

4 BSD 2/2008

Contents

5www.bsdmag.org

Dear All,
This is the second time we meet. I hope you enjoyed the first
issue of our brand new mag and that you have been looking
forward to this issue. As always, you’re more than welcome to
send in your comments, replies, ideas and suggestions. If you’d
like to become a BSD author or betatester, don’t hesitate - just
sign in.

This time my thanks go to Matt Olander and Jim Brown
for their great help in improving the quality of the magazine. In
addition, I’d like to thank all of you who got involved with this
project and devoted your free time to help and respond to all
‘’emergencies’’, even in the middle of the night. Thank you!

This issue is devoted to OpenBSD. As usual, we tried to
cover the most interesting and useful topics as well as providing
how-to’s that will help you improve your skills. Gilles Chehade
guides you through the process of installation and configuration
of OpenBSD 4.3 and Peter N.M.Hansteen gives you a kick-start
on using packages. Gilles also teaches you how to provide the
best development platform on OpenBSD.

Machtelt Garrels discusses the certification that is being
developed by the BSD Certification Group Advisory Board. Rob
Somerville demonstrates how to build an OpenBSD server
from scratch, Petr Topiarz, from the Czech OpeBSD community,
provides a guide for people who use Linux or FreeBSD and
would like to give OpenBSD a try on the desktop and Svetoslav
P. Chukov presents PBI - PC BSD installer.

In the administration section, Eric Schnoebelen and Michele
Cranmer explain how to create a gateway between the Jabber
network and closed networks and how to secure client-to-server
and server-to-server communications using XMPP/Jabber
features. Antti Kantee describes the kernel as a programming
and testing environment.

We also decided to cover BSD in context of its use in
business and education: Girish Venkatachalam explains how to
use OpenBSD to make money and iXsystems presents the use
of PC BSD in schools.

For those who don’t really feel like getting into more technical
details, Federico Biancuzzi interviews OpenBSD developer
Damien Bergamini, Michel King introduces Mac OS X as the
„other” BSD and Xavier Brinon reviews Absolute FreeBSD (2nd
Edition) by Michael W. Lucas.

Enjoy!
all the best

Karolina Lesińska
Executive Editor

Editor in Chief: Ewa Dudzic
ewa.dudzic@bsdmag.org

Executive Editor: Karolina Lesińska
karolina.lesinska@bsdmag.org

Editor Assistant: Katarzyna Kaczor

Director: Ewa Dudzic
ewa.dudzic@bsdmag.org

Art Director: Agnieszka Marchocka
DTP Technician:Przemysław Banasiewicz

Prepress technician: Ireneusz Pogroszewski

Contributing: Gilles Chehade, Machtelt Garells,
Rob Somerville, Petr Topiarz, Svetoslav P. Chukov,

Antti Kantee, Michele Cranmer, Xavier Brinon,
Peter N.M.Hansteen, Girish Venkatachalam, Eric

Schnoebelen, Federico Biancuzzi, Mikel King

Special Thanks to: Matt Olander, Jim Brown

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

National Sales Manager: Ewa Dudzic
ewa.dudzic@bsdmag.org

Marketing Director: Ewa Dudzic
ewa.dudzic@bsdmag.org

Executive Ad Consultant:
Karolina Lesińska

karolina.lesinska@bsdmag.org
Advertising Sales: Karolina Lesińska

karolina.lesinska@bsdmag.org

Production Director: Marta Kurpiewska

Publisher :
Software Wydawnictwo Sp.z.o.o
02-682 Warszawa, Bokserska 1

worldwide publishing

Postal addres:
Software Media LLC

1521 Concord Pike, Suite 301
Brandywine Executive Center

Wilmington, DE 19803
USA

tel: 1 917 338 36 31
www.bsdmag.org

Software-Wydawnictwo Sp zo.o. is looking
for partners from all over the World. If you

are interested in cooperating with us, please
contact us by e-mail: editors@bsdmag.org

Print: 101 Studio, Printed in Poland

Distributed in the USA by: Source Interlink
Fulfillment Division, 27500 Riverview Centre

Boulevard, Suite 400, Bonita Springs, FL 34134
Tel: 239-949-4450.

All trade marks presented in the magazine were
used only for informative purposes. All rights
to trade marks presented in the magazine are
reserved by the companies which own them.

The editors use automatic DTP system

Mathematical formulas created by Design Science
MathType™.

DVDs tested by AntiVirenKit GDATA Software Sp.
z o.o.

Subscription orders can be sent to
subscription@software.com.pl

Customer Service 1 917 338 3631

4 BSD 2/2008

Contents

5www.bsdmag.org

what’s new
BSD news
Karolina Lesińska

Here you will find the future projects from BSD world, new
releases and solutions, and much more- directly from people
involved most in BSD community.

dvd contents
DVD contents description
Karolina Lesińska

If you are curious what is covermounted this time in our
magazine you can find everything here

get started
OpenBSD 4.3 Installation&Configuration
Gilles Chehade

If you are new to OpenBSD distribution, Gilles guides you
through the process of installing and configuring.

You have installed it? Now what? Packages!
Peter N.M. Hansteen

Peter give you the kick-start on packages, shows how to use
them effectively and without much effort.

OpenBSD
Gilles Chehade

Gilles teaches how to provide the best development platform
in form of a step-by-step tutorial for development station, server
development, setting up the accounts and mail notification.

BSD Certification by
BSD Certification Group
Machtelt Garells

Machtelt discusses the certification that is being developed by
the BSD Certification Group Advisory Board- people who are
actively involved in different BSD projects, key figures in their
communities.

how-to’s
Building an OpenBSD SAMP Server
with Content Filtering Proxy
Rob Somerville

In this article Rob demonstrates how to build an OpenBSD server
from scratch with Squid, Apache, MySQL, PHP and Webadmin.

OpenBSD as a Desktop
Petr Topiarz

Petr provides you with a guide for people who use Linux or
FreeBSD and would like to give OpenBSD a try on the desktop
and explains some general Unix routines.

Inside the PBI System...
Svetoslav P. Chukov

The author presents PBI – PC BSD installer with its unique and
very useful package management system.

admin
Connecting to Other IM Networks
Eric Schnoebelen, Michele Cranmer

Eric and Michele follow up the article from the first issue. This
time, they explain the mechanism to allow the creation of a
gateway between the jabber network and closed networks-
AOL Instant Messenger, Yahoo!, ICQ and others.

Kernel File System
Development in Userspace
Antti Kantee

In this article Antti describes the kernel as a programming and
testing environment. He also describes the kernel code way of
testing and developing – all that to make it more comfortable
for the user.

Securing IM Using Jabber/XMPP and TLS
Eric Schnoebelen, Michele Cranmer

This time, the authors will discuss how to secure client to
server and server to server communications using XMPP/
Jabber features.

in business
OpenBSD and Making Money
Girish Venkatachalam

Even though corporations accuse Open Source for being
unable to bring in the profits, in this article Girish shows that it
is a serious bussiness that can make you rich.

review
Absolute FreeBSD 2nd Edition
Xavier Brinon

In this article Xavier analyses the Absolute FreeBSD 2nd
edition – the Complete Guide to FreeBSD, a book written by
Michael W. Lucas

PC-BSD in Schools
iXsystem

iXsystem presents PC-BSD in schools on the example of
Polux School success story.

interview
Interview with OpenBSD
developer Damien Bergamini
Federico Biancuzzi

Federico Biancuzzi talks about WPA with Damien Bergamini,
the developer who made a huge work for OpenBSD wireless
subsystem.

column
Mac OS X the Other BSD
Mikel King

Mikel King introduces Mac OS X – the other BSD.

06

08

10

18

22

26

30

38

40

44

50

54

58

61

62

64

66

6 BSD 2/2008

what’s new BSD Fresh

7www.bsdmag.org

During the last 20 years malware (malicious software) has
been constantly evolving and security programs have evolved in
parallel. We have seen boot sector viruses, parasitic file-infecting
viruses, macro viruses, mass-mailing worms, stand-alone
backdoors, password stealers and various types of Trojans.

In the past two years we have seen better financed and
organized malware development, possibly due to involvement of
organized crime, but the other recent major development is the
apperance of server-side polymorphism. Twenty years ago the
lifespan of malware was measured in months, even years. Today,
it is measured in hours. Dedicated servers distribute malware that
changes every few minutes, faster than any anti-virus company
can respond. Adding detection of each individual variant is of
limited use, as it will no longer be in active distribution by the time
the users of the anti-virus product receive the detection update.

The approach the F-PROT developers have taken is to
increase the emphasis on heuristic detection, which detects

Eldorado, Maximus and GSA

Reinoud Zandijk has been working on support for the
Universal Disk Format in NetBSD for quite some time, and
in mid-May he reached another major milestone by adding
write support to NetBSD's UDF file system. `It can now read
and write files and directories on CD-R/RW, CD-MRW, DVD-R/
RW, DVD+R/RW, DVD+MRW, (USB) flash media and harddisc
partitions. Media like Iomega Rev should also work fine,' he
said. In fact, this means that within NetBSD you now can
mount any UDF formatted media and use your favorite tools,
like cp, mv, rm, or even X11 file manager over it.

