports all security-related
events. That might sound like it is promising too much, but in
reality the structure and design of Prelude allows integration of
existing software like snort, samhain, ossec, auditd, PF packet
filter and includes a program for reading logs and creating
events. Surely this is a great starting point and does much
more than just adding a WEB UI to Snort (Figure 1).

Prerequisites for Prelude
The Prelude system is based upon a database, so you need to
install database software and configure the central database
and the prelude-manager application – the central focal
point for Prelude. There are also a few other things to do after
installing the NetBSD operatingsystem.

So start by installing the NetBSD operating system
(footnote 1) and then do the following:

• Add a user for yourself using the adduser -m -G wheel joe
• Add SSHD to /etc/rc.conf with the option sshd=YES
• Add your SSH public key to .ssh/authorized_keys
• Add sudo unless you use just su, I use sudo with special

privileges for the wheel group

• Production setups might also want to add different file
systems for database, data, logs etc.

Adding Prelude
Building Prelude from scratch is not recommended for first
time users, as there are a lot of components to a Prelude
installation – but luckily there are Prelude packages for
NetBSD which can be used.

You can thus install directly from the ftp repository as
described in The NetBSD Guide using an export PKG_PATH with
the right repository (Listing 1).

That pkg_adds commands alone should fetch prelude-
manager with all dependencies including MySQL database
software. Personally I mostly use PostgreSQL, and I won't get
into a war about which database you should use. Choose
MySQL or PostgreSQL for your installation as you please,
Prelude can do use both.

Figure 1. Prelude-ids.com-external-sensors

42 BSD 1/2009

security corner Installing Prelude IDS

43www.bsdmag.org

The other software installed above
are the Prewikka WEB UI, Prelude Log
Monitoring Lackey and Prelude PF logger
– about 20 packages are installed by
now.

Configure Prelude databases
We are now going to go speeding
through the configuration required as
documented in the User Manual from
Prelude available at: https://trac.prelude-
ids.org/wiki/ManualUser – but first

enable the rc.d scripts needed for
starting and stopping the software: see
Listing 2.

This will allow you to start the
MySQL and add the database using
the instructions in https://trac.prelude-
ids.org/wiki/InstallingPreludeDbLibrary:
see Listing 3.

Remember when upgrading that
some database changes might be
required and the scripts for upgrading
the database are also located in the

directory /usr/pkg/share/libpreludedb/

classic/ and named after the version
being upgraded to such as mysql-
update-14-6.sql which is the script to
update to the layout in version 14.6

Prewikka also needs a database, so
do another: see Listing 4.

Then edit the configuration file for
Prewikka at /usr/pkg/etc/prewikka/

prewikka.conf where you can add your
company name and change database
settings, if you didn't just use the
defaults.

Starting Prelude Manager
Configure the Prelude Manager using
the default example configuration: see
Listing 5.

Adding a sensor
Next you need to register a sensor, lets
use the Prelude Log Monitoring Lackey
as an example, you need to do this
for each new sensor program – but it
is not as hard as it might seem. You
need to start two programs that need to
communicate, because the registration
process requires the client-side to
connect to the server-side. Begin by
running something like this:

prelude-admin register prelude-lml

"idmef:w admin:r"

and wait for generation of key material
– takes forever, after which it will tell
you to start another command – open
another window and login into the server:
see Listing 6.

Now you should go on and
configure Prelude LML by copying the
examples rulesets and start editing the
configuration file:

cp -r /usr/pkg/share/examples/

prelude-lml/ruleset /usr/pkg/etc/

prelude-lml

vi /usr/pkg/etc/prelude-lml/prelude-

lml.conf

Listing 1. Installing packages for Prelude

export PKG_PATH="ftp://ftp.NetBSD.org/pub/pkgsrc/packages/NetBSD-4.0/i386/All"

pkg_add -v prelude-manager

pkg_add -v prelude-lml

pkg_add -v prelude-pflogger

pkg_add -v mysql-server (running mysql on the same host)

pkg_add -v py24-prewikka (py23 and py25 also exist, but preludedb

Python module was for 2.4)

pkg_add -v apache (running the apache and prewikka on the same host)

Listing 2. Add links for easy access

nutty# cd /etc/rc.d/

nutty# ln /usr/pkg/share/examples/rc.d/apache

nutty# ln /usr/pkg/share/examples/rc.d/preludemanager

nutty# ln /usr/pkg/share/examples/rc.d/prewikka

nutty# ln /usr/pkg/share/examples/rc.d/mysqld

nutty# ln /usr/pkg/share/examples/rc.d/pflogger

Listing 3. Create MySQL database

mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1

mysql> CREATE database prelude;

Query OK, 1 row affected (0.00 sec)

mysql> GRANT ALL PRIVILEGES ON prelude.* TO prelude@'localhost'

IDENTIFIED BY 'prelude';

Query OK, 0 rows affected (0.00 sec)

mysql> exit

Bye

mysql prelude < /usr/pkg/share/libpreludedb/classic/mysql.sql

Listing 4. Create tables in MySQL database

mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 6

mysql> CREATE database prewikka;

Query OK, 1 row affected (0.01 sec)

mysql> exit

Bye

mysql prewikka < /usr/pkg/share/prewikka/database/mysql.sql

Figure 2. Prelude-ids-screenshot

44 BSD 1/2009

security corner

45www.bsdmag.org

Installing Prelude IDS

When you edit make sure you add at
least the following lines: see Listing 7.

If this is working you can kill the
process and add it to the rc.local bootup
as prelude-lml -d.

Configure Prewikka
The fun begins when Prewikka is
configured, so lets get started. This is a
web application written in Python, so you
need to add stuff to the httpd.conf, or as I
recommend add an include like Include
conf/prewikka.conf to httpd.conf which
point to a configuration file containing the
directives (see Listing 8).

This step can be a little troubling,
unless you configure a proper DNS
name for the server, add the virtual host
AND update the rest of httpd.conf. Please
se the advise in the old article Securing
Apache 2: Step-by-Step by Artur Maj
(footnote 5).

I had problems with Python missing
the prelude and preludedb modules,
which I fixed by deleting py25-prewikka
and going back to py24-prewikka.
Solving the issue of missing prelude
python module by recompiling the
pristine sources of libprelude-0.9.19.tar.gz
from Prelude and doing make install
– not clean, but the libprelude package
was missing the module :-(YMMV.

Testing the installation
An easy way to test the installation is to
use the Prelude LML we configured –
doing some logins with wrong password
etc. This should show up in the Prewikka
UI and everything is ready. Next step is
to make sure that all programs start
when the server is booted and add
backup etc. to the environment. I will
leave that as an exercise for the reader
(see Figure 2).

The picture shown is from an
installation where I also added the Snort
NIDS which have support for Prelude
built-in. The testing done was just doing
portscans using the Nmap program by
Fyodor.

Cool stuff with Prelude
Once you get the basic Prelude
installation up and running there are a
number of ways you can enhance it.

The easiest is of course to add new
sensors using the same software as
you are running now, just register and
configure the new sensor and Prelude

Listing 5. Configure Prelude Manager

mkdir /usr/pkg/etc/prelude-manager/

cp /usr/pkg/share/examples/prelude-manager/prelude-manager.conf /usr/

pkg/etc/prelude-manager/

vi /usr/pkg/etc/prelude-manager/prelude-manager.conf

// to have at least this content:

user = _prelude

group = _prelude

// also adding/changing database information as appropriate:

[db]

type = mysql

Host the database is listening on.

host = localhost

port = 3306

Name of the database.

name = prelude

user = prelude

pass = prelude

Before you can use the Prelude Manager you need to add a user (footno-
te 3)

mkdir /var/spool/prelude/prelude-manager

prelude-admin add "prelude-manager" --uid _prelude --gid _prelude

Generating 1024 bits RSA private key... This might take a very long time.

[Increasing system activity will speed-up the process].

Generation in progress... X......+++++O+++++O

Created profile 'prelude-manager' with analyzerID '2037117093516026'.

/etc/rc.d/preludemanager start

30 Aug 20:36:09 (process:15387) INFO: Subscribing Normalize to active

decoding plugins.

// prelude-manager should be running, check /var/log/messages if it is not

ps auxw | grep prelude

_prelude 13838 0.0 1.7 2440 4540 ? Isa 8:46PM 0:01.05 /usr/

pkg/bin/prelude-manager -d --pidfile /var/run/prelude-manager/prelude-

manager.pid

Listing 6. Register new sensor

prelude-admin registration-server prelude-manager

The "65owe145" password will be requested by "prelude-admin register"

in order to connect. Please remove the quotes before using it.

Generating 1024 bits Diffie-Hellman key for anonymous authentication...

Waiting for peers install request on :::5553...

Waiting for peers install request on 0.0.0.0:5553...

// now enter this password in the 1st window and you will see the

registration on the server

Connection from 127.0.0.1:65345...

Registration request for analyzerID="3676201167722360" permission="idmef:

w admin:r".

Approve registration? [y/n]: y

127.0.0.1:65345 successfully registered.

44 BSD 1/2009

security corner

45www.bsdmag.org

Installing Prelude IDS

will pick up the new data. Even more fun
is to start adding new sensor software
which might give interesting data from
your network.

• By just adding the Prelude-PFLogger
you can make any firewall ruleset
with PF create events by adding

just log to the rules you want
to monitor

• By adding some syslog software
like SNARE (footnote 4) to your
Microsoft Windows servers you can
collect eventlogs and process them
using Prelude Log Monitoring Lackey
(Prelude LML) and centralize logging

of successful and failed logins
across your enterprise

• With Prelude LML running you can
also use the existing rules that give
you information about Sendmail,
Postfix, IPFW, OpenSSH SSHD,
mod_security, Cisco PIX and several
others. You can even modify or
change the rules using the PCRE
syntax which is not hard.

• By adding Snort you can make use
of the correlation in Prelude to detect
network scans, from the same
source – nicely presented in an easy
to use UI

Conclusions
Prelude is way cool and pretty easy to
install using the packages and ports
on BSD, not just NetBSD, and can give
a lot of useful information covering a
large part of what modern enterprises
or geeks need. I have used Prelude for
more than a year personally and also
use it for customer installations. I would
recommend following the development
of Prelude and perhaps build your own
packages, since Prelude development
moves pretty fast and getting updated
packages may be hard. Also having a
test installation to mess with is needed.

Thanks
I only wrote this article not the software,
so I am not the one doing the hard
work. The great job is done by all the
people from NetBSD, Prelude, MySQL,
PostgresSQL, Snort, Samhain, PF, etc. So
Thank you all :-)

Listing 7. Prelude LML configuration

file = /var/log/messages

...