New default license for NetBSD
Following from a vote amongst the membership of the NetBSD
Foundation and in recognition of the changing face of software
licensing, the Foundation has changed its recommended
license to be a two clause BSD license. Dropped clauses
are the advertising clause and the "endorsement" clause (3
and 4 respectively). We have seen organizations and people
concerned about the old clause 3 in the license, to the extent
where NetBSD code could not be used in commercial products;
the new license means that these concerns are no longer valid,
said Alistair Crooks, The NetBSD Foundation's president. Also,
the members of the NetBSD Foundation no longer considered
clause 4 to be useful in today's software world.

NetBSD now has UDF write support

potentially malicious behaviour in advance – not requiring
updates for every single new variant. F-PROT pioneered heuristic
scanning back in 1992, and over the years we have introduced
various innovations, such as heuristics based on neural networks.
The latest development in the F-PROT engine has been the
introduction of three independent heuristic engines, code-named
Eldorado, Maximus and GSA. Those engines use fundamentally
different methods and are maintained by different teams, with a
bit of a friendly in-house rivalry. The goal is that by the end of 2008
those three heuristic scanning engines will provide proactive
detection of the vast majority of new malware – detect it as soon
as it is released by the authors, without requiring any updates.
It will never be possible to detect all malware proactively – any
such claims are just irresponsible marketing hype, but Eldorado,
Maximus and GSA will provide F-PROT users with a significant
level of protection. That is our goal.

All third parties are allowed and encouraged to change
any previously used NetBSD Foundation license to the new
two clause NetBSD license. Updated NetBSD copyright and
licensing terms can be found at http://www.NetBSD.org/about/
redistribution.html.

Getting ready for best release
The NetBSD source tree has been frozen in preparation for a new
release. During the freeze period, no new functionality is being
added to the tree, and only bug fixing is allowed. The pkgsrc,
another major NetBSD project, has used freeze periods ever
since it started making branches, in order to stabilize features
in preparation for a stable branch. This practice has been
successful over time, and now it was decided to try it for NetBSD
releases too. As soon as source tree entered into freeze period,
the NetBSD Release Engineering Teem, who manages all stable
branches, is controlling all commits. The Releng will also define
how long the freeze will take. It is expected that the upcoming
NetBSD 5.0 release will contain many interesting features, like
improved threading and SMP, new kernel scheduler supporting
real-time classes, write support for UDF, Automated Testing
Framework, EM64T/AMD64 and PAE support for Xen, as well as
support for new hardware platforms and numerous devices.

by Mike M. Volokhov

Firefox 3- Released June 17th. Just in case you've been living
under a rock Firefox runs under the X Windowing System on
all current versions of BSDs, as well as Mac OS X, Solaris, and
of course Microsoft Windows. To download a binary version for
your particular Operating System go to http://www.mozilla.com,
however on most of the BSDs you will need to either install it
from the ports or use pgksrc. OpenOffice.org 3.0- The public
beta release of OpenOffice.org 3.0 is now ready for testing. This

Software News:

beta release is made available to allow a broad user base to
test and evaluate the next major version of OpenOffice.org, but
is not recommended for production use at this stage. If you are
a regular user of OpenOffice.org, here's a great opportunity to
help us make the next release the best ever. For more details,
refer to the following URL: http://www.openoffice.org/project/
marketing/3.0/announcementbeta.html

6 BSD 2/2008

what’s new BSD Fresh

7www.bsdmag.org

The BSD Certification Group has recently released the BSD
Associate certification exam. This exam is the first in a series
of exams that focus on BSD systems. The exam covers seven
diverse knowledge domains- Installing & Upgrading the OS and
Software; Securing the Operating System; Files, Filesystems,
and Disks, etc. The complete list is on the website.

The exam has been active since February 2008, and to
date the exam has been held eight times in various cities
in North America and Europe: Los Angeles, Ottawa, Krakow,
Brussels, Toronto, Berlin, Ede, and Chemnitz. You might think
that it's an easy exam and everyone passes, but that isn't the
case. The failure rate is currently about 20%.

Why is the failure rate so high? Without a doubt, it's because
people come to the exam expecting it to be a breeze and they
find out it's not. The exam tracks very closely to the objectives
that were published by the BSDCG in October 2005, the
distribution of questions is pretty evenly distributed among the
above domains, and it covers the four BSD versions- FreeBSD,
OpenBSD, NetBSD, and DragonFly BSD.

Update on the BSD Certification Group

The result? It's not a cake-walk. If you come to the exam
with experience in a single version of BSD, you won't pass the
exam. Comments from those who have taken it, said it was
harder than I thought it would be and it made you think.

Now that the exam is out, there are many projects that
the BSDCG would like to get started, such as the BSD
Professional certification. This certification will probe even
deeper into complex administrative tasks that BSD system
administrators have to perform every day- filesystem issues
and access controls, process control, virtualization, multiple
network configurations, firewalls, and so forth. The good news
is that there is a rich load of material to draw on- BSD systems
contain a wealth of well documented features, thanks to
developers all over the world.

The certification effort is community driven and everyone
can help by spreading the word to local user groups, forums,
schools and universities, etc.

To find out more about how you can help visit the website
at www.bsdcertification.org.

iXsystems has announced the launch of its Professional
Enterprise Services and Support Division for FreeBSD and
PC-BSD. We feel that offering Professional Level Support
for FreeBSD and PC-BSD is one of the main barriers
that the platforms face to expand adoption. While there
may be some companies that are capable of supporting
them, there are none, to my knowledge, currently offering
services and support on an Enterprise Class level specific
to FreeBSD and PC-BSD, says Matthew Olander, CTO of
iXsystems. This is a barrier we are happy to remove. The
service and support offerings will include customer support
as well as customized offerings across a wide range of
issues such as installation support, large deployments and
kernel tuning.

It is also worth noting that iXsystems decided to open
its own support center in the Midwestern United States as
opposed to using an outside customer service firm. This
has a number of advantages that company officials believe
will enhance customer satisfaction. We have in-house
professionals who have been working on various levels of
the FreeBSD and PC-BSD projects for a very long time, who
will be much more concerned about providing successful
solutions for our customers and much more responsive
than an outside firm, explained iXsystems CEO Michael
Lauth.

A FreeBSD Laptop with Everything (mostly) Working?
In addition to launching its support division, iXsystems is
currently putting the finishing touches on the Invincibook, a
FreeBSD compatible laptop that will soon be available. The
Invincibook is made with an anti-shock mounting design that
protects the LCD and Hard Drive from damage and data
loss. Additionally, it is water resistant to protect the internal

Finally, Professional Support, Consulting, and Development for FreeBSD!

components from accidental spills. The Invincibook will ship
with Fibonacci, the upcoming release of PC-BSD, a powerful
OS running FreeBSD 7 under the hood and featuring a
powerful GUI for graphical system installation. PC-BSD
installs applications via the Push Button Installer (PBI), a
graphical utility to remove and install software in a simple to
use, self-contained format.

PC-BSD Fibonacci Edition also features various new server
tools and enhancements including speed improvements with
the ULE Scheduler, experimental ZFS support during install,
and UFS Journaling through GEOM.

Who are these Guys?
Formerly BSDi's hardware division, iXsystems, Inc. is a premier
builder of FreeBSD-certified servers, storage, and related
products. iXsystems develops custom hardware solutions that
address a company's technical and budgetary needs within
their specific network architecture.

OS compatibility is a key component of iXsystems' Open
Source Hardware Design process. This means that they will
work backwards to develop a custom solution ideal for the
customer, instead of requiring the customer to compromise
their specific hardware requirements and limit their choice of
OS to fit within the parameters and specifications of a product
line.

iXsystems is also the corporate sponsor of the PC-BSD
Operating System and recently acquired FreeBSD Mall and
BSD Mall, two providers of high quality BSD software, apparel,
and literature. For more information visit the iXsystems website
at http://www.ixsystems.com.

8 BSD 2/2008

dvd contents
OpenBSD 4.3
This is a partial list of new features and
systems included in OpenBSD 4.3. For a
comprehensive list, see the changelog
leading to 4.3.

• New/extended platforms:
• OpenBSD/sparc64 SMP support.

This should work on all supported
systems, with the exception of the
Sun Enterprise 10000.

• OpenBSD/hppa K-class servers like
the K200 and K410 are supported
now.

• OpenBSD/mvme88k SMP support
on MVME188 and MVME188A
systems. 88110 processor, and thus
MVME197LE/SP/DP boards, are
supported now.

• OpenBSD/sgi Contains many new
drivers, however the kernel requires
an important errata fix.

New tools:

• snmpd(8), implementing the Simple
Network Management Protocol.

• The snmpctl(8) program controls the
SNMP daemon.

• The pcidump(8) utility displays the
device address, vendor, and product
name of PCI devices.

• ldattach(8) is used to attach a line
discipline to a serial line to allow for
in-kernel processing of the received
and/or sent data.

For more information about OpenBSD 4.3
please visit http://www.openbsd.org/.

Ampache 3.4.1
Ampache is a Web-based Audio file
manager which is implemented with
MySQL and PHP. It is one of the oldest
applications of that type. Ampache’s goal
is to maintain a secure and fast web front
end that will run on platorm that supports
PHP and any hardware. It allows to create
user accounts and share the music with
other Ampache servers. It also allows
you to modify your audio files via the web
and it has support for playlists, album
art, artist and album views, playback
via Http/On the Fly Transcoding and
Downsampling, Integrated Flash Player,
Vote based playback, Icecast and Mpd,
as well as per user themes and song
play tracking. Ampache also provides an

API for pulling out meta data in the form
of XML documents.

The latest version – Ampache 3.4.1.
contains many changes such as:

• Complete re-write in PHP5,
• AJAX’d interface,
• Active Playlist concept added,
• XML API,
• Dynamic Playlists,
• vastly improve browsing system.

For more infrmation please see:
http://www.ampache.org/

DragonFly 1.12.2
DragonFly is
an operating
system and
environment
o r i g i n a l l y
based on FreeBSD.
DragonFly branched
from FreeBSD in 2003
in order to develop
a radically different
approach to concurrency, SMP, and most
other kernel subsystems.

DragonFly belongs to the same class
of operating system as BSD and Linux
and is based on the same UNIX ideals
and APIs. DragonFly gives the BSD base
an opportunity to grow in an entirely
different direction from the one taken in
the FreeBSD, NetBSD, and OpenBSD
series.

For more infrmation about 1.12.2
release please visit:
http://www.dragonflybsd.org/community/
release1_12.shtml

MirBSD
MirOS BSD is a secure computer operating
system from the BSD family for 32-bit i386
and sparc systems. It is based on 4.4BSD-
Lite (mostly OpenBSD, some NetBSD). It
is a derivative of OpenBSD. Source code
from OpenBSD is regularly imported and
merged. MirOS BSD often anticipates
bigger changes in OpenBSD and includes
them before OpenBSD itself. For example,
ELF on i386 and support for gcc3 were
available in MirOS first. Controversial
decisions are often made differently from
OpenBSD; for instance, there won’t be
any support for SMP in MirOS. The most
important differences to OpenBSD are:

• Completely rewritten bootloader and
boot manager without an 8 GiB limit
and with Soekris support

• Slim base system (without NIS,
Kerberos, Bind, i18n, BSD games,
etc.), Bind and the BSD games being
available as a port

• Binary security updates for stable
releases

• ISDN support
• IPv6 support in the web server

software
• wtf, a database of acronyms
• Some of the GNU tools (like gzip and

*roff) were replaced by original UNIX
code released by Caldera

For more infrmation please see:
http://www.mirbsd.org/main.htm

F-PROT Antivirus for BSD
Workstations
For home users using the BSD open-
source operating system, we offer
F-PROT Antivirus for BSD Workstations.
F-PROT Antivirus for BSD Workstations
utilizes the renowned F-PROT Antivirus
scanning engine for primary scan but
has in addition to that a system of internal
heuristics devised to search for unknown
viruses.

F-PROT Antivirus for BSD was
especially developed to effectively
eradicate viruses threatening workstations
running FreeBSD, NetBSD, or OpenBSD. It
provides full protection against macro
viruses and other forms of malicious
software – including Trojans.

F-PROT Antivirus for BSD Workstations
is FREE for Home Users

F-PROT Antivirus for BSD Workstations
is FREE for use by personal users on
personal workstations

Features
F-PROT for BSD Workstations features:

• Scans for over 1001738 known
viruses and their variants

• Ability to perform scheduled scans
when used with the Unix cron utility

• Scans hard drives, CD-ROMS,
diskettes, network drives, directories
and specific files

• Scans for images of boot sector
viruses, macro viruses and Trojan
Horses

dvd contents
Contents description

9www.bsgmag.org

If the DVD content cannot be accessed and the disc is not damaged, try to
run it at least two DVD-ROMs.

2/2008

If you have encountered any problems with DVD, please write to: cd@software.com.pl

10 BSD 2/2008

OpenBSD 4.3

11www.bsdmag.org

OpenBSD 4.3
Installation& Configuration

This issue of BSDMAG comes with a DVD containing the installation program for the
OpenBSD 4.3 operating system. This article will help you go through the installation
process and first steps at configuring and making use of this increasingly popular system.

Gilles Chehade

OpenBSD is one of the four major BSD systems and
follows the long tradition of giving away quality
software without any strings attached. It is known
for having a strong goal of security and advertising

only two remote holes in the default install in more than ten
years, but to be honest this is a side effect of a strong focus
on keeping the code clean and not accepting dirty hacks for
convenience. In the last few years, with other systems accepting
to incorporate more and more closed-source objects (also
known as blobs) in their systems, OpenBSD has gained another
reputation of strong commitment to free software by refusing
to sign non-disclosure agreements, removing support for non-
friendly vendors and reverse-engineering drivers when other
systems accepted the closed drivers provided by vendors and
eventually made their integration easier. This is a rather short
description but there are plenty of goals and going through all of
them would probably make an article by itself.

So, let's get started with the installation !

Installation
OpenBSD has a reputation of having a very difficult installer
for those who are used to the so-called modern GUI-based
installers. In practice, despite the fact that it is console-based,
the installation process is very easy if you take time to follow
the instructions that are available in the FAQ and on-screen
as installation goes on. After you are familiar with the very few
steps, you will be able to perform complete installs in just a few
minutes and amaze your friends.

Getting the media
OpenBSD is as free as can be and you can download it from
the several FTP, HTTP, AFS and RSYNC mirrors listed on the of-
ficial website; however it is strongly encouraged that you buy
yourself a cd set as it is the main source of revenue for the

project. Also, they are cool looking and come with stupendous
stickers. To start installation, boot your computer on the DVD.
You will be facing a boot prompt which is the entry point for you
either to boot the system or the installer. You can simply press
enter or wait for the bootloader to boot the default image. The
installer will then load the kernel and you will see a lot of lines
scrolling with information as to which devices were found or/
and supported. After that, the following prompt will appear:

I)nstall, (U)pgrade or (S)hell? <i>

The options are quite self-explanatory, you can proceed to install
by simply typing 'i'. Next prompt will request for terminal type
and keyboard mapping:

Terminal type: [vt220] <enter>

kbd(8) mapping? ('L' for list) [none] <enter>

Again, no dark magic, the terminal can be left to default if you
are not doing the intall in a weird setup (from another machine
connected to the setup machine through a serial cable for ex-
ample). The keyboard mapping is up to you for obvious reasons,
default will be an US qwerty. Even though I am a froggy, I happen
to have a qwerty so no need for fr in my case. Make sure not to
use any incorrect mapping or you may end up in an uncomfort-
able position when requested to enter a password.

The installer will then remind you that the install process is
a destructive operation and that you should do backups. Seri-
ously, do it.

Proceed with install? [no] <y>

Next step is where things get trickier and where reading
skills are required in order not to break things. First, you are

get started

10 BSD 2/2008

OpenBSD 4.3

11www.bsdmag.org

prompted for the disk you will be install-
ing OpenBSD on:

Available disks are: wd0

Which one is the root disk? (or done)

[wd0] <enter>

In this case I only have one disk so the list
of available disks is pretty short. Once you
validate the disk, you are asked if the disk
will be fully dedicated to OpenBSD or not.
Replying no will drop you into the fdisk util-
ity where you can manage your partitions. I
have not done a dual boot in years so I can
only suggest you read the OpenBSD FAQ
which explains the steps to do so, but to
summarize you need to select which parti-
tion to use, set its type to A6 (OpenBSD)
and write the MBR. These are three com-
mands I will leave as an exercise to you.

After the disk has been selected (and
eventually partitions set up), we will be
dropped into the disklabel utility to slice
the disk and define the mount points:

Initial label editor (enter '?' for

help at any prompt)

>

The help menu here should be sufficient
to get you going, but to make it even more
simple, here is the hint:

 (a)dd a slice

(d)elete a slice

(p)rint informations regarding the

slices

Each time you add a slice, you are
prompted for information regarding the
slice:

> <a>

name: [a] <enter>

offset: [0] <enter>

size: [78165360] 80M

Rounding to cylinder: 164304

FS type: [4.2BSD] <enter>

mount point: [none] /

>

It is recommanded that you create slices
for /, /home, /usr, /var, /tmp and the swap
though as long as you have a / slice
OpenBSD should be happy. The sizes
are really up to you and very dependent
of what you plan to do with your system.

Keep in mind that if you create all the
recommanded slices, / will not be very

populated, /usr will be growing with each
third party application or library you install,
/var will be growing with each email, logs
and runtime data that are going to be writ-
ten to disk (runtime data includes databas-
es if you plan on installing a package such
as postgresql & friends). It is not too im-
portant that you get partitions right, but it is
important that you do not get them wrong
as it is easier to deal with adding a new
slice than to deal with a disk full error. So,
try to think from the beginning about what
your computer will do and make sure each
slice has enough space to work with.

There are no standard sizes, but if you
create the five (+ swap) recommanded
slices, a good rule is to have:

• / be 150MB as there is not really
any need for more – swap be close
enough from your memory size so
that in a worst case scenario where
your kernel would crash, the core
could be written on disk

• /tmp, this depends on your needs for
temporary files, usually it can remain
quite small; I usually make them
128MB and consider them already
way too big.

The remaining space has to be bal-
anced with your need to provide users
with space for their home directories,
your need to use third party applica-
tions and/or get a copy of the OpenBSD

Listing 1. Configure the network

 Configure the network? [yes] <enter>

 Available interfaces are: rl0.

 Which one do you wish to initialize? (or 'done') [rl0] <enter>

 Symbolic (host) name for rl0? [lappy] <enter>

 The media options for rl0 are currently

 media: Ethernet autoselect (100baseTX full-duplex)

 Do you want to change the media options? [no] <enter>

 IPv4 address for rl0? (or 'none' or 'dhcp') dhcp

 Issuing hostname-associated DHCP request for rl0.