[Pcre]

ruleset=/usr/pkg/etc/prelude-lml/ruleset/pcre.rules

ruleset=/usr/pkg/etc/prelude-lml/ruleset/ssh.rules

ruleset=/usr/pkg/etc/prelude-lml/ruleset/sudo.rules

after which you can start the prelude-lml program:

prelude-lml

30 Aug 21:12:32 (process:2747) INFO: PCRE plugin loaded 417 rules.

30 Aug 21:12:32 (process:2747) INFO: PCRE plugin loaded 432 rules.

30 Aug 21:12:32 (process:2747) INFO: PCRE plugin loaded 434 rules.

30 Aug 21:12:32 (process:2747) INFO: Monitoring /var/log/messages through

pcre[default]

30 Aug 21:12:32 (process:2747) WARNING: /var/log/everything/current does

not exist.

30 Aug 21:12:32 (process:2747) WARNING: /var/log/apache2/access_log does

not exist.

30 Aug 21:12:32 (process:2747) INFO: Connecting to 127.0.0.1:4690 prelude

Manager server.

30 Aug 21:12:33 (process:2747) INFO: TLS authentication succeed with

Prelude Manager.

30 Aug 21:12:33 (process:2747) INFO: /var/log/messages: No metadata

available, starting from tail.

Listing 8. httpd.conf virtual host settings

<VirtualHost *:80>

 ServerName prewikka.server.org

 Setenv PREWIKKA_CONFIG "/usr/pkg/etc/prewikka/prewikka.conf"

<Location "/">

 AllowOverride None

 Options ExecCGI

 <IfModule mod_mime.c>

 AddHandler cgi-script .cgi

 </IfModule>

 Order allow,deny

 Allow from all

</Location>

Alias /prewikka/ /usr/pkg/share/prewikka/htdocs/

ScriptAlias / /usr/pkg/share/prewikka/cgi-bin/prewikka.cgi

</VirtualHost>

• NetBSD installation is described in
detail in The NetBSD Guide at http:
//www.netbsd.org/docs/guide/en/
netbsd.html

• Prelude http://www.prelude-ids.com
• Prelude generation of keys can take

a long time, try typing a lot on the
keyboard and doing disk I/O and
networking from the system

• SNARE http://www.intersectalliance.c
om/projects/SnareWindows/

• Securing Apache 2: Step-by-Step by
Artur Maj http://www.securityfocus.
com/infocus/1786

On the 'Net

46 BSD 1/2009

security corner Hard drive encryption on BSD

47www.bsdmag.org

If it moves! crypt it -
hard drive encryption on BSD

BSD operating systems are well known for their tough security and stability. You may
surf the Web assured that your sensitive data is well protected by a firewall or some
other advanced BSD protection.

Marko Milenovic

Now let us, for the sake of this text, assume that your
hard drive and/or the whole computer gets stolen.
This is a very possible scenario considering that the
most of us use laptops when we're not at home or

at the office. So, your laptop got stolen. Thief might have a lot of
problems cracking your password and accessing your files. Or
would he? Remember, at this moment all your data is written on
the hard drive in a readable form so our thief doesn't even need
to boot up the operating system. All he needs is some Live BSD
CD and he may mount hard drive and copy all your data.

This is one of many scenarios where our data gets stolen for
being written in readable form. Let's now see the solution which
every BSD system brings – hard drive encryption. Note: super
user privileges will be needed to perform following actions.

Encrypting NetBSD style -
cryptographic device driver(cgd)
NetBSD brought hard drive encryption tool between versions
1.6 and 2.0 of the operating system. That's why you may find it
starting from NetBSD 2.0. It brings a rather simple procedure
for hard drive encryption. This doesn't mean that you should
not do a backup of your data before this procedure.

First of all you need to enable cgd in your kernel. Check out
kernel configuration file for this line:

pseudo-device cgd 4 # cryptographic disk

driver

Number 4 indicates how many cgd devices may be configured
at the same time. You may always change this later.

The cgd driver uses three different encryption algorithms:

• aes-cbc - AES uses a 128 bit blocksize and accepts 128,
192 or 256 bit keys.

• blowfish-cbc - Blowfish uses a 64 bit blocksize and
accepts 128 bit keys.

• 3des-cbc – 3DES uses a 64 bit blocksize and accepts
192 bit keys.

Another aspect of this driver that we need to have a look at
before we begin is verification method. The cgd comes with
three different ways of verifying the validity of password.

none – this method does no verification. This is a rather
dangerous method for one particular reason. When a wrong
pass phrase is entered cgdconfig does no verification and
configures cgd device as normal but it destroys data which
was on the volume. I bet you thought it would just configure
the device giving access to your data, didn't you?

disklabel – cgdconfig checks for a valid disklabel. If a valid
disklabel is found with the key that is provided authentication
will succeed.

ffs - checking for a valid FFS is performed. If it's found with
the key that is provided authentication will succeed.

Encryption step-by-step
Let's go to the point of this story – hard drive encryption. Let's
assume you've got a spare partition you'd like to use for
storing sensitive data. First of all we want to make sure that
there is no data what so ever on our partition. So let's do some
scrubbing.

Let's first configure a temporary cgd device with a random
key:

cgdconfig -s cgd0 /dev/wd1e aes-cbc 128 < /dev/urandom

Now we may fill this partition with zeros:

dd if=/dev/zero of=/dev/rcgd0d bs=32k

46 BSD 1/2009

security corner Hard drive encryption on BSD

47www.bsdmag.org

This will make these zeros look like random
data on the device. Be aware that this
process may last for some time depending
on the size of your partition. Once done we
may un-configure the device:

cgdconfig -u cgd0

The cgdconfig program is used to
manipulate information parameters such
as encryption type, key length and random
password salt. Before we do this basic
configuration make sure that the default
location for storing cgd information(/etc/
cgd) exists and that its mode is 700.

cgdconfig -g -V disklabel -o /etc/

cgd/wd1e aes-cbc 256

This creates a configuration file /etc/cgd/
wd1e that should look something like this:

algorithm aes-cbc;

iv-method encblkno;

keylength 256;

verify_method disklabel;

keygen pkcs5_pbkdf2/sha1 {

 iterations 6275;

 salt AAAAgHTg/

jKCd2ZJiOSGrgnadGw=;

};

Let's now configure our cgd device and give
it a pass phrase. Since we're doing this for
the first time there is no valid disklabel so the
validation mechanism we want to use won't
work. We will bypass this only this time:

cgdconfig -V re-enter cgd0 /dev/wd1e

This will ask you for a pass phrase twice
just in case you make a typo.

Our cgd device is ready to be
partitioned and activated with a new
filesystem. Remember to use disklabel -I
since you're creating an initial label for a
new disk. After this you should use newfs
to format all newly created partitions.
Notice that new partition names will
reflect cgd partition names:

newfs /dev/rcgd0f

Now test this partition by mounting it:

mount -t ffs /dev/rcgd0f /crypted

If all goes well you may add the following
line to your fstab file:

/dev/cgd0f /crypted ffs

rw,softdep 1 2

From now on each time you boot you'll
need your cgd device configured earlier.
So you should put the following line into
/etc/cgd/cgd.conf:

cgd0 /dev/wd1e

This will use /etc/cgd/wd1e as
configuration file for cgd0. And finally we
need one more line in /etc/rc.conf:

cgd=YES

Each time system boots and starts /etc/
rc you will be prompted for a pass phrase.

Encryption
OpenBSD style – vnconfig
pseudo disk devices utility
OpenBSD is well known for it's proactive
security as a router/firewall system. There
is an urban myth that using OpenBSD as
a desktop system is pretty hard. Well, it's
just that – an urban myth. It works well on
laptops and that's why we need to take a
look at encryption solutions. We will use
vnd disk driver that has been introduced
to OpenBSD 2.1. Let's see how easy it is
to create an encrypted partition.

Let's assume you have a partition with
10GB free space which you want to use
for sensitive data. OpenBSD uses vnconfig
tool to create a pseudo disk device utility.
What does this mean? We won't be
encrypting the partition itself. Instead we'll
create a file which we'll then format and
encrypt just like a regular partition.

First we create an empty file:

touch /datacrypt/cryptfile

and then we need to fill it with… nothing.

dd if=/dev/zero of=/datacrypt/

cryptfile bs=1024 count=10485760

This will create a file of 10GB size full of
zeros. It is now time to use vnconfig to
associate this file with a mount point and
to do some encrypting:

vnconfig -ck -v svnd0 /datacrypt/

cryptfile

You'll be asked for a pass phrase.
Choose a good one you won't forget. Our

disk is now ready to be initialized and
partitioned:

fdisk -i svnd0

disklabel -E svnd0

newfs /dev/rsvnd0a

This will create partition with 10GB of space.
If you want to make more than one partition
use disklabel to make modifications. Now
let's mount this newly created partition:

mount /dev/svnd0a /crypted

And that's it. If you want this partition to
be activated at boot time create a script
which would look something like this:

#!/bin/sh

/sbin/vnconfig -ck svnd0 /datacrypt/

cryptfile

sleep 1

/sbin/mount -f /dev/svnd0a /crypted

and put it in /etc/rc.local. Each time your
system boots you will be asked for a
pass phrase for the device, the system
will then configure and mount it.

Encryption FreeBSD
style – geli me this, geli me that
In FreeBSD 6.0 a new encryption
method was introduced – geli. The most
important features of geli are:

• It utilizes crypto framework meaning
that when cryptographic hardware is
available, geli will use it automatically.

• Supports multiple cryptographic
algorithms – Blowfish, 3DES and AES.

• Allows root partition to be encrypted.
• It is very fast - performs simple

sector-to-sector encryption.

In order to use geli we must first enable
it in kernel. Add the following to your
kernel configuration file:

options GEOM_ELI

device crypto

After this you need to rebuild kernel and
reboot your system. Or we may enable it
through /boot/loader.conf by adding:

geom_eli_load="YES"

After this reboot your system and you
should have geli enabled. After this we

48 BSD 1/2009

security corner
need to generate a Master key for our
hard drive:

dd if=/dev/random of=/root/da2.key

bs=64 count=1

geli init -s 4096 -K /root/da2.key

/dev/da2

Enter new passphrase:

Reenter new passphrase:

Now it's time to attach this key to a hard
drive:

geli attach -k /root/da2.key /dev/

da2

Enter passphrase:

When you are done you'll see a new device
in your /dev directory called da2.eli.

You now have and empty partition than
needs to go through the same process of
labeling and partitioning as before:

dd if=/dev/random of=/dev/da2.eli

bs=1m

newfs /dev/da2.eli

mount /dev/da2.eli /crypted

New partition is ready to be used. After you
reboot your system this partition will not be
mounted. You need to do it manually:

geli attach -k /root/da2.key /dev/

da2

Enter passphrase:

mount /dev/da2.eli /crypted

If you don't want to do this every time you
reboot your system you may use geli's
rc.d script. Just add following lines to
/etc/rc.conf:

geli_devices="da2"

geli_da2_flags="-p -k /root/da2.key"

Swap partition encryption
Your hard drive is now much safer and
you don't have to worry about sensitive
data any more, do you? What about that
swap partition? All is well till the data is
kept in memory. The moment system
starts to swap we have problem since
all that in there will not be encrypted. So,
let's do something about it.