 DHCPDISCOVER on rl0 to 255.255.255.255 port 67 interval 1

 DHCPOFFER from 192.168.0.1

 DHCPREQUEST on rl0 to 255.255.255.255 port 67

 DHCPACK from 192.168.0.1

 bound to 192.168.0.42 -- renewal in 1800 seconds.

 IPv6 address for rl0? (or 'rtsol' or 'none') [none] <enter>

 No more interfaces to initialize.

 DNS domain name? (e.g. 'bar.com') [my.domain] poolp.org

 DNS nameserver? (IP address or 'none') [192.168.0.100] <enter>

 Use the nameserver now? [yes] <enter>

 Default route? (IP address, 'dhcp' or 'none') [dhcp] <enter>

 Edit hosts with ed? [no] <enter>

 Do you want to do any manual network configuration? [no] <enter>

Listing 2. Useradd comand live

 # useradd -s /bin/sh -d /home/gilles -m gilles

 # userinfo gilles

 login gilles

 passwd *************

 uid 1000

 groups users

 change NEVER

 class

 gecos

 dir /home/gilles

 shell /bin/sh

 expire NEVER

 #

12 BSD 2/2008 13www.bsdmag.org

OpenBSD 4.3

source tree (installed in /usr/src), and
your need to store email, databases,
logs, websites, and other random data
in /var. No one can make the choice for
you, you are on your own.

Once we are done with the slicing,
we only need to save and quit disklabel
to go on. That is respectively the (w)rite
and (q)uit commands. This was the
trickiest part of the installation process:

 > <w>

 > <q>

Next step will have us confirm our slices
and make sure we want to proceed to the

formatting of our slices which will erase
disk content:

The next step *DESTROYS* all existing
data on these partitions! Are you re-
ally sure that you are ready to proceed?
[no] <y>

Then the installer will set up its slices in
an operation that takes more or less time
depending on slice’s size. When done, you
are prompted for the system hostname:

 System hostname (short form, e.g.

'foo'): <lappy>

Since the installer allows installation
through other media than a CD or DVD,

like an ftp server for example, the net-
work can be configured at install time.
The configuration will be saved so that
there is nothing to do post-install. Here
I will use DHCP, but the configuration
of a statically assigned IP address is
straightforward: see Listing 1.

At this point, the network is configured
and you are already able to ping the pc
from another computer if you want to. Be-
fore going further, we are prompted for the
root password:

• Password for root account? (will not
echo)

• Password for root account? (again)

Make sure to use strong passwords, a
mix of alphanumeric and punctuation is
a minimum.

The last steps are selecting the install
media:

• Location of sets? (cd disk ftp http or
done) [cd] <enter>

• Available CD-ROMs are: cd0
• Which one contains the install media?

(or done) [cd0] <enter>
• Pathname to the sets? (or done) [4.3/

i386] <enter>

A list of sets is then displayed and we are
prompted:

• Set name? (or done) [bsd.mp] <*>
• [list of all selected packages]

• Set name? (or done) [bsd.mp] <done>

Unless you know what you are doing, which
would be doubtful if you are reading this far,
you should install all sets. Not all are re-
quired, but OpenBSD is small enough that
you do not need to go through the hassle
of figuring out what is needed and what is
not. A description of sets is available in the
FAQ. If you still want to minimize the install,
however keep in mind that a full install in
OpenBSD is not at all the same than a full
install on some other systems, a full install
will not get you a multimedia player, ten text
editors and twelve compilers. It will only
install applications which are part of the
OpenBSD base system.

As soon as you type done, the sets
will start extracting. It should only take a
few minutes depending on your system.
Finally, the installer will prompt just a few
questions regarding which services to
start at boot time and your timezone:

Listing 3. Exit the installation

 # exit

 OpenBSD/i386 (lappy.poolp.org) (ttyC0)

 login: gilles

 Password:

 OpenBSD 4.3 (GENERIC) #848: Tue Apr 29 20:30:06 MDT 2008

 Welcome to OpenBSD: The proactively secure Unix-like operating system.

 Please use the sendbug(1) utility to report bugs in the system.

 Before reporting a bug, please try to reproduce it with the latest

 version of the code. With bug reports, please try to ensure that

 enough information to reproduce the problem is enclosed, and if a

 known fix for it exists, include that as well.

 $ id

 uid=1000(gilles) gid=10(users) groups=10(users)

 $

I am logged as ``gilles'', let's see if I can issue commands as root:

 $ sudo id

 We trust you have received the usual lecture from the local System

 Administrator. It usually boils down to these three things:

 #1) Respect the privacy of others.

 #2) Think before you type.

 #3) With great power comes great responsibility.

 Password: <IlUvBsD42>

 uid=0(root) gid=0(wheel) groups=0(wheel), 2(kmem), 3(sys), 4(tty),

5(operator), 20(staff), 31(guest)

 $

get started

12 BSD 2/2008 13www.bsdmag.org

OpenBSD 4.3

• Start sshd(8) by default? [yes] <y>
• NTP server? (or none or default)

[none] <default>

• Do you expect to run the X Window
System? [no] <y>

• What timezone are you in? (? for list)
[Canada/Mountain]? <Europe/Paris>

After a few seconds you should see:

• CONGRATULATIONS!
 Your OpenBSD install has been suc-

cessfully completed!
• To boot the new system, enter halt at

the command prompt. Once the sys-
tem has halted, reset the machine
and boot from the disk.

• # <halt>

That is all, OpenBSD is now installed and
I will be able to log into it right after I issue
a reboot. It took me what, five minutes ?
Talk about an unfair reputation.

Post installation
Creating an account. After I boot for the
first time on my brand new system, the
following prompt welcomes me:

• OpenBSD/i386 (lappy.poolp.org)
(ttyC0)

• login:

I can now log in as user root to start set-
ting up the system. First thing to notice is
that I got mail and that I am prompted for
a terminal type. No need to argue, I will
accept the default:

• You have new mail.
• Terminal type?: [vt220] vt220
• #

In case you cared, the mail was from
Theo de Raadt, OpenBSD's project lead-
er. A lot of useful information was in it. I
would be happy to sum it up, but I guess
it would spoil your fun. Now that I am
logged in as root, first thing to do is create
myself an account so that I can stop be-
ing logged as root. There are (more than)
two tools which will allow me to do that:

• adduser is an interactive utility, a perl
script if you are curious

• useradd is a command line utility

Both will get me through my goal of setting
up an account, but they use different inter-

face so it really is a matter of taste. Since
I am not a big fan of interactive tools, my
example will use useradd and you will get
to read a couple man pages [adduser(8),
useradd(8)] to see what other options I
have not told you about. Happy? You’d bet-
ter be, because in OpenBSD-land you will
be reading a lot. See Listing 2.

Here, I only created the account
gille' and specified it is shell and
home, the -m option being to force
creation of the home directory in case
it does not exist. useradd has plenty of
configuration options to ease account
creation. One could for example set up
an expiry time for account or password,
or even a user class or group. the user-
info can, amongst other things, display
a short summary with all information
regarding a particular account. There
is more use to it , but guess what ? Yup,
[userinfo(8)]

For now, we do not really care about
all this, all we want is to log in as user

gilles and leave root as soon as pos-
sible. To do so, I lack a password:

• # passwd gilles
• Changing local password for gilles.
• New password: <foo>
• Please enter a longer password.
• New password: <foo123>
• Please use a more complicated

password.
• Please use a different password. Un-

usual capitalization,
• control characters, or digits are sug-

gested.
• New password: <IlUvBsD42>
• Retype new password: <IlUvBsD42>
• #

In the example above, the passwords
enclosed in <' and '> did not show up
on the terminal, however now that you see
what I typed, you get to realize that a strong
password policy is enforced by the passwd
utility. It must not be too short, it must not

Listing 4. Interface name

 $ ifconfig

 lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33208

 groups: lo

 inet 127.0.0.1 netmask 0xff000000

 inet6 ::1 prefixlen 128

 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x3

 rl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

 lladdr 00:19:21:4c:6e:eb

 groups: egress

 media: Ethernet autoselect (100baseTX full-duplex)

 status: active

 inet 192.168.0.42 netmask 0xffffff00 broadcast 192.168.0.255

 inet6 fe80::219:21ff:fe4c:6eeb%rl0 prefixlen 64 scopeid 0x1

 enc0: flags=0<> mtu 1536

 pflog0: flags=141<UP,RUNNING,PROMISC> mtu 33208

 groups: pflog

 $

Listing 5. Configure the network

 for dhcp:

 $ sudo tcsh

 # echo "dhcp" > /etc/hostname.rl0

 # exit

 $

 for my statically assigned address:

 $ sudo tcsh

 # echo "inet 192.168.0.42 255.255.255.0 NONE" > /etc/hostname.rl0

 # exit

 $

14 BSD 2/2008

get started

15www.bsdmag.org

OpenBSD 4.3

be too easy, it must be a real password.
Obviously there is a way to get around this,
but that kind of trick I will not tell you.

Now, I am able to log out from root
and login in as user gilles, but I still
need to do one last thing. Since being
logged in as root is unsafe, and since
my main account is gilles, I will config-
ure the sudo utility to give me the ability
to execute privileged commands as user
gilles. The command visudo will allow
me to edit the sudoers file.

visudo

This will launch a text editor, vi by default,
and by adding:

gilles ALL=(ALL) SETENV: ALL

in the User privilege specification section
of the file, I will be able to execute
commands as root by prefixing them with
sudo. Beware that executing commands
through sudo is not safer than executing
them through root, but this forces you to
ask yourself the question do I really want
to do this? every time you start typing sudo
in your shell.

Now is time to kiss root goodbye! (see
Listing 3)

It seems to work pretty well. Note
that there is a way to disable the

password prompting, but keeping it
makes it annoying enough that you
do not end up doing sudo commands
all the time. It forces you to think about
what you are doing in your session
instead of blindly prepending sudo
everywhere, as a side effect a session
that you would forget to lock will not
make your system compromised. A
user that shares your computer and
attempts to brute force your sudo
account will trigger mail being sent
to root. We will later see how to alias
the root account to my unprivileged
account as root happens to receive
mail we DO care about.

Just a few words before we go further
As I said in previous section, in
OpenBSD-land we get to read a lot.
This is a habit that is kind of strange
to newcomers who are used to having
their hands herd and being walked from
a problem to its solution. However, in
OpenBSD-land you do not get helped
if you do not try to get to a solution by
yourself. Since a lot of work is done
on keeping documentation up-to-date,
the first step to a solution is often to
start reading the documentation that is
shipped with the system.

Why do I mention this? Well, the very
first thing you get to do when booting your

OpenBSD system and logging in to your
account is to actually read a man page
[afterboot(8)]. It holds a description of
the first checks to perform after the first
boot. It will tell you about files that were
configured during installation as well as
files and commands that you should re-
ally know how to use as soon as possible.
Since repeating its content here would be
a waste of bytes, I will only suggest that
you read it and follow the pointers to other
man pages that are in the "READ ALSO"
section of the man page.

Configuring the network
One of the first thing you will want to do
is configuring the network since you will
probably want to interact with the rest of
the world. Depending on your network
configuration, this is going to be easy, or
super easy. First of all, you will need to
know your interface name: see Listing 4.

Here, my interface is rl0 (lo0 being
the loopback interface, enc0 and pflog0
being of interest to you only when you
will be familiar enough that you will want
to setup ipsec or pf). This means that my
network card is attached to the rl driver
[rl(4)]. Good, now:

• If I have a DHCP server: $ sudo dh-
client rl0

• If I want to statically assign my
address: $ sudo ifconfig rl0

192.168.0.42

The changes are not permanent and
to make sure they are kept after the
next reboot, all that is required is to
write them to the /etc/hostname.rl0 file
which will be read at boot time. For each
interface you want to configure, a /etc/
hostname.<interface> file should exist with
the configuration written in it (Listing 5).

If we go for DHCP, there is nothing left
to do. If we go for the statically assigned
address, we still need to configure the
gateway and nameservers. Configuring
the gateway is simple:

$ sudo route add default 192.168.0.1

and to make the change permanent:

$ sudo tcsh

echo "192.168.0.1" > /etc/mygate

exit

$

Nameservers are configured in the /etc/
resolv.conf file:

Listing 6. The list of ports

 $ make search name="tcsh"

 Port: tcsh-6.15.00

 Path: shells/tcsh

 Info: extended C-shell with many useful features

 Maint: The OpenBSD ports mailing-list <ports@openbsd.org>

 Index: shells

 L-deps:

 B-deps:

 R-deps:

 Archs: any

 $

Listing 7. etc/vc.conf file

 [...]

 # use -u to disable chroot, see httpd(8)

 httpd_flags=NO # for normal use: "" (or "-DSSL" after reading ssl(8))

 # For normal use: "-L sm-mta -bd -q30m", and note there is a cron job

 sendmail_flags="-L sm-mta -C/etc/mail/localhost.cf -bd -q30m"

 [...]

14 BSD 2/2008

get started

15www.bsdmag.org

OpenBSD 4.3

$ sudo vi /etc/resolv.conf

search poolp.org

nameserver 192.168.0.2

nameserver 192.168.0.3

lookup file bind

$

Once you get more familiar with the sys-
tem, you can run the shipped named server
and configure your system to use its own
name server.

Wi-Fi is slightly more difficult, you
must... no, actually in OpenBSD Wi-Fi
is configured using ifconfig which rec-
ognizes a few additional Wi-Fi-specific
options. I would love to put an example,
sadly I do not have wifi so you will have to
trust my word.

What is in OpenBSD
Now that we have a network, let's see
what tools we have at hand and even-
tually install from the Internet additional
software.

Contrary to popular belief, OpenBSD
comes with many tools which makes it
usable out of the box to achieve many of
the goals you would expect from a UNIX-
like system:

OpenBSD can be configured as a
simple firewall with simple rules to block
incoming and outgoing traffic, just as
it can be used to control bandwidth or
provide high availability redundant setups,
multihoming or ipsec gateway. It is the
system of choice to use as a gateway
between a network and another, a very
robust system with advanced network
related features.

It can also be configured as a
server for a wide variety of services
including http, smtp, dns, dhcp, pop,
ftp, ssh, ntp, and more... Services are
integrated and for the most part will run
out of the box if you enable them as will
be shown in this article. Services which
cannot work out of the box because
they require specific configuration
come with examples that will allow an
unfamiliar admin to get them running
in minutes. It should also be noted that
most of these services are either writ-
ten by OpenBSD hackers or are modi-
fied to improve their overall security
with techniques that have proved to
be efficient such as privilege separa-
tion and chrooting, privilege dropping,
use of safe alternatives to potentially
dangerous code constructs, and so on.

Some services are even able to coop-
erate with the packet filter to provide
elegant solutions to problems which
usually force admins to rely on hacks,
such as ftp-proxy, spamd or relayd.

It makes a great development station.
Xorg is available by default in a more
secure OpenBSD-ized version. vi and mg,
an emacs-like editor, are there out of the
box, as are cvs, gcc, gdb and more. The
documentation is probably the best out
there with every function documented,
some even providing examples of correct
and incorrect uses. It is not rare that I rely
on OpenBSD man pages while develop-
ing for Linux, and I know of many people
with the same habit.

As you can see, the system comes
with a set of applications which are avail-
able out of the box and which will allow
you to do quite a few things in many
areas without having to install third party
applications.

Ports and packages
At some point, you will feel limited because
you need a particular tool to do your job,
or you will miss an application you are
familiar with and which does not ship with
the system. I tried a lot in the past to limit
myself to base applications but in the end
I always end up needing something that's
missing. Fortunately, OpenBSD provides
two mechanisms to ease the installation
of third party applications and have them
installed and running painlessly: packages
and ports.

Packages are a collection of archives
containing software and libraries that
are under a license which allows the

OpenBSD project to host them on a public
ftp server and redistribute them. This does
not necessarily mean that they are free
software, it only means that they are
software that is allowed to be distributed.
Packages are managed through a set of
commands:

pkg_add, pkg_delete and pkg_info

Actually there is more, but by now you
should be use to me telling you to read
man pages.

To install a package, you need to tell
pkg_add where to find it. This is done by
setting the PKG_PATH environment variable
to the ftp directory that contains the pack-
age you want to install. A list of these serv-
ers is available at [1]. Since we want to be
nice to with the main server and we want
the application to install fast, I will chose
a server that's geographically close to me,
ftp.arcane-networks.fr, to install the screen
utility that I like so much:

$ export PKG_PATH=

ftp://ftp.arcane-networks.fr/pub/

OpenBSD/4.3/packages/i386/

$ sudo pkg_add screen

Ambiguous: screen could be screen-

4.0.3p1 screen-4.0.3p1-shm screen-

4.0.3p1-static

$

The pkg_add utility detected that there are
3 different packages for screen, and it is
up to me to decide which one I will want
to use. In this case, I do not really care
about the various versions and will go for
the default:

Figure 1. Emacsm player

16 BSD 2/2008

get started

17www.bsdmag.org

OpenBSD 4.3

$ sudo pkg_add screen-4.0.3p1

screen-4.0.3p1: complete

$

Just note that usually, the existence of
more than one flavor of a package is
an indication that you should educate
yourself as to what the different versions
do. In many occasions, a flavor is here to
compensate for the lack of an option in
the default package.

Whoops, what I really wanted was the
-static flavor. No problem, uninstalling it is
simple and will clean up every file that
was created at install time:

$ sudo pkg_delete screen

screen-4.0.3p1: complete

Clean shared items: complete

$

Now I install the right version:

$ sudo pkg_add screen-4.0.3p1-static

screen-4.0.3p1-static: complete

$

The screen example is simple because
it does not have dependencies, but to
be honest it does not make a difference
as pkg_add resolves and installs all of the
dependencies transparently.

Unlike packages, ports are a
collection of Makefiles that are organized
in a hierarchy of directories (typically
under /usr/ports) and which allow you
to download, build and install any of the
(slightly more than) 5000 ported software
and libraries by typing make install in the
appropriate directory. To obtain the ports,
you need to download the ports.tar.gz
archive that is available on every mirror, or
use cvs. There is not really any advantage
to use ports if a package already exists
for the application you want to install as

building the port will result in the package
itself. Ports are handy when you are dealing
with situations which cannot be solved by
packages, for example if you need to build
with a particular option, or if the application
has a restrictive license that does not allow
OpenBSD to distribute a package.