If you are using NetBSD you will
want random-key cgd for swap space,
regenerating the key each reboot. This
is good cause each time the machine is
rebooted, any sensitive memory contents

that may have been paged out are
completely unrecoverable, because you
never knew the key.

So, you want to convert your existing
swap partition. Let's just do the following:

cgdconfig -g -o /etc/cgd/wd0b -V none

-k randomkey blowfish-cbc

When using the random-key generation
method, only verification method none can
be used, because the contents of the new
cgd are effectively random each time.

In order to make labeling automatic
you need to prepare valid labeling and
put it in a file /etc/cgd/wd0b.disklabel.
You ought to check disklabel(8) on how to
use it and create a valid swap partition.

Now you need to create /etc/rc.conf.d/
cgd so that saved label is restored to cgd:

swap_device="cgd1"

swap_disklabel="/etc/cgd/

wd0b.disklabel"

start_postcmd="cgd_swap"

cgd_swap()

{

 if [-f $swap_disklabel];

then

 disklabel -R -r $swap_

device $swap_disklabel

 fi

}

OpenBSD is doing swap partition encrypting
by default. If you are unsure that your swap
partition is actually encrypted just execute:

sysctl vm.swapencrypt.enable

You should get the following as a result:

vm.swapencrypt.enable=1

Of the result is for any reason 0 just
execute:

sysctl vm.swapencrypt.enable=1

After that edit your /etc/sysctl.conf file
and add:

vm.swapencrypt.enable=1

After rebooting your computer swap
partition will be encrypted. FreeBSD brings
a rather easy method for swap encryption.
Let's assume that your swap has been used

up to now so it is containing some sensitive
data. Let's use random garbage to clear it:

dd if=/dev/random of=/dev/ad0s1b

bs=1m

Now let's alter our fstab file a bit:

/dev/ad0s1b.eli none swap sw

0 0

geli will use the AES algorithm with a key
length of 256 bit by default. This may be
changed through /etc/rc.conf file. First,
let's enable geli swap encryption at boot
by adding:

geli_swap_enable="YES"

Now we may alter the way that partition
is created by adding:

geli_swap_flags="-e blowfish -l 128 -s

4096 -d"

This will create geli swap partition using
Blowfish algorithm with a key length of
128 bit, a sectorsize of 4 kilobytes and
the detach on last close option set. After
rebooting you ought to check if everything
went well. Just execute the following:

swapinfo

Device 1K-blocks Used

Avail Capacity

/dev/ad0s1b.eli 542720 0

542720 0%

Word of warning
Using encrypted partitions is pointless if
you backup your data unencrypted on
DVD's or other media. The best solution
for backup would be using GnuPG for file
based encryption of data that will be stored
away from your hard drive. The best solution
would be to make a good security plan
before even starting with data encryption.
You have to know what is to be protected,
be sure it deserves to be protected and then
go all the way with the encryption.

Summary
In a world where security has become the
highest priority encryption has become
very popular way of protecting sensitive
data. In this article we have seen some of
the best solutions for encrypting in BSD
family of operating systems.

Get your copy of BSD Magazine
and save $20 of the shop price

SAVE $20!

Three easy ways to order
• visit: www.buyitpress.com/en
• call: 001 917 338 3631
• fill in the form below and post it

Why subscribe?
• save $20
• 4 issues delivered directly to you
• never miss an issue

great

subscriber
offer

Order information
(□ individual user/ □ company)
Title
Name and surname
address

postcode
tel no.
email
Date

Company name
Tax Identification Number
Office position
Client’s ID*
Signed**

□ Yes, I’d like to subscribe to
 BSD Magazine from issue □ □ □ □

I understand that I will receive 4 issues over the next 12 months.
Credit card:
□ Master Card □ Visa □ JCB □ POLCARD
□ DINERS CLUB

Card no. □□□□ □□□□ □□□□ □□□□ □□□□
Expiry date □□□□ Issue number □□
Security number □□□
□ I pay by transfer: Nordea Bank
IBAN: PL 49144012990000000005233698
SWIFT: NDEAPLP2

Cheque:
□ I enclose a cheque for $ ____________________

Signed

Terms and conditions:
Your subscription will start with the next available issue.
You will receive 4 issues a year.

* if you already are Software-Wydawnictwo Sp. z o.o. client, write your client’s ID number, if not, fill in the chart above
** I enable Software-Wydawnictwo Sp. z o.o. to make an invoice

Payment details:
□ USA $39.99
□ Europe 29.99€
□ World 29.99€

1 2 3 4

(made payable to Software-Wydawnictwo Sp. z o.o.)

BSD Magazine ORDER FORM

50 BSD 1/2009

advanced OpenBSD

51www.bsdmag.org

Packaging
Software for OpenBSD – Part 1

The OpenBSD ports system offers developers a versatile way to make binary
packages for OpenBSD. In this series of articles we demonstrate how you can make
your own packages for OpenBSD.

Edd Barrett

Porting Fundamentals. In order to understand the
ports system, you should first become familiar with
the GNU auto-tools, in particular the configure, make,
make install routine, which is pretty much standard

practice for open-source software build systems now.
In a software tarball, a configure script is intended to

inspect the the system environment and craft a Makefile. The
software is then built by running make (or gmake), followed by
installation with make install.

The ports system wraps this routine up and also provides
a way to package the resulting files in a .tgz much like the
ones you can install from the OpenBSD package servers. The
ports system (which is written as a set of Makefiles) defines a
set of targets, the ones of interest to us at this stage are listed
in Table 1.

The above list is not exhaustive, but is sufficient as a means
of introduction. Later you may wish to read the bsd.port.mk(5)
manual page.

Preparing the Ports System
The ports system is not a part of the base OpenBSD install, so
you must obtain it either via CVS or an install mirror.

If you are planning on submitting your port to be included
in OpenBSD, your port should be built on a recent OpenBSD-
current build. The porting team will not accept ports for
release and stable builds of OpenBSD. If however the port
is simply for personal use, feel free to go ahead.

Retrieving Ports from CVS
To retrieve the ports tree for -current: see Listing 1.

Rt.fm is one of the many anonymous CVS servers. A full list
is available on the OpenBSD wesbite. If you are making a port
for a release, you will need to tell cvs which branch you wish to
check out, for example:

cvs -danoncvs@rt.fm:/cvs co -rOPENBSD_4_3 ports

Also note, a tarball of ports for OpenBSD for releases is on the
CDROM and install mirrors.

Optional Configuration
Without going into too much depth, it is good practice to
enable systrace and sudo port building. Systrace will stop
a port from changing the file system outside it's work
directory and the use of sudo to build ports can often capture
some odd bugs in package builds. These procedures are
documented in the OpenBSD FAQ (http://openbsd.org/faq/
faq15.html#PortsConfig).

Listing 1. Obtaining the ports tree

cd /usr

cvs -danoncvs@rt.fm:/cvs co ports

cvs server: Updating ports

U ports/.cvsignore

U ports/INDEX

U ports/Makefile

U ports/README

cvs server: Updating ports/archivers

U ports/archivers/Makefile

cvs server: Updating ports/archivers/arc

...

Listing 2. Temporary directory

% mkdir -p /usr/ports/mystuff/sysutils/ncdu

% cd /usr/ports/mystuff/sysutils/ncdu

50 BSD 1/2009

advanced OpenBSD

51www.bsdmag.org

A Simple Port
After rummaging through the ports
tree for a while (and asking others for
suggestions), I located a suitable port
as an example. The ncdu port provides
a program is similar to the du(1) utility
which comes on all UNIX systems and
is a perfect example of a super-clean
and manageable port. I will step you
through how this port would have been
made, by starting from scratch. Let's
make a temporary directory for this. See
Listing 2.

mystuff is a special directory that
ports recognizes as a work in progress
area. You can't use any old name.

The Makefile
The centre point of every port is a Makefile.
You can find a sample port makefile
at /usr/ports/infrastructure/templates/
Makefile.template. The ncdu Makefile
would start as follows: see Listing 3.

Having a space after an equals is the
new porting convention.

• All ports start with the $OpenBSD$ CVS
macro, which will later be expanded
by CVS (if it gets committed),

• COMMENT is a short one line description.
It should not be enclosed in quotes
and the first letter of this value should
be lower case,

• DISTNAME is the name of the source
archive without an extension. Ports
will assume that the archive is a
tar.gz unless you tell it otherwise
with EXTRACT_SUFFIX,

• CATEGORIES is used to group ports
via their functionality. A port may fall
into several categories,

• HOMEPAGE is obvious,
• MASTER SITES is a list of places

where the source archive can be
downloaded. This port's sources are
available in two places: the author's
web-page and also sourceforge.
Ports knows all about sourceforge
and it's mirrors via the MASTER_SITE_
SOURCEFORGE macro,

• The next block defines which
distribution methods the license
allows, for both the source archive
and the resulting binary package.
You should always put a comment
clearly stating the license and
make sure it is correct. Most
software has a LICENSE file, but also
check the source files and make

Table 1. bsd.port.mk targets

Ports Target Description

fetch Fetch the source code archive.

makesum Record a checksum of the source code archive.

checksum Check the checksum of the source file matches the recorded checksum.

extract Extract the source archive.

update-patches Record patches needed to build.

clean Clean the port. Removes extracted sources unless told otherwise.

patch Apply patches to the sources.

configure Run the GNU configure script in the sources.

build Build the sources using the Makefile generated at the configure stage.

fake Run the install target of the sources Makefile.

plist Generate the packing list.

package Make a package.

port-lib-depends-check Check library linkage recorded in package matches that of the binaries.

install Install package.

Listing 3. The initial ncdu Makefile

$OpenBSD$

COMMENT = ncurses-based du(1)

DISTNAME = ncdu-1.3

CATEGORIES = sysutils

HOMEPAGE = http://dev.yorhel.nl/ncdu/

MASTER_SITES = http://dev.yorhel.nl/download/ \

 ${MASTER_SITE_SOURCEFORGE:=ncdu/}

MIT

PERMIT_DISTFILES_CDROM =Yes

PERMIT_DISTFILES_FTP = Yes

PERMIT_PACKAGE_CDROM = Yes

PERMIT_PACKAGE_FTP = Yes

CONFIGURE_STYLE = gnu

.include <bsd.port.mk>

Listing 4. Fetching the sources

% make fetch

===> Checking files for ncdu-1.3

>> ncdu-1.3.tar.gz doesn't seem to exist on this system.

>> Fetch http://dev.yorhel.nl/download/ncdu-1.3.tar.gz.

100% |**| 98022 00:

00

>> Checksum file does not exist

52 BSD 1/2009

advanced

53www.bsdmag.org

OpenBSD

sure they are consistent. There is
nothing worse than a license war.
If in doubt email the software's
author,

• CONFIGURE_STYLE defines the type
of build system the software uses.
Most open-source software uses the
GNU build system, but others do exist,

The final line pulls in all the functionality
required to process the port.