To install the ports subsystem, you
need to extract the ports.tar.gz that you
will find on every mirror inside /usr/ports:

$ sudo mkdir /usr/ports

$ ftp ftp://ftp.arcane-networks.fr/

pub/OpenBSD/4.3/ports.tar.gz

$ sudo tar -C /usr/ports -zxpf ~/

ports.tar.gz

$

This will create the ports hierarchy where
application are classified by category. For
example, if I wanted to install the tcsh
shell, I would issue a make install in
/usr/ports/shells/tcsh/ which would in
turn download the source for tcsh from a
master site, compile it, create a package
out of it, and install the package like we
have seen earlier. The list of ports is in
/usr/ports/INDEX which can be parsed
easily from the command line or searched
through with make commands, for
example: Listing 6.

With this knowledge, you should al-
ready be able to customize your OpenBSD
system and set up an environment that you
will enjoy working in within a few minutes.

Basic administration
X configuration – I am pretty sure you want
X running by now. OpenBSD ships with an
Xorg and you should not need any con-
figuration as settings are auto-detected.
The only thing you may want to do if the
default window manager, fvwm2, does not
suit you is to install the window manager
of your choice:

$ sudo pkg_add ion

ion-20070318p1: complete

$

Then if you do not plan to use xdm, add the
command line to your ~/.xinitrc file so that
starting X will start the window manager:

$ echo /usr/local/bin/ion3 > ~/

.xinitrc

X can now be started with the well known
command:Figure 3. pkgadd

Figure 2. kde

16 BSD 2/2008

get started

17www.bsdmag.org

OpenBSD 4.3

$ startx &

Making changes to user account
– Sometimes you may need to change
some of the settings for your account. I
like the tcsh shell which is not shipped
with OpenBSD, so how do I change from
the /bin/sh shell that I got when I created
my account to the /usr/local/bin/tcsh
shell that I got from running pkg_add
tcsh?

$ chpass -s /usr/local/bin/tcsh gilles

or:

$ chpass

When invoked without parameters, the
chpass command will launch a text
editor which will allow me to change a
few settings such as my name (as will
appear in /etc/passwd, finger output and
automatic filling from various mail clients)
or shell.

Starting daemons
If you are familiar with other Unix(-like)
systems, you probably know that most
administrative files are stored in the /etc
hierarchy.

Files that are of particular interest
are the rc files which are used to decide
what will or will not be done at boot (and
reboot) time by the /etc/rc script.

First file to take a look at is /etc/
rc.conf which holds a series of knobs to
enable and disable services at boot time.
For example: see Listing 7.

The /etc/rc.conf file ends up with
the inclusion of /etc/rc.conf.local if
it exists. The smart way of doing things
is to override the variables we want
changed in /etc/rc.conf.local and not
making any changes to /etc/rc.conf so
that they do not get overwritten during
next upgrade. So, if I were to enable
httpd and disable sendmail, I would
simply add the following lines to /etc/
rc.conf.local:

httpd_flags=""

sendmail_flags=NO

Obviously, OpenBSD cannot (and would
not) take into account inside /etc/rc.conf
every single service that are present in
ports and packages. So an additional file,
/etc/rc.local is executed at boot time
and may contain command lines of your
choice. For example, if I had installed the
dovecot imap server and wanted it to be
started automatically at next boot, I would
simply add the following to

/etc/rc.local:

if test -x /usr/local/sbin/dovecot;

then

 /usr/local/sbin/dovecot; echo -n '

imapd';

fi

Other rc files exist, such as /etc/

rc.shutdown and /etc/rc.securelevel but
I doubt they deserve much more explana-
tions.

Tweaking the kernel settings
There are some kernel settings which you
can change from userland without having
to rebuild a kernel. Amongst these settings,
the ability to forward packets (required if
you plan to use your OpenBSD computer
as a gateway) or even Linux and FreeBSD
binary emulation if you plan to run an
application for which you do not have
source code and which does not exist for
OpenBSD.

These knobs can be listed and altered
with the sysctl command; however the
changes are not persistent between re-
boots. The file /etc/sysctl.conf is a good
place to save these changes.

Password files
OpenBSD does not use a text file to store
user accounts and passwords. It uses a
database out of which the /etc/passwd
and /etc/master.passwd are generated.
This means that any changes to /etc/
passwd or /etc/master.passwd will not be

taken into account and will be overwritten
next time the files are regenerated from
the database. Changes to accounts must
be done through the several utilities that
manipulates the database itself. A notable
exception is /etc/group which can be ed-
ited by hand, though using utilities is still
smarter and less error prone.

Learning more
This article was just to get you started and
running by holding your hand for the first
few minutes. The next step for you is to
start reading from the project's FAQ and
man pages to get more familiar with the
tools and how they work.

Our community is active and you
should be able to find help on almost
any topic through the official website, the
misc@openbsd.org mailing list, or even
through the www.undeadly.org website
which often posts worthy information
about new tools that can make your life
easier.

One thing to note is that the OpenBSD
community does not attempt to bring
users at all costs and people tend to
be direct and unfriendly when faced to
anyone who begs for help without doing
the slightest effort to find a solution by
himself. When someone asks for help, it
is expected that he did his best to find
a solution, describe the problem clearly
with logs and error messages that will
help others understand, list what was
attempted to solve the issue and where
you are stuck. Not doing so is very likely
to make people yell at you because being
lazy saves your time but wastes the time
of others which is considered by many as
a rude and impolite behavior.

I hope you enjoyed reading this article
and you will enjoy using OpenBSDas
much as I do !

Gilles Chehade is a research and
development engineer for french search
engine Exalead, and has had experiences
in various areas as a security consultant,
system and network administrator or
instructor for Unix and programming classes
in the past. He has been a BSD user for
nearly a decade with a large preference
for OpenBSD which he joined late 2007 to
contribute on userland and daemons.

About the Author

• [0] The OpenBSD project: http://www.openbsd.org/
• [1] FAQ: http://www.openbsd.org/faq/
• [2] Goals: http://www.openbsd.org/goals.html
• [3] Mailing lists: http://www.openbsd.org/mail.html

On the 'Net

18 BSD 2/2008

get started OpenBSD Packages!

19www.bsdmag.org

You've installed it.
Now what? Packages!

A freshly installed machine nice, but it’s when you start using the package tools that
the real visitas open. Read on for a kickstart on packages.

Peter N. M. Hansteen

I nstalling OpenBSD is easy, and takes you maybe 20
minutes. Most articles and guides you find out there will
urge you to take a look at the files in /etc/ and explore the
man pages to make the system do what you want. With a

modern BSD, the base system is full featured enough that you
can in fact get a lot done right away just by editing the relevant
files and perhaps starting or restarting one or more services. If
all you want to do is set up something like a gateway for your
network with basic-to-advanced packet filtering, everything you
need is already there in the basic install.

Then again, all the world is not a firewall, and it is likely
you will want to use, for example, a web browser other than
the venerable lynx or editing tools that are not vi or mg. That's
where packages and package systems come in. I will skip a
little ahead of myself and make a confession: The machine I
am writing this piece on reports that it has some 260 packages
installed.

Before we move on to the guts of this article, some ceremonial
words of advice: If you are new to OpenBSD or it is your first time in
a while on a freshly installed system, you could do a lot worse than
spending a few minutes reading man afterboot. That man page
serves as a handy checklist of things you should at least take a
peek at to ensure that your system is in good working order.

Some packages will write important information, such as
strings or stanzas to put in your rc.conf.local, rc.local or
sysctl.conf files, to your terminal. If you are not totally confi-
dent what to do after the package install finishes, it may be a
good idea to run your ports and packages installs in a script
session. See man script for details.

When dinosaurs roamed the Earth...
The story of the ports and packages goes back to the early days
of free software when we finally found ourselves with complete
operating systems that were free and hackers^H^H^H^H^H^H

system administrators found that even with full featured operating
systems such as the BSDs, there were sometimes things you
would want to do that was not already in there. The way to get
that something else was usually to fetch the source code, see if
it would compile, make some changes (or a lot) to make it com-
pile, possibly introduce the odd #ifdef block and keep at it until
the software would compile, install and run. In the process you
most likely found out what, if any, other software (tools or libraries)
needed to be installed to complete the process. At that point, you
could claim to have /ported/ the software to your platform. If you
had been careful and saved a copy of the original source files
somewhere, you could use the diff utility to create a patch you
could then send to the program maintainer and hope that he or
she would then incorporate your changes in the next release.

But then, why wait for the next release? Why not share those
diffs with others? How about putting it into a CVS repository that
would be available to everyone? That idea was tossed around
on relevant mailing lists for a while, and the first version of the
/ports system/ appeared in FreeBSD 1.0 in December 1993.

The other BSD systems adopted the basic idea and frame-
work soon after, with small variations. On NetBSD, the term
'port' was already in use for ports of the operating system it-
self to specific hardware platforms, so on that operating system,
the ports tree is referred to as 'package source', or /pkgsrc/ for
short. The ports and packages tools are still actively maintained
and developed on all BSDs, and most notably Marc Espie re-
wrote the pkg_* tools for OpenBSD's 3.5 release.

Parallel development has lead to some differences in the
package handling on the various BSDs, and some of the opera-
tions I describe here from an OpenBSD perspective may not be
identical on other operating systems. Around the same time the
BSDs started including a ports tree and packages, people on
the Linux side of the fence started developing package systems
too. With distributed development taken to the point where the

18 BSD 2/2008

get started OpenBSD Packages!