So now our work directory contains
only this Makefile.

Making the Port Build
The first thing to do is the fetch the
source archive: see Listing 4.

Ports is quite right to state that no
checksum exists. We are going to need
one of them: see Listing 5.

Now the distinfo file contains
checksums of ncdu-1.3.tar.gz. Next we
extract the sources: see Listing 6.

The w-ncdu-1.3 work directory is
created. This path is known as WRKDIR.
Now we configure the sources. This
runs the configure script in the root of
the source code directory WRKSRC, which
in this case is w-ncdu-1.3/ncdu-1.3: see
Listing 7.

You may notice ports mentioning
patching, this will be covered in the next
installation of this article.

Now the ncdu build system knows
a little about our system, we can build
binaries with the build target. This will
run make in WRKBUILD, which is the
same as WRKSRC (in this case): see
Listing 8.

Package Creation
The next stage is to trick the GNU
build tools into thinking they are
installing binaries onto the system.
Usually running make install would

Listing 5. Generating checksums

% make makesum

===> Checking files for ncdu-1.3

`/usr/ports/distfiles/ncdu-1.3.tar.gz' is up to date.

% ls

Makefile distinfo

Listing 6. Extracting the sources

% make extract

===> Checking files for ncdu-1.3

`/usr/ports/distfiles/ncdu-1.3.tar.gz' is up to date.

>> (SHA256) ncdu-1.3.tar.gz: OK

===> Extracting for ncdu-1.3

dec170% ls

Makefile distinfo w-ncdu-1.3

Listing 7. Configuring the sources

% make configure

===> Patching for ncdu-1.3

===> Configuring for ncdu-1.3

configure: loading site script /usr/ports/infrastructure/db/config.site

checking for a BSD-compatible install... /usr/bin/install -c -o root -g

bin

checking whether build environment is sane... yes

checking for a thread-safe mkdir -p... ./install-sh -c -d

...

Listing 8. Building the sources

% make build

===> Building for ncdu-1.3

make all-recursive

Making all in src

cc -DHAVE_CONFIG_H -I. -I.. -O2 -pipe -MT browser.o -MD -MP -MF

.deps/browser.Tpo -c -o browser.o browser.c

...

Listing 9. Installing files into the fake framework

% make fake

===> Faking installation for ncdu-1.3

Making install in src

test -z "/usr/local/bin" || .././install-sh -c -d "/usr/ports/mystuff/

sysutils/ncdu/w-ncdu-1.3/fake-i386/usr/local/bin"

install -c -s -o root -g bin -m 555 'ncdu' '/usr/ports/mystuff/sysutils/

ncdu/w-ncdu-1.3/fake-i386/usr/local/bin/ncdu'

Making install in doc

test -z "/usr/local/man/man1" || .././install-sh -c -d "/usr/ports/

mystuff/sysutils/ncdu/w-ncdu-1.3/fake-i386/usr/local/man/man1"

install -c -o root -g bin -m 444 './ncdu.1' '/usr/ports/mystuff/sysutils/

ncdu/w-ncdu-1.3/fake-i386/usr/local/man/man1/ncdu.1'

RTFM! bsd.port.mk(5), pkg_add(1),
pkg_create(1), pkg_delete(1), pkg_
info(1), packages(7), ports(7).
The OpenBSD FAQ section 15: http:
//www.openbsd.org/faq/faq15.html
General porting information: http://www.
openbsd.org/porting.html
Porting Checklist: http://www.openbsd.
org/checklist.html

Further Reading

52 BSD 1/2009

advanced

53www.bsdmag.org

OpenBSD

put binaries in /usr/local, but the ports
system sets the DESTDIR environment
variable, which acts (or should act), as
an over-ride install path. This is why
this porting target is called fake: see
Listing 9.

The software is installed into a fake
scaffold of a root file system in WRKINST,
which for this port is w-ncdu-1.3/fake-i386.

At this stage we are ready to start
making some meta-data to be included
in the package. We make a nicely

formatted long description in the file pkg/
DESCR: see Listing 10.

ncdu is an ncurses version of the fa-
mous old du unix command. It provides a
fast and easy interface to your harddrive.
Where is your disk space going? Why is
your home directory that large? ncdu can
answer those questions for you in just a
matter of seconds!

The fmt -72 command wraps words
so that they fit nicely on a standard 80
character wide terminal. This command

will wait for input from standard input.
You will probably want to paste a
description from the project web page,
followed by Enter then [CTRL]+[D]. Next
we make a packing list. See Listing 11.

We have not yet checked the library
configuration of the package. The
package tools use library information
to decide how to update packages
when pkg_add -u is executed (amongst
other things). We can check the library
configuration like so: see Listing 12. This
is ports telling us that we missed some
library information in the port. To resolve
this we add a line to our Makefile:

WANTLIB = c form ncurses

If you now re-run the check you should
not receive any errors. Will talk more
about library dependencies in the next
part of this series. Now comes package
creation see Listing 13.

Conclusions
You can install the package with the install
target, which simply calls pkg_add(1). You
can now indulge in your new program,
safe in the knowledge that the software
is all accounted for in the package
database: see Listing 14. Unfortunately
it is very rare for packages to build and
install so cleanly, so next time we will
dissect less cooperative port and see
what steps we must take to get them
packaged to run on OpenBSD.

Listing 10. Creating package meta-data

% mkdir pkg

% fmt -72 > pkg/DESCR

Listing 11. Creating plist

% make plist

===> Updating plist for ncdu-1.3

/usr/ports/mystuff/sysutils/ncdu/pkg/PLIST is new

Listing 12. Checking the library linkage of the port

% make port-lib-depends-check

ncdu-1.3:

WANTLIB: c.48 (/usr/local/bin/ncdu) (system lib)

WANTLIB: form.3 (/usr/local/bin/ncdu) (system lib)

WANTLIB: ncurses.10 (/usr/local/bin/ncdu) (system lib)

 WANTLIB += c form ncurses

*** Error code 1 (ignored)

Listing 13. Creating a package

% make package

`/usr/ports/mystuff/sysutils/ncdu/w-ncdu-1.3/fake-i386/.fake_done' is up

to date.

===> Building package for ncdu-1.3

Create /usr/ports/packages/i386/all/ncdu-1.3.tgz

Link to /usr/ports/packages/i386/ftp/ncdu-1.3.tgz

Link to /usr/ports/packages/i386/cdrom/ncdu-1.3.tgz

Listing 14. Installing the package

% make install

===> Verifying specs: c form ncurses

===> found c.48.0 form.3.0 ncurses.10.0

===> Installing ncdu-1.3 from /usr/ports/packages/i386/all/

ncdu-1.3: complete

dec170% which ncdu

/usr/local/bin/ncdu

% pkg_info | grep ncdu

ncdu-1.3 ncurses-based du(1)

Edd is a BSc Hons Computing student
at Bournemouth University in the UK.
He works mostly with C, C++, Java,
Python, Ruby, /bin/sh and PHP. He is
also a TeX user and member of the TeX
user group. Edd was respobsible for
bringing the TeX Live typesetter suite
port to OpenBSD. He has just finished
working for Bournemouth University
doing UNIX system administration and
a small amount of teaching. Edd is a
bit of a metalhead and enjoys going to
festivals.

About the Author

54 BSD 1/2009

mms Play Music on Your Slug With NetBSD

55www.bsdmag.org

Play Music
on Your Slug With NetBSD

In an earlier issue of BSD magazine, we learned how to boot NetBSD on the Linksys
NSLU2 (Slug), which I'm sure left a lot of your friends, spouses, or significant others
wondering just why you spend so much time on this stuff.

Donald T. Hayford

So this time, let's do something a little more useful
and teach our Slugs to play music. Though there
are a number of ways to do this, we'll use a
piece of software called SqueezeCenter (formerly

known as SlimServer) that is available from Logitech at
www.slimdevices.com. SqueezeCenter is an open source
software package that will stream your music to a Squeezebox,
a slick little device that connects to your network and outputs
music to your stereo or powered speakers in either analog
or digital (TOSLINK/SPDIF) form. Logitech has published the
interface specifications for the Slim/Squeeze players; see http:
//wiki.slimdevices.com/index.php/SLIMP3ClientProtocol, for
example. We'll use that same protocol to play music with our
Slugs using a common USB audio device. Best of all, we won't
have to do much in the the way of code writing, since others
have already done the heavy lifting for us with software that
runs on the Slug and emulates the Squeezebox. At the end of
the article, we'll take a brief look the Slim data protocol so you
can see how it works.

What You'll Need
A Linksys NSLU2. Actually, what we'll do here will work on just
about anything that runs NetBSD, but most of us won't want
to cram our desktop computers into our stereo/TV cabinets
when we're finished – that would make those friends/spouses/
others start to wonder again. While Linksys no longer makes
the Slug, the techniques we use here should work on any
embedded processor with a USB and Ethernet port that has
enough memory and can run NetBSD. However, you could still
buy the Slug when this article was written.

A NetBSD-compatible USB device. How do you know if it is
NetBSD-compatible? I don't know, but both of the ones I tried
(one is from SIIG, the other from AOC) worked just fine. Though
I'm no expert, USB audio devices seem to be pretty standard.

A desktop/laptop computer that has your mp3 music and
that you can install SqueezeCenter on.

A computer (can be the same as in 3) that you can use
to build NetBSD and also use as a NFS server for booting the
Slug. A Linux, FreeBSD, or NetBSD system is recommended.

Setting Up NetBSD
In the previous issue, we had to modify the Slug by adding
an external serial port to use as the root console. This time,
we'll work with a stock NSLU2, doing all of the setup through
the network. The only problem with doing it this way is that
NetBSD-current, which you will need to put NetBSD on your
Slug, doesn't always reboot correctly. If you added the serial
port, you just type reboot at the debug prompt, but if you
didn't, you'll have to unplug then restart your Slug instead
of rebooting. It still wouldn't hurt to remove the resistor that
cuts your Slug's clock speed in half (if you have it – the more
recent Slugs don't). If you want to do this, see http://www.nslu2-
linux.org/wiki/HowTo/OverClockTheSlug.

To install NetBSD on the Slug, we'll follow the procedure from
the NetBSD community wiki article http://wiki.netbsd.se/How_
to_install_NetBSD_on_the_Linksys_NSLU2_%28Slug%29_
without_a_serial_port%2C_using_NFS_and_telnet. Because
we need to install audio, we'll have to change a few things in
the kernel configuration file, but otherwise the steps are the
same. For completeness, the steps required to retrieve and
build NetBSD's world and kernel are shown in Listing 1. Note
that most of the output from the build computer is suppressed
for clarity. I have found that NetBSD builds pretty painlessly on
a variety of different Linuxes, though I have had problems on
a machine that runs Fedora 7 on an AMD64 processor. In that
case, I was able to get the build to work by adding the three
exports shown in Listing 1. If you experience problems during
the build, refer to the file ~/net/src/BUILDING for more hints.

54 BSD 1/2009

mms Play Music on Your Slug With NetBSD

55www.bsdmag.org

Naturally, NetBSD builds pretty well on
NetBSD machines, as well.

Adding USB audio to the kernel
requires two additional lines in the
kernel, one to add the driver for the USB
hardware, and the other to link that driver
to the standard audio driver. Both lines
are shown in Listing 1. Additionally, we
want to boot the Slug using NFS, so
we add another line for that. Including
the standard NSLU2 configuration file
rounds out our new configuration file.
While you can create the configuration
file with a text editor such as vi, here I've
created the file NSLU2_AUDIO using echo,
as shown in lines 12-16.

After you've finished building NetBSD,
you will need to set up your NFS server
and TFTP servers following the instruction
in NetBSD wiki article. Listing 2 shows
the steps I used to setup up the NFS
server and directory structure. Listings
3 through 11 show the actual files (in
most cases) – you'll need to change your
files to match these, making whatever
changes that are appropriate for your
setup for IP addresses and the like.

Booting Up the Slug
Now it's time to boot up your slug. I highly
recommend downloading and building
the program from the nslu2-linux.org
wiki http://www.nslu2-linux.org/wiki/
HowTo/TelnetIntoRedBoot (Unfortunately,
this program doesn't have a name on
the nslu2-linux.org website, so we'll just
call it telnet_slug. You can find it at
http://www.nslu2-linux.org/wiki/HowTo/
TelnetIntoRedBoot under the heading C
program using Berkeley Sockets) that
interrupts the Slug while it is booting
from it's internal flash memory. That
way, you can start that program running
before you go off and reset the Slug
without having to race back to your
computer to enter [Ctrl-C] within two
seconds. (Remember, this month it's all
about style.) Plug the USB audio adapter
(NetBSD can't run the USB audio device
through a hub, so make sure you plug
it directly into the Slug's USB port either
one. If you add a disk drive later, that
will work through a hub) in and start
the telnet_slug program. Turn the Slug
on and you should see the output at the
start of Listing 12. The first time you boot,
it will take a little time to check the disk
drives, so be patient. You should be able
to ping your Slug within several minutes

if everything is going ok. A few minutes
after ping starts working, you should be

able to telnet into the Slug. Note that
the Slug's IP address is set by the DHCP

Listing 1. Command line input to build NetBSD kernel and world

(1)$ mkdir ~/net

(2)$ export CVS_RSH="ssh"

(3)$ export CVSROOT="anoncvs@anoncvs.NetBSD.org:/cvsroot"

(4)$ cd ~/net

(5)$ cvs checkout -D 20080420-UTC src

(6)$ cd ~/net/src

Add the next three lines if you get an error building NetBSD

(7)$ export HOST_SH=/bin/bash

(8)$ export HOST_CC=/usr/bin/gcc

(9)$ export HOST_CXX=/usr/bin/g++

(10)$./build.sh -m evbarm -a armeb tools

(11)$ cd ~/net/src/sys/arch/evbarm/conf

(12)$ echo 'include "arch/evbarm/conf/NSLU2"' >NSLU2_AUDIO

(13)$ echo 'uaudio* at uhub? port ? configuration ?' >>NSLU2_AUDIO

(14)$ echo 'audio* at uaudio?' >>NSLU2_AUDIO

(15)$ echo 'config netbsd-aud-npe0 root on npe0 type nfs' >>NSLU2_AUDIO

(16)$ cat NSLU2_AUDIO

include "arch/evbarm/conf/NSLU2"

uaudio* at uhub? port ? configuration ?

audio* at uaudio?

config netbsd-aud-npe0 root on npe0 type nfs

(17)$ cd ~/net/src

(18)$./build.sh -u -U -m evbarm -a armeb build

follow the instructions in ~/net/src/sys/arch/arm/xscale/ipx425-

fw.README

to get and build the NSLU2 Ethernet microcode

(19)$./build.sh -u -U -m evbarm -a armeb -V KERNEL_SETS=NSLU2_AUDIO

release

Figure 1. Screenshot of the Slug running top while playing music in the background

56 BSD 1/2009

mms

57www.bsdmag.org

Play Music on Your Slug With NetBSD

server. One common error is to have two
DHCP servers on your network, the one
that has the files that the Slug needs and
your main router that connects to the

Internet. If the router responds first, then
the Slug won't boot up properly. Exit the
copy of telnet that was started by the
telnet_slug program and restart telnet

with the Slug's new address. You should
be able to log in as root (no password
required), set up a user name, and add
passwords for both your user and root.

Listing 2. Command line input to set up the NetBSD root drive and tftp/NFS server

(1)$ sudo mkdir -p /export/aud_client/root/dev

(2)$ sudo mkdir /export/aud_client/root/home

(3)$ sudo touch /export/aud_client/swap

(4)$ sudo dd if=/dev/zero of=/export/aud_client/swap

bs=4k count=4k

(5)$ sudo chmod 600 /export/aud_client/swap

(6)$ sudo mkdir /export/aud_client/root/swap

(7)$ sudo cp -r ~/net/src/obj/releasedir /export/aud_

client

(8)$ cd /export/aud_client/root

(9)$ sudo tar --numeric-owner -xvpzf /export/aud_

client/releasedir/evbarm/binary/sets/base.tgz

(10)$ sudo tar --numeric-owner -xvpzf /export/aud_

client/releasedir/evbarm/binary/sets/comp.tgz

(11)$ sudo tar --numeric-owner -xvpzf /export/aud_

client/releasedir/evbarm/binary/sets/etc.tgz

(12)$ sudo tar --numeric-owner -xvpzf /export/aud_

client/releasedir/evbarm/binary/sets/games.tgz

(13)$ sudo tar --numeric-owner -xvpzf /export/aud_

client/releasedir/evbarm/binary/sets/man.tgz

(14)$ sudo tar --numeric-owner -xvpzf /export/aud_

client/releasedir/evbarm/binary/sets/misc.tgz

(15)$ sudo tar --numeric-owner -xvpzf /export/aud_

client/releasedir/evbarm/binary/sets/tests.tgz

(16)$ sudo tar --numeric-owner -xvpzf /export/aud_

client/releasedir/evbarm/binary/sets/text.tgz

(17)$ cd dev

(18)$ sudo sh ./MAKEDEV -m ~/net/src/obj/

tooldir.YOUR.SYSTEM.HERE/bin/nbmknod all

(19)$ sudo sh ./MAKEDEV -m ~/net/src/obj/

tooldir.YOUR.SYSTEM.HERE/bin/nbmknod audio

(20)$ sudo cp -r /export/aud_client/root/etc /export/

aud_client/root/etc.orig

(21)$ cd /export/aud_client/root/etc

(22)$ sudo nano hosts

(23)$ sudo nano fstab

(24)$ sudo nano inetd.conf

(25)$ sudo nano rc.conf

(26)$ sudo nano ttys

(27)$ sudo nano ifconfig.npe0

(28)$ cd /export/aud_client/root

(29)$ sudo tar --numeric-owner -xvpzf \

/export/aud_client/releasedir/evbarm/binary/sets/kern-

NSLU2_AUDIO.tgz

(30)$ cp *.bin /tftpboot/

(31)$ sudo nano /etc/dhcpd.conf

(32)$ sudo nano /etc/exports

(33)$ sudo nano /etc/hosts

(34)$ sudo nano /etc/hosts.allow

(35)$ cd /export/aud_client/root/usr

(36)$ sudo ftp ftp.NetBSD.org

Trying xxx.xxx.xxx.xxx...

Connected to ftp.NetBSD.org (xxx.xxx.xxx.xxx).

220 ftp.NetBSD.org FTP server (NetBSD-ftpd 20060923)

ready.

Name (ftp.NetBSD.org:hayford): anonymous

331 Guest login ok, type your name as password.

Password:

ftp> cd pub/pkgsrc/current

250 CWD command successful.

ftp> get pkgsrc.tar.gz

local: pkgsrc.tar.gz remote: pkgsrc.tar.gz

227 Entering Passive Mode (xxx,xxx,xxx,xxx,xxx,xxx)

150 Opening BINARY mode data connection for

'pkgsrc.tar.gz' (35739284 bytes).

35739284 bytes received in 236 secs (1.5e+02 Kbytes/

sec)

ftp> bye

(37)$ sudo tar --numeric-owner -xvpzf pkgsrc.tar.gz

(38)$ sudo killall -HUP rpc.mountd

(39)$ sudo /etc/rc.d/init.d/nfs start

Starting NFS services: [OK]

Starting NFS quotas: [OK]

Starting NFS daemon: [OK]

Starting NFS mountd: [OK]

(40)$ sudo /sbin/service dhcpd restart

Shutting down dhcpd: [OK]

Starting dhcpd: [OK]

Listing 3. NFS server and Slug file /etc/hosts

Do not remove the following line, or various

programs

that require network functionality will fail.

127.0.0.1 nfsserver

localhost.localdomain localhost

::1 localhost6.localdomain6 localhost6

192.168.1.102 nfsserver

192.168.1.240 slug1

Listing 4. Slug file /etc/fstab, found at /export/aud_client/root/etc

nfsserver:/export/aud_client/swap none swap

sw,nfsmntpt=/swap

nfsserver:/export/aud_client/root / nfs rw 0 0

Listing 5. Slug file /etc/ifconfig.npe0, found at /export/aud_client/root/etc

inet client netmask 255.255.255.0 broadcast

192.168.1.255

56 BSD 1/2009

mms

57www.bsdmag.org

Play Music on Your Slug With NetBSD

Let's make sure the USB sound device
was recognized by NetBSD. Use dmesg
as shown in Listing 12, line 10 to verify
that the necessary drivers were installed.
Notice that the format of the information
written out by dmesg matches what we
used in our configuration file, except that
*'s and ?'s are replaced by numbers by
the operating as it installs the software
for each driver.

Open another terminal window at this
point and make sure you can connect to
the slug using ssh. Also, make sure you
can su to root (see lines 12 and 13 in
Listing 12). At this point, you can exit telnet
and use ssh to login with your username. If
you're the security-conscious type, you can
disable telnet at this point by editing the
Slug's /etc/inetd.conf, but don't do this
until you're sure you can log in with ssh.

Making Music
Next, we'll use the package system to
build madplay, a program with a few
libraries that will convert MP3 files to
linear 16-bit audio and send it to your
USB sound device (see lines 20 and 21
in Listing 12). It will take a while to build
madplay. While it's building, add a music
directory to the NetBSD root/usr directory
on your NFS server and put a few of your
favorite MP3 in there so we can test
madplay when the build is finished. Test
out madplay as shown in Lines 1 and 2
of Listing 13. You should hear your music
playing on your Slug. If you don't want
anybody to know what you're up to, you
can hook a set of earphones to the USB
dongle while you test things out.