19www.bsdmag.org

kernel, basic system tools and libraries
are maintained separately, perhaps the
need there was even greater than on
the BSDs. In fact, some Linux distribu-
tions such as the Debian based ones
have taken the package management to
the point where everything is a package
- every component on a running system
is a package that is maintained via the
package system, including basic system
tools, libraries and the operating system
kernel. In contrast, the BSDs tend to treat
the base system as a whole, with the
package management tools intended
solely for managing software that does
not come as a part of the default install.

The anatomy
of ports and packages
The ports system consists of a set of 'reci-
pes' to build third party software to run on
your system. Each port supplies its own
Makefile, whatever patches are needed
in order to make the software build and
optionally package message files with
information that will be displayed when
the software has been installed.

So to build and install a piece of
software using the ports system, you
follow a slightly different procedure than
the classical fetch - patch - compile cycle.
You will need to install the ports tree, either
by unpacking ports.tar.gz from your
CD set or by checking out an updated
version via cvs, or for that matter cvsup
or the rewritten version called csup. With a
populated ports tree in hand, you can go
to the port's directory, say

$ cd /usr/ports/print/lyx

to see about installing lyx, the popular latex
front end. On a typical OpenBSD system,
that directory contains the following files:

$ ls -l

total 8

-rw-rw-r-- 1 root wheel 1825 May

18 21:57 Makefile

-rw-rw-r-- 1 root wheel 274 Apr

5 2007 distinfo

drwxrwxr-x 2 root wheel 512 Nov

1 2007 patches

drwxrwxr-x 2 root wheel 512 Nov

1 2007 pkg

here, the Makefile is the main player. If
you open it now in a text editor or viewer
such as less, you will see that the syntax

is quite straightforward. What it does is
mainly to define a number of variables
such as the package name, where to
fetch the necessary source files, which
programs are required for the compile to
succeed and which libraries the resulting
program will need to have present in
order to run correctly.

The file defines a few other variables
too, and you can look up the exact mean-
ing of each in the man pages, starting with
man ports and man bsd.port.mk. With all
relevant variables set, at the very end the
file uses the line:

.include <bsd.port.mk>

to pull in the common infrastructure it
shares with all other ports.

This is what makes the common tar-
gets work, so for example, typing:

$ make install SUDO=sudo

(probably the most common port-related
make command for end users and
administrators) in the port directory will
start the process to install the software.
But before you type that command and
press Enter, you may want to consider
this: This command will generate a lot
of output, most likely more than will fit in
the terminal’s buffer. If the build fails, it is
likely that the message about the first
thing that went wrong will have scrolled
off the top of your screen and out of the
terminal buffer. For that reason, it is good
sysadmin practice to create a record of
lengthy operations such as building a
port by using the script command. Typing
script in a shell will give you a subshell
where everything displayed on the screen
will be saved in a file. Escape sequences,
asterisk-style progress bars and twirling
batons will end up a bit garbled, but that
essential message you are looking for will
be there too. man script will give you the
details, and unless you are an incurable
packrat, do remember to delete the
typescript file afterwards. That process
will start with checking dependencies, go
on with downloading the source archive
and checking that the fetched file matches
the cryptographic signatures stored in the
distinfo file. If the signatures match, the
source code is extracted to a working
directory, the patches from the patches/
directory are applied, and the compilation
starts. If the dependency check finds that

one or more pieces are missing, you will
see that the process fetches, configures
and installs the required package before
continuing with the build process for the
original package.

After a while, the package build
most likely succeeds and the install
completes. At this point you will have a
new piece of software installed on your
system. You should be able to run the
program, and the installed package will
turn up in the package listings output by
pkg_info, such as:

$ pkg_info | grep lyx

lyx-1.4.3p2-qt graphical frontend

for LaTeX (nearly WYSIWYG)

This information is taken from the pack-
age's subdirectory in /var/db/pkg, where
the information about currently installed
packages is stored.

If you paid close attention during the
make install process, you may have no-
ticed that the install step was performed
from a binary package. This is one of
the distinctive features of the OpenBSD
version of the package system. The pack-
age build always generates an installable
package based on a 'fake' install to a
private directory, and software is always
installed on the target system from a
package.

But you do not need to do that!
This means several things. If you have
built and installed a package by typing
'make install' in the relevant ports direc-
tory and later run the 'make deinstall'
or pkg_delete to remove the software, any
subsequent install of the software will take
place from the package file stored in a
subdirectory of /usr/ports/packages. But
more importantly, in most cases you can
keep your system's packages up to date
without a ports tree on the machine. (See
Note [1]) For each release, a full set of
packages is built and made available on
the OpenBSD mirrors, and by the time
you read this, there is reason to hope that
running updates to -stable packages will
be available for supported releases too.

The way to make good use of this is
to set the PKG_PATH variable to include the
packages directory for your release on
one or more mirrors close to you and/or a
local directory, and then run pkg_add with
the -u flag. (See Note [2])

20 BSD 2/2008

My laptop runs -current and I am in
Europe, so the PKG_PATH is set to

PKG_PATH=ftp://ftp.eu.openbsd.org/pub/

OpenBSD/snapshots/packages/`machine

-a`/

On a more conservatively run system, you
may want to set it to something like

PKG_PATH=ftp://ftp.eu.openbsd.org/pub/

OpenBSD/4.3/packages/`machine -a`/

Once your PKG_PATH is set to something
sensible, you can use pkg_add and the
package base name to install packages,
so a simple

$ sudo pkg_add lyx

would achieve the same thing as the
'make install' command earlier, and
most likely a lot faster too. Once you have
a set of packages installed, and keeping
in mind that you need a meaningful PKG_
PATH, you can keep them up to date using
pkg_add -u. If you want more detailed
information about the package update
process and want pkg_add to switch to in-
teractive mode when necessary, you can
use something like this command:

$ sudo pkg_add -vui

I have at times tended to run my pkg_add
-u with some of the -F flags in order to
force resolution of certain types of conflict,
but given the quality of the work that goes
into the packages, most of the -F options
are rarely needed.

pkg_add and its siblings in the pkg_*
tools collection has a number of options
we have not covered here, all intended
to make your package management on

OpenBSD as comfortable and flexible as
possible. The tools come with readable
man pages, and may very well be the
topic of future BSD Magazine articles.

 More information on the net
The main source of information about the
OpenBSD ports and packages system is
to be found on the OpenBSD project’s
web site. The FAQ’s ports and packages
section at http://www.openbsd.org/
faq/faq15.html has more information
about all the issues covered in this
article, and goes into somewhat more
detail than space allows here. If you
encounter problems while installing or
managing your packages, it is more
than likely that you will find a solution or
a good explanation there. And of course,
if nothing else works or you can’t figure it
out, there is always the option of asking
the good people at misc@openbsd.org
or ports@openbsd.org or search the
corresponding mailing list archives.

How do I make a package then?
That is a large question, and the first
question you should ask if you think you
want to port a particular piece of software
is, Has this already been ported?. There
are several ways to check. If you are
thinking of creating a port, you most likely
already have the ports tree installed, so
using the ports infrastructure’s search
infrastructure is the obvious first step.
Simply go to the /usr/ports directory
and run the command:

$ make search key=mykeyword

Where mykeyword is a program name or
keyword related to the software you are
looking for. One other option with even
more flexible search possibilities is to

install databases/sqlports. And of course,
searching the ports mailing list archives
(http://marc.info/?l=openbsd-ports) or
asking the mailing list works too.

When you have determined that the
software you want to port is not already
available as a package, you can go on to
prepare for the porting effort. Porting and
package making is the subject of much
usenet folklore and rumor, but in addition
you have several man pages with specific
information on how to proceed. These
are, ports, package, packages, packages-
specs, library-specs and bsd.port.mk.

Read those and use your familiarity
with the code you are about to port to
find your way. The OpenBSD web offers
a quite a bit of information too. You could
start with re-reading the main ports and
packages page at http://www.openbsd.org/
faq/faq15.html, and follow up with the
pages about the porting process at http:
//www.openbsd.org/porting.html, testing the
port at http://www.openbsd.org/porttest.html
and finally the checklist for a sound port at
http://www.openbsd.org/checklist.html.

All the while, try first to figure out the
solution to any problems that pop up,
read the supplied documentation, and
only then ask port maintainers via the
ports mailing list for help. Port maintainers
are generally quite busy, but if you show
signs of having done your homework first,
there is no better resource available for
helping you succeed in your porting or
port maintenance efforts.

One fine resource for the aspiring
porter is Bernd Ahlers’ ports tutorial from
OpenCon 2007, you can look up Bernd’s
slides at http://www.openbsd.org/papers/
opencon07-portstutorial/index.html, and it
is possible he can be persuaded to repeat
the tutorial at a conference near you.

Peter N. M. Hansteen is the author of The
Book of PF (No Starch Press, December
2007). Peter has been tinkering with
computers and networks since the mid-
1980s, found the Freenixes in the early
1990s and is a frequent lecturer on PF and
other OpenBSD and FreeBSD topics. He
is a consultant, sysadmin and writer based
in Bergen, Norway who occasionally blogs
at http://bsdly.blogspot.com/ and welcomes
your comments to peter@bsdly.net.