Once we know madplay works, we
need to download two files from the

Internet to your desktop computer you
can transfer them over to the Slug. The
first file, slimp3slave-0.4.tar.gz, is
available from http://www.ex-parrot.com/
~pdw/slimp3slave/. The second file
is a patch file for the source code in
slimp3slave.c, called slimp3slave.c-

stinga-patch-01.txt, and is available
from http://forums.slimdevices.com/atta
chment.php?attachmentid=321&d=1127
457503. Create a directory /home/(your-
user-name)/slim and copy the files to the
slug as shown in Listing 13. Untar the
slimp3slave file and apply the patch as
shown. There is another correction to the
slimp3slave.c file that is shown in Listing
14 that will prevent some unnecessary
printing from corrupting the display when
you run slimp3slave. Build the program
using the provided make file and move
a copy of the executable to a location
in your path (usually, bin in your home
directory is included in your path).

Download SqueezeCenter from http:
//www.slimdevices.com/ and install it
on your desktop. You'll need to tell the
program where your music is located, but
the installation is fairly painless. A really
nice feature of SqueezeCenter is the web-
based interface that you can use to control
what music is being played (note that the
default port for the web interface is 9000,
not 80 as for most web-based servers).
Start the slimp3slave program on your
slug, as shown in Line 13 of Listing 13, and
open the SqueezeCenter web interface.
Figure 1 shows the SqueezeCenter screen
(I'm running version 6.5.4, so the screen
may look slightly different from what you
see) along with a overlaid window with
the Slug running top. In it's default mode,
slimp3slave invokes madplay to decode
and play the mp3 stream coming from
the SqueezeCenter server. Note that the
madplay uses only about 20% of the
available CPU to convert the mp3 files to
the linear audio stream that is played by
the USB sound dongle. Not bad for a little
feller like the Slug.

The command line shown in Line
13 of the listing will run the slimp3slave
player, but if you close the ssh session
to your Slug, slimp3slave stops. However,
the program will run in the background
as shown in Line 14 (don't forget the
trailing &). Once you start slimp3slave in
this mode, you can close the ssh session
and slimp3slave will continue to run on
the Slug. Then use the SqueezeCenter

Listing 6. Slug file /etc/ttys, found at /export/aud_client/root/etc

$NetBSD: ttys,v 1.5 2004/06/20 21:30:27 christos Exp $

from: @(#)ttys 5.1 (Berkeley) 4/17/89

name getty type status comments

console "/usr/libexec/getty default" vt100 on secure

ttyp0 "/usr/libexec/getty Pc" vt100 off secure

ttyE0 "/usr/libexec/getty Pc" vt220 off secure

ttyE1 "/usr/libexec/getty Pc" vt220 off secure

ttyE2 "/usr/libexec/getty Pc" vt220 off secure

ttyE3 "/usr/libexec/getty Pc" vt220 off secure

tty00 "/usr/libexec/getty default" unknown off secure

tty01 "/usr/libexec/getty default" unknown off secure

tty02 "/usr/libexec/getty default" unknown off secure

tty03 "/usr/libexec/getty default" unknown off secure

tty04 "/usr/libexec/getty default" unknown off secure

tty05 "/usr/libexec/getty default" unknown off secure

tty06 "/usr/libexec/getty default" unknown off secure

tty07 "/usr/libexec/getty default" unknown off secure

Listing 7. First twelve lines of Slug file /etc/inetd.conf, located at /export/aud_client/root/etc

$NetBSD: inetd.conf,v 1.58 2007/10/16 02:47:14 tls Exp $

Internet server configuration database

@(#)inetd.conf 8.2 (Berkeley) 3/18/94

#http stream tcp nowait:600 _httpd /usr/libexec/httpd httpd /var/www

#http stream tcp6 nowait:600 _httpd /usr/libexec/httpd httpd /var/www

#ftp stream tcp nowait root /usr/libexec/ftpd ftpd -ll

#ftp stream tcp6 nowait root /usr/libexec/ftpd ftpd -ll

telnet stream tcp nowait root /usr/libexec/telnetd telnetd

telnet stream tcp6 nowait root /usr/libexec/telnetd telnetd

58 BSD 1/2009

mms

59www.bsdmag.org

Play Music on Your Slug With NetBSD

Listing 8. Slug file /etc/rc.conf, located at /export/aud_client/root/etc

$NetBSD: rc.conf,v 1.96 2000/10/14 17:01:29

wiz Exp $

see rc.conf(5) for more information.

Use program=YES to enable program, NO to disable it.

program_flags are

passed to the program on the command line.

Load the defaults in from /etc/defaults/rc.conf (if

it's readable).

These can be overridden below.

if [-r /etc/defaults/rc.conf]; then

 . /etc/defaults/rc.conf

fi

If this is not set to YES, the system will drop into

single-user mode.

rc_configured=YES

Add local overrides below

sshd=YES

hostname="slug1"

defaultroute="192.168.1.1"

nfs_client=YES

auto_ifconfig=NO

net_interfaces=""

Listing 9. NFS server file /etc/hosts.allow

hosts.allow This file describes the names of the

hosts which are

allowed to use the local INET

services, as decided

by the '/usr/sbin/tcpd' server.

in.tftpd: 192.168.0.1

rpcbind: 192.168.1.240

lockd: 192.168.1.240

rquotad: 192.168.1.240

mountd: 192.168.1.240

statd: 192.168.1.240

Listing 10. TFTP server /etc/xinetd.d/tftp

$ cat /etc/xinetd.d/tftp

default: off

description: The tftp server serves files using the

trivial file transfer \

protocol. The tftp protocol is often used to boot

diskless \

workstations, download configuration files to

network-aware printers, \

and to start the installation process for some

operating systems.

service tftp

{

 disable = no

 socket_type = dgram

 protocol = udp

 wait = yes

 user = root

 server = /usr/sbin/in.tftpd

 server_args = -s /tftpboot

 per_source = 11

 cps = 100 2

 flags = IPv4

}

Listing 11. DHCP server file /etc/dhcpd.conf

$ cat /etc/dhcpd.conf

DHCP Server Configuration file.

see /usr/share/doc/dhcp*/dhcpd.conf.sample

ddns-update-style ad-hoc;

option subnet-mask 255.255.255.0;

option broadcast-address 192.168.1.255;

option domain-name-servers xxx.xxx.xxx.xxx,

yyy.yyy.yyy.yyy;

default-lease-time 2592000;

#max-lease-time 28800;

allow bootp;

allow booting;

#option ip-forwarding false; # No IP forwarding

#option mask-supplier false; # Don't respond to

ICMP Mask req

subnet 192.168.1.0 netmask 255.255.255.0 {

 option routers 192.168.1.1;

 range 192.168.1.110 192.168.1.189;

 }

group {

 next-server 192.168.1.102; # IP address

of your TFTP server

 option routers 192.168.1.1;

 default-lease-time 2592000;

 host slug1 {

 hardware ethernet 00:18:39:a2:26:7c;

 fixed-address 192.168.1.240;

 option root-path "/export/aud_client/

root";

 }

 }

58 BSD 1/2009

mms

59www.bsdmag.org

Play Music on Your Slug With NetBSD

web interface to start, stop, and select
the music that plays on the Slug.

When you get it all working right,
connect the dongle output to your home
stereo, sit back and enjoy some tunes.
When your spouse, significant other, or
regular friends ask where you got the
cool music player, act like it's no big deal.
But tell your geek friends you read about
it in BSD Magazine. Win-win.

The slimp3slave.c program has a
small feature in that it doesn't look up the
Slug's actual MAC address to send back
to the server. What this means is that you
can only have one copy of slimp3slave
running on your network, since all devices
will report a MAC address of 00:00:00:00:
00:00 and the server will think that the

same player is just changing it's network
address. I leave it as an exercise for the
reader to find and fix this feature. If you
only have one Slug, don't worry about it.

How It All Works
The data interface between slimp3slave
and SqueezeCenter is captured in a
single function inside slimp3slave.c,
read_packet(), which can be found
starting at Line 682 in the original file.
After a connection between the machine
running slimp3slave (the player) and
the machine running SqueezeCenter
(the server) has been established, the
server sends packets to the player
consisting of an 18-byte header and
data. The contents of the data depend

on the packet type, which is determined
by the first byte of the header. If the first
byte is an l, the contents of the packet
data is alphanumeric information that
should be displayed on the 2-line, 20
char player display. An m as the first byte
indicates an MP3-encoded data packet
that contains the music (or a portion of
it) to be played. This data is buffered up
and sent to a music player (madplay
on the Slug) using a operating system
pipe. Pipes are special files that are
used by the operating system (NetBSD
and other posix-compatible systems)
to connect the input of one program to
the output of another. As slimp3slave
receives data from the server, it buffers
it up and the operating system will

Listing 12. Slug first bootup and building madplay

(1)$telnet_slug

== Executing boot script in 1.220 seconds - enter ^C

to abort

Telnet escape character is '~'.

Trying 192.168.0.1...

Connected to 192.168.0.1.

Escape character is '~'.

(2)RedBoot> load -r -b 0x200000 -h 192.168.0.2 netbsd-

aud-npe0.bin

Using default protocol (TFTP)

Raw file loaded 0x00200000-0x004bad53, assumed entry at

0x00200000

(3)RedBoot> g

~

(4)telnet> q

Connection closed.

(5)$ telnet slug1

Trying 192.168.1.240...

Connected to slug1.

Escape character is '^]'.

NetBSD/evbarm (slug1) (ttyp0)

(6) login: root

Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001,

2002, 2003, 2004, 2005,

 2006, 2007, 2008

 The NetBSD Foundation, Inc. All rights reserved.

Copyright (c) 1982, 1986, 1989, 1991, 1993

 The Regents of the University of California. All

rights reserved.

NetBSD 4.99.60 (NSLU2_AUDIO) #0: Wed Jun 4 21:32:16

EDT 2008

Welcome to NetBSD!

[snip...]

We recommend creating a non-root account and using

su(1) for root access.

(7)slug1# useradd -G wheel -m hayford

(8)slug1# passwd hayford

Changing password for hayford.

New Password:

Retype New Password:

(9)slug1# passwd root

Changing password for root.

New Password:

Retype New Password:

(10)slug1# dmesg | grep audio

uaudio0 at uhub2 port 1 configuration 1 interface 0: C-

Media INC. USB Sound Device, rev 1.10/0.10, addr 2

uaudio0: audio rev 1.00

audio0 at uaudio0: full duplex, independent

(11)slug1# echo 'nameserver xxx.xxx.xxx.xxx' >/etc/

resolv.conf

(12)slug1# su hayford

(13)$ su

Password:

(14)slug1# exit

(15)$ exit

(16)slug1# exit

slug1# logout

Connection closed by foreign host.

(17)$ ssh hayford@slug1

(18)Password:

NetBSD 4.99.60 (NSLU2_AUDIO) #0: Wed Jun 4 21:32:16

EDT 2008

Welcome to NetBSD!

(19)$ su

Password:

(20)slug1# cd /usr/pkgsrc/audio/madplay

(21)slug1# make install clean

60 BSD 1/2009

mms
periodically run madplay to consume the
data generated by slimp3slave. Since
madplay understands both the MP3 data
format and how to play MP3 data on the
audio device, the data sent by the server
ends up coming out of speakers that you
connected to your Slug's audio dongle.
This is an excellent example of how *nix

software uses smaller, special-purpose
filters, like slimp3slave and madplay, to
make software development easier.

Conclusions
Using software components that are
freely available on the web, you can build
a sophisticated music player for your

home using inexpensive components
such as Linksys NSLU2 and a standard
USB audio device. This device can
be remotely controlled using any
web browser, and the SqueezeCenter
software allows you to start and stop the
player, set up playlists, add music, and
much more.

Listing 13. Testing madplay and building the slimp3slave player

(1)slug1# rehash

(2)slug1# madplay *mp3

MPEG Audio Decoder 0.15.2 (beta) - Copyright (C) 2000-

2004 Robert Leslie et al.

>> 01 - Volunteered Slavery.mp3

 Title: Volunteered Slavery

 Artist: The Derek Trucks Band

 Album: Songlines

 Track: 1

 Genre: Blues

error: frame 0: lost synchronization cd

^C

#execute the following commands on your desktop

computer after downloading slimp3slave and the patch

(3)$ scp slimp3slave-0.4.tar.gz slug1:/home/hayford/

slim

Password:

slimp3slave-0.4.tar.gz 100%

8992 8.8KB/s 00:00

(4)$ scp slimp3slave.c-stinga-patch-01.txt slug1:

/home/hayford/slim

Password:

slimp3slave.c-stinga-patch-01.txt 100%

920 0.9KB/s 00:00

#execute the remainder of this listing on your Slug

(5)$ cd slim

(6)$ tar -xzf ./slimp3slave-0.4.tar.gz

(7)$ cd ./slimp3slave-0.4

/home/hayford/slim/slimp3slave-0.4

(8)$ patch <../slimp3slave.c-stinga-patch-01.txt

Hmm... Looks like a unified diff to me...

The text leading up to this was:

|--- slimp3slave.c-01 2004-02-15 18:51:45.000000000

+0000

|+++ slimp3slave.c 2005-09-23 08:33:29.145997440

+0100

Patching file slimp3slave.c using Plan A...

Hunk #1 succeeded at 132.

Hunk #2 succeeded at 747.

Hunk #3 succeeded at 865.

Hunk #4 succeeded at 887.

done

(9)$ vi ./slimp3slave.c

(10)$ make

cc -O2 -g -Wall -c slimp3slave.c

slimp3slave.c: In function 'loop':

slimp3slave.c:749: warning: 'p' may be used

uninitialized in this function

cc -O2 -g -Wall -c util.c

cc -g -o slimp3slave slimp3slave.o util.o -lcurses

(11)$ mkdir ~/bin

(12)$ cp slimp3slave ~/bin

#install and start Squeezecenter on your desktop

(13)$ slimp3slave -l -s 192.168.1.102

(14)$ slimp3slave -b -s 192.168.1.102 &

Listing 14. Add "if(debug)" after the else in function receive_mpeg_data()
of slimp3slave.c

void receive_mpeg_data(int s, receive_mpeg_header*

data, int bytes_read) {

 if(debug)

 warn("Address: %d Control: %d Seq: %d \n",

ntohs(data->wptr), data->control, ntohs(data->seq));

 if(data->control == 3) {

 ring_buf_reset(outbuf);

 }

 playmode = data->control;

 if(playmode == 0 || playmode == 1) {

 if(output_pipe == NULL) {

 if(debug)

 warn("Opening pipe\n");

 output_pipe = output_pipe_open();

 }

 }

 else {

 if(debug)

 warn("Playmode: %d\n", playmode);

 if(output_pipe != NULL) {

 if(debug)

 warn("Closing pipe\n");

 output_pipe_close(output_pipe);

 output_pipe = NULL;

 }

 }

In the next issue:

A giude to PC BSD
Many interesting articles and tutorials about security,
administration, multimedia and others.

On the DVD: PC-BSD Fibonacci Edition

Next issue of BSD magazine available in March !

62 BSD 1/2009

let's talk

63www.bsdmag.org

Interview

Federico Biancuzzi: Could you introduce
yourself?
Simon Burge: I have been working for
Wasabi Systems for about eight years
now, and been involved with NetBSD for
about 15 years.

I originally started with NetBSD to work
on the PC532, and I was doing most of
the recent maintenance on this port until
the start of this year when unfortunately
a lack of ELF binutils for ns32k and no
ns32k support in gcc4 pretty much killed
it off and it was removed from NetBSD.

I've also done a lot of work with some
of the MIPS ports, especially the pmax
port earlier on.

Now it is a pretty much a bit of any-
thing when I get the chance.
Antti Kantee: I've been a NetBSD
developer since the last millenium and
have gotten my hands dirty with all the
major kernel subsystems. Currently
I work on my PhD thesis and misc.
consulting jobs.
Greg Oster: I have been a NetBSD
developer for 10 years and while I
have poked around in many parts of
the kernel my primary responsibility
is RAIDframe (the software RAID
driver). In my day job I’m a Laboratory
Systems Analyst in the Department of

used a log are between the end of the
filesystem and the end of the partition)
and Greg helped in the discussion
about how that was done. Greg has also
looked after the documentation and has
done a lot of testing.

FB: What features does WAPBL provide
on NetBSD-current right now[August
2008]?
Simon Burge: The two main features
of WAPBL are fast file system recovery
and in general increased metadata
performance.

The fast file system recovery works
when your system panics or loses
power and doesn't shutdown cleanly.
When your system restarts, any file
systems with logging enabled will skip
the potentially long fsck phase and
WAPBL will replay any outstanding
metadata transactions when the file
system(s) are mounted. With the large
disks of today an fsck can take half an
hour or more – with WAPBL you skip this
entirely!

The increased metadata perfor-
mance comes from WAPBL aggregating
metadata updates (any operations on
directories and inodes like creating
removing files) in the journal, whereas

Computer Science at the University of
Saskatchewan.

FB: What is WAPBL?
Simon Burge: WAPBL stands for Write
Ahead Physical Block Logging. WAPBL
provides metadata journaling for file
systems. In particular, it is used with the
fast file system (FFS) to provide rapid file
system recovery after a system outage.
It also provides better general-use
performance over regular FFS through
less on-disk metadata updates – these
are coalesced in the journal.

WAPBL was developed by Wasabi
Systems, and recently Wasabi contributed
that work back to NetBSD. Wasabi has
been using WAPBL in its storage products
for about four or five years now.

FB: How did you integrate it with FFS?
Simon Burge: Darrin Jewell did the original
implementation of WAPBL – he might be in
a better position to answer questions on the
original implementation and integration.

In more recent times, Antti ported
the WAPBL code from NetBSD 4.0 to
NetBSD -current. Andrew helped tidy a
few locking issues up with that as well.
I added support for an in-filesystem
journal (the original implementation

Interview
about NetBSD WAPBL

With Simon Burge, Antti Kantee and Greg Oster

62 BSD 1/2009

let's talk

63www.bsdmag.org

Interview

normal FFS writes each of these
operations out synchronously.

WAPBL is in the same ballpark as
soft dependencies for most operations.
The one known workload that WAPBL is
slower is when the fsync(2) system call
is used – this causes the journal to be
flushed to disk each time.

FB: Do you have any benchmark result?
Simon Burge: A reasonably common
benchmark used by NetBSD people
is extracting pkgsrc.tar.gz. Here is the
time to extract that with various mount
options on one system:

normal 1.489u 12.201s 18:29.87

log 1.296u 10.531s 0:37.78

softdep 1.555u 10.015s 0:33.00

async 1.426u 9.273s 0:20.66

and rm -rf pkgsrc times for removing
that pkgsrc tree:

normal 0.115u 3.609s 9:46.81

log 0.075u 3.415s 0:14.70

softdep 0.084u 1.387s 0:15.32

async 0.125u 2.401s 0:12.29

FB: In which contexts should WAPBL fit
better? And when should we avoid it?
Simon Burge: Currently, file system
snapshots (ffs(4)) do not work with
WAPBL. This is being addressed
and should be fixed before the next
release.

In general, WAPBL should be
relatively the equivalent to soft
dependencies for most workloads. The
one known area where it isn't is when
the fsync(2) system call is involved.
Most databases use this, as well as the
CVS server (but not the client). Some
mailers might use this as well, so
WAPBL might not suite a high volume
mailserver.

FB: How can we use it?
Simon Burge: Currently WAPBL isn't
available for NetBSD 4.0 but I'm
hoping to make this available soon.
Using WAPBL is as simple as making
sure you have options WAPBL in your
kernel config file (this is the default on
most architectures now), and either
using mount -o log ... or using rw,log
in the mount options field of your /etc/
fstab.

64 BSD 1/2009

let's talk
FB: Can we use some partitions with
softupdates and some others with
WAPBL?
Simon Burge: The only restriction is
that you can't use both WAPBL and soft
dependencies on any single file system.
You are certainly free to have both active
on different filesystems on the one
machine.

FB: I saw on the mailing list that you are
thinking at how to deal with the fact that
fsck is not aware of WAPBL and might
create problems. How do you plan to
solve this?
Simon Burge: This is still under debate
right now, so I don't have a simple
answer. Note that -current fsck is aware
of WAPBL. The situation we're trying to
guard against is when you take a file
system that has had WAPBL active on
it and put it on an older system – think
of say an external USB disk.

We're trying to guard against people
unknowingly shooting themselves in the
foot, but it is not a problem that you'll run
in to in day-to-day running.

FB: How much space does WAPBL
require to work?
Simon Burge: An in-filesystem log is
sized according to the total file system
size. 1MB of log is allocated per 1GB
of disk space, up to a maximum of
64MB. This is the same way that
Solaris uses to determine the log
size. You can use a larger log than
this either by specifying a log size
with tunefs before you mount the file
system, or by using an end-of-partition
log after the filesystem. As far as
limits, there might possibly be some
32-bit limits in the log size...

FB: Does WAPBL interefere with backup
software such as dump(8)?
Simon Burge: WAPBL should be no
different to soft dependencies in this
respect – they both can delay writing
out metadata so there is potential for
dump(8) to not catch some files if they
have been recently modified in some
way.

Once file system snapshots work
with WAPBL (and I saw a commit go by
today that should enable this but haven't
looked at the details), you will be able
to use dump -X do make a consistent
backup.

FB: How did you test and debug
WAPBL?
Simon Burge: Ah, that reminds me
RUMP. It allows you to run unmodified
kernel code in userspace (taken straight
from http://www.NetBSD.org/docs/puffs/
rump.html. RUMP was really quite handy
when writing the code that handles in-
filesystem logs with WAPBL. Instead of
rebooting with a new kernel to test new
code, I was just able to run a simple
program, and debug any issues with
gdb.

It was also a lot safer working on
a simple file system image in a file. I
could have done this with a small file
system on partition or vnd vnode disks,
but again this was much simpler with
RUMP.
Greg Oster: The final stress testing
had a couple of phases. The first was
to run multiple, n-way simultaneous
extracts of src.tar.gz, with a spacing of
10 seconds between the start of one
and the start of the next. So this started
with a single src.tar.gz extract, followed
by two src.tar.gz extracts, all the way
up through 10 simultaneous src.tar.gz
extracts. This phase was repeated a
few times.

The second phase of final stress
testing consisted of doing continuous
./build.sh -j 8 ... builds on freshly
extracted src.tar.gz source trees (extract,
build, delete, repeat). I don’t recall how
manybuild cycles were done, but the
machine spent about 56 hours in this
phase, all without a single issue. At
that point I felt we were ready to merge
WAPBL into -current.

FB: What steps are needed to setup
WAPBL via RUMP?
Antti Kantee: It requires a kernel with
puffs support, either directly compiled
into the kernel with file-system PUFFS
or loaded as a module. Also, a system
build with MKPUFFS=yes in /etc/mk.conf
is required.

Then simply run rump_ffs -o log

device mountpoint instead of mount_ffs
-o log device mountpoint.

FB: Is there any plan to port WAPBL and/
or RUMP to NetBSD 4.0?
Antti Kantee: The original patches
supplied by Wasabi Systems were
against NetBSD 4.0, so in theory
WAPBL for NetBSD 4.0 exists already,

although it lacks features such as
in-fs log support (wasn't this already
covered by the earlier questions). It
took considerable effort to get WAPBL
running on NetBSD-current because of
the vast amount of SMP architectural
changes done by Andrew Doran since
NetBSD 4.0.

There are no plans to port rump
to NetBSD 4.0. However, it should be
noted, that since rump runs completely
in userspace, it should be possible
compile the rump code from NetBSD-
current and run that on NetBSD 4.0.
There may be some pitfalls, like such
as libpthread on NetBSD 4.0 not
supporting all the necessary routines.
Most of them should be related to
diagnostics and should therefore not
be difficult to workaround for anyone
interested in the task.

FB: What license covers the WAPBL
code provided by Wasabi?
Antti Kantee: It is available under the
standard 2-clause BSD license. The
copyright has been assigned to The
NetBSD Foundation.

FB: Is WAPBL suitable to small
embedded systems too? Does it add too
much additional work on the cpu or the
disk?
Greg Oster: I haven't played with
WAPBL on any embedded systems, but
my understanding is that WAPBL was
developed for use on Wasabi's storage
products (which basically have an
embedded system in them).

I've done some benchmarking,
but none which would point out any
overhead associated with WAPBL. I
was pleasantly surprised to find that
even with the journal located after the
filesystem that performance issues
related to seek times were basically
non-existant. (at least on non-legacy
hardware).

I think the short answer to the
question is: Yes, WAPBL is suited for
small, embedded systems, and no, it
does not add significant overhead to the
CPU or disk systems (at least on non-
legacy hardware).

FB: Thank you for your time.

Federico Biancuzzi

65www.bsdmag.org

Like probably most BSD oriented
people, I first encountered
Dru Lavigne's work via her
onlamp.com online columns,

dubbed FreeBSD Basics, which she
started writing some time in 2000. I no
longer remember which of her columns
was the first I read or just how I found
it. That's not important anyway; the Web
and the Internet in general has become a
very different place in the meantime.

I do however remember why I
bookmarked FreeBSD Basics in my
browser and kept coming back for more.
The columns were short enough that you
could get useful insights into a specific
topic, about the software you either had
installed already or something that was
very easily within reach in a space of
time that would be long enough for you
to be feeling only a little guilty about
extending the break. Well written too, and
they would invariably contain something
you would find useful later or something
you just had not thought of earlier.

Those of us who wanted to see
something by Dru in print were rewarded
in 2004 when O'Reilly published BSD
Hacks, a collection of short tips and
tricks for things to do on your BSD
system. The collection of online columns
kept growing, too.

If you've been searching the Internet
for FreeBSD related material, it is likely
that you have found one or more of the
columns online. Now they have been
edited into this book, updated to be in
sync with FreeBSD versions available
in late 2007. From a writer's view, it

advantage; the various subtopics in
each chapter have been edited together
so the overall flow is very good, while
at the same time every not-too-many
pages you will get a feeling of tangible
achievement as the author rounds off
the current topic before moving you
along to the next one. In each topic, you
get enough of the reasoning behind the
commands and options to get a good
sense of the whys as well as the whats,
and you get the references to look up
in case you need a slightly different
variation for your situation.

But even if it is certainly a valuable
resource for beginners, you do not need
to be a Unix newbie to enjoy this book.
If you are the more experienced, Unix-
savvy kind of reader, you will still find
yourself going Ah! I hadn't thought of
that! every now and then. This is the kind
of book where every reader will have
their favorite sections. I have several, I
particularly appreciate the filesystems
chapter, which among other things
offers an excellent description of the
general Unix permissions system as
well as a good discussion of FreeBSD's
filesystem access control lists (ACLs). On
the other hand, every chapter has one or
more sections that likely will grab your
attention.

For example, the Useful Unix Tricks
chapter contains a very readable find
tutorial as well as an overview of Unix
processes, explores the init system,
teaches you about how to use cron
effectively as well as a number of other
topics I'll let you discover for yourself.

must have been tempting to just put the
original columns end to end and slap a
cover around them, but fortunately Dru
Lavigne instead chose to organize the
material into logical groupings and edit
the columns into nine chapters where the
subtopics fit together quite pleasantly. The
individual columns have been turned into
subtopics in the chapters, and for each
subtopic the URL to the original column
is given along with other references.
The columns started out as field notes
taken from real-world situations, and the
practical approach shines through here,
helping to make the printed version very
readable.

The book's chapters progress from
the basics-oriented Becoming Familiar
with FreeBSD, through gradually more
advanced and varied topics under
the chapter headings Useful Unix
Tricks, Ports, Packages, and PBIs, Bag
of Tricks, Filesystems, Backups and
RAID, Networking, Configuring Services,
Security, Firewalls and VPNs. With a
foreword by Greg Lehey, the author's
preface and a comprehensive index at
the end, the book weighs in at just short
of 600 numbered pages.

The book is slightly over the volume
you could expect to get through in a
single sitting, but this is a book that will
stay with you for a long time, and the time
you spend reading it (from cover to cover,
browsing or just zooming in on specific
topics from the table of contents or
index) is time well spent. The fact that
the book started out as a collection of
shorter pieces comes back as a distinct

Dru Lavigne's
The Best of
FreeBSD Basics

66 BSD 1/2009

review
Then there's the networking chapter,
where you will find not only the 'how to
get my box on the net' and a concise
TCP/IP basics part, but also information
on how to interface productively with
Cisco equipment and a delightful
wireshark section, along with other
related and useful topics.

If you are looking for information
on using a BSD as a desktop working
environment, this book has several
very useful sections for you, as well
as the networking and server oriented
parts that (for good reasons) tend to
dominate in Unix books. No BSD book
would be complete without a thorough
exploration of the ports and packages
system, and this one has a full (and
very good) chapter on the topic as
well as references to useful packages

and ports where appropriate in other
sections.

Your favorite part of this book may
well be a different one than the ones I
have pointed out specifically here. Every
chapter contains a wealth of well-written,
interesting and useful topics, and just
about the only thing I miss at this point
is some sort of electronic version. This
is the kind of book you would very much
like to have available on a portable
device. I hope Reed Media Services
will move quickly to make PDF or other
versions available.

The Best of FreeBSD Basics covers
a wide range of topics, and covers them
well. The book does not pretend to cover
anything besides FreeBSD (or in some
parts PC-BSD, a FreeBSD derivative),
but it is written with sufficient reasoning

behind the specifics and large enough
chunks of background information that
it is in fact useful as a general Unix
learning resource.

Summing up, if you are an instructor
looking for an up to date Unix book or a
FreeBSD text, this could very well be what
you are looking for. Seasoned Unix pros
and greybeards as well as users of other
BSDs or Linux will delight in the wide
range of topics covered and are likely to
find new ideas or angles, and will enjoy
having this volume within easy reach. For
somebody learning FreeBSD, there is
only one possible recommendation: Get
this book. It deserves that spot right next
to your keyboard. You will find some other
spot for your coffee cup, easily.

by Peter N. M. Hansteen

Worth reading

NetBSD System Manager’s
Manual (SMM)
Two volume set containing a permuted
index and the definitive and official NetBSD
system operation and maintenance
manuals from ac through zic.

The BSD Associate Study Guide
The beginning BSD Unix administration
book covers the objectives for the
BSD Certification Group’s BSDA (BSD
Associate) Certification focused for BSD
Unix system administrators with light to
moderate skills. The community-written,
open source book covers generic
*BSD administration and specific skills
as necessary for NetBSD, FreeBSD,
OpenBSD, and DragonFly.

Getting started with NetBSD
by Jeremy C. Reed
This book quickly introduces NetBSD -- from
installation, standard setup, maintenance,

standard system operations, and common
use of NetBSD. It covers installation using
sysinst, the first login, system startup,
users and groups, networking setup
and troubleshooting, DNS, system clock,
software packages, pkgsrc (for easily
installing software from source), email
services, cron and scheduled tasks, log
files, disks and file systems, custom kernels,
updating NetBSD, security, performance
monitoring and tuning, packet filtering,
X11 and graphical interfaces, popular
applications, multimedia, and printing.

Building a high-performance
computing cluster using
FreeBSD
by Brooks Davis
This book covers architectural decisions,
deployment, and experiences with
development and maintenance of
general purpose technical and scientific
computing clusters running the
FreeBSD operating system. It includes
configuration management, network

booting of nodes, scheduling, design
issues, security, future expansion, and
introduces parallel programming toolkits
and applications.
Coming soon...

The pfSense Handbook
by Christopher M. Buechler
The book covers the installation,
configuration, and maintenance of
pfSense, an open source, customized
distribution of FreeBSD tailored for use
as a firewall and router, entirely managed
in an easy-to-use web interface. The
book covers hardware, network designs,
firewalling, packet filtering, network
address translation, routing, WANs,
traffic shaping, IPsec, PPTP, VPNs, load
balancing, wireless access points,
virtualization, CARP and redundancy,
DHCP, DNS, and other various services
and special purpose appliances. No
FreeBSD knowledge is required to
deploy and use pfSense.
Coming soon...