About the Author

[1] The main exceptions to the rule that precompiled packages are available from the
mirrors are software with licenses that do not allow redistribution or require the end
user to do specific things such as go to a web site and click a specific button to for-
mally accept a set of conditions. In those cases it cant' be helped, and you will need
to go via the ports system to create a package locally and install that.
[2] If you want to find out what packages are available at your favorite mirror, you can get
a listing of package names by fetching the file $PKG_PATH/index.txt. The OpenBSD web
site offers a listing of available packages with short descriptions, too. For OpenBSD 4.3, the
listing is available from http://www.openbsd.org/4.3_packages/, from there you click on the
link for your platform

Notes

get started

22 BSD 2/2008

get started OpenBSD

23www.bsdmag.org

OpenBSD
the best development platform

Amongst the many goals of OpenBSD, there is one which is important enough that it
is listed in the first position of the goals page: "Provide the best development platform
possible."

Gilles Chehade

This is a goal that works hand in hand with the hard
focus on code quality. If the system provides good
tools and documentation for the developers, then
they will be more likely to contribute good code.

Looking at the tech@ mailing list shows this behaviour
with thousands of diffs being called incomplete for not
providing the associated documentation, or being asked for
changes if they are not doing things the appropriate way.
Undocumented code does not get in and bad code does
not get in either.

As a direct result, OpenBSD has become an amazing
development platform:

• Functions are documented through complete man
pages which often show some examples of correct and
incorrect uses when it is easy to do things wrong and
misuse an API. For example, the realloc() function is
often used in a way that leads to a memory leak and
the man page reflects this with a short explanation. It
is common that people who are not writing code for
OpenBSD still use its man pages rather than the ones
provided by the system which they write code for (I
know that myself and many other OpenBSD-oers do

• All of the source code is available and it can be
used as a reference for many different projects and
algorithms. This can also be said of other open source
systems, but the strong position adopted on what code
gets in makes it safer to assume that an example is
correct. If the code went in, it means that at some point
many people decided it was correct. Errors do happen
sometimes as no system is bug free, but they are less
likely

• As a means to improve code correctness, some
features were implemented for OpenBSD which benefit

all developments. For example, malloc() had changed to
rely on mmap() and while at it enforced a strict releasing
so that the assumptions that a memory chunk is still
usable after being freed would no longer remain valid.
The result was that applications that did a poor job at
managing their memory would crash (way) more often
and help people spot the bugs and fix them rather than
leave them around. This produces a higher quality code
and more robust applications as people who want their
code to be portable to OpenBSD will eventually find out
their memory related bugs as they port.

In this article I will give an overview of how you can make use
of OpenBSD for both a development server and workstation.
Obviously, it cannot be complete and I cannot go through all
the different setups for all the different needs, this is just a way
to introduce you to OpenBSD as a development platform, and
make you familiar with some of the tools that can get you
started. So... Here is my own setup !

Development Station
My workstation is just a plain setup with all of the tools I
need to write, compile, debug and commit code to a remote
server. Since I often work with other people and they do not
necessarily use the same tools as I do, I tend to install popular
tools so that they can grab a terminal and work without being
annoyed by my own environment.

Text editors
By default, OpenBSD provides nvi, a vi variant, and mg, an
emacs-like editor without all the kludge and written in C. Both
can be used to write code and are actually used by many
developers out there, however they are limited by design and
will not provide some of the features many hackers expect

22 BSD 2/2008

get started OpenBSD

23www.bsdmag.org

from a text editor used for programming,
like syntax highlighting for instance.

While writing this article, I went polling
around and it turns out that the first tool
many developers install is a feature-
rich text editor with support for syntax
highlighting and programming modes.

The two most popular editors cited
were vim and emacs.

Both of which are available as
OpenBSD packages:

$ export PKG_PATH=ftp://insert.your/

favorite/ftp/mirror/here/

 $ sudo pkg_add vim

 $ sudo pkg_add emacs

Since I use emacs for coding, here is a
configuration file that i'm willing to share
and which helps writing readable KnF
style code:

http://www.poolp.org/~gilles/emacs/

Code browser
Another useful utility is Cscope, a tool
which helps developers browse code
and search for references to symbols,
definitions, declarations and quite a lot
more. This is a very handy tool which
makes it easy to browse through a
large amount of code and eases the
understanding of how things work in
code you are not too familiar with.

Luckily, Cscope is also available as a
package:

$ export PKG_PATH=

ftp://insert.your/favorite/ftp/mirror/

here/

$ sudo pkg_add cscope

Vim and Emacs both are both able
to work with Cscope, and ease the
browsing without having to leave the
editor. I prefer to use cscope and to
have it start my favorite editor through the
EDITOR environment variable.

$ export EDITOR=emacs

$ cscope

Once you get hooked up, you will find it
hard to stop using it.

Compilers
The system ships with compilers and
interpreters for various languages. The

C compilers include the well-known
GCC (Gnu CC) with local extensions
which aim at improving security and
easing error detection in code at
compile and run time. It also includes
the PCC compiler that was recently
imported and can already be used to
build most of the OpenBSD userland.

PCC works fine but is still a work
in progress and as such is not the
compiler by default, however it is often
a good idea to use it aside and make
sure that the code that compiles under
GCC does not contain and spread
GCC-isms.

More compilers, including more
recent versions of GCC are packaged
but I do recommand you to use the
versions that ship with the system
unless you have a very specific need
that cannot be fullfilled with these.
Considering that a full operating
system including kernel, userland and
ports works with the default compilers,
attempts at explaining why one NEEDS
the latest GCC is a usual source of fun
and excitement.

Debuggers
True hackers code bug-free to save time.
However, true human beings fail to think
of all the implications of slight changes
to code, just as they can not write code
for hours and hours and hours without
introducing slight errors, just as coding
at night increases the risks of typos,
wrong arithmetics and interesting logic.
OpenBSD ships with two debuggers, the
full blown gdb for the hackers that need
plenty of features and the simple pmdb if
the bloat of gdb needs to be avoided.

To be honest, my use of pmdb was
rather limited, and it is my understanding
that it is usually used to debug kernels at
an early stage of development for new
architectures. However, it is interesting
to know that there is a simple debugger
and hopefully it can bring more people
to improve it.

Versioning
OpenBSD comes with cvs which is the
versioning tool used by developers of the
project. Despite a lot of criticism from
supporters of alternative version control

Listing 1. Obtaining the anoncvs shell archive

 $ lynx http://www.poolp.org/mirrors/OpenBSD/anoncvs.shar

Then extract it in its own directory:

 $ mkdir anoncvs

 $ mv anoncvs.shar anoncvs/

 $ cd anoncvs/; sh anoncvs.shar

 x - Makefile

 x - README

 x - anoncvssh.c

 $

Listing 2. Building the anoncvs shell

-#CVSROOT=anoncvs@anoncvs1.usa.openbsd.org:/cvs

+CVSROOT=anoncvs@cvs.poolp.org:/cvs

-BINDIR=/open

+BINDIR=/usr/local/bin

Once this is done, you can simply `make`, then `make install`:

$ make

cc -O2 -pipe -c anoncvssh.c

cc -o anoncvssh anoncvssh.o

$ sudo make install

install -c -s -o root -g bin -m 4111 anoncvssh /usr/local/bin/anoncvssh

$

24 BSD 2/2008

get started

25www.bsdmag.org

OpenBSD

systems, cvs does quite a good job and
encourages communication between
hackers.

If you really feel the need to install
another versionning utility, there is a few
available as packages, including the
widely used subversion:

$ export PKG_PATH=ftp://insert.your/

favorite/ftp/mirror/here/

$ sudo pkg_add subversion

The OpenBSD project has been using
CVS for over 10 years and it has proven
to work, which is why there is not really
any interest in using alternatives. There
is an ongoing project to provide a more
sane CVS implementation, OpenCVS,
which plans on providing compatibility
with GNU CVS in a first release. OpenCVS
will then work on providing new features
that do not break compatibility and that

improve developer experience at the
same time.

Source tree
Wether you plan to work on OpenBSD
related code or not, it is always a good
idea to have a checkout of the system's
source tree at hand.

When you do not know or have
a doubt about how a programming
interface works, you can bet a piece of
code provides a clear and functionnal
example of use.

Since you are free to reuse the code
and modify it, you can even prevent
having to roll a new version of something
that already exists and save yourself time
and bug tracking efforts.

$ cd /usr

$ sudo cvs -d anoncvs@your.local.mirr

or:/cvs co -P src

Using Cscope can turn this copy of the
source tree into a large library of code
samples and examples. Definitely a good
tool.

Development Server
A development server can do many things,
and has a different meaning depending
on who sets it up. My development server
provides the following:

• A repository shared between a group
of coders with read-write privileges.

• Anonymous read-only access to that
same repository.

• CVS log notifications through mail.

Since it is a bit trickier to setup than a few
pkg_add, I will explain how you can achieve
the same result:

Setting up CVS
OpenBSD has a shell archive,
anoncvs.shar, which is available directly
from one of the mirrors and which
provides all we need to setup a CVS
repository that can be written to by
coders and read by anonymous users.

You can start by downloading the
archive: see Listing 1.

anoncvssh.c, when built, is a special
shell that is really a wrapper to the cvs
utility. All it does is setup the environement
for read-only access and execute cvs.

First, edit the Makefile to change the
following lines as suits you. To increase
readability, I prepended removed line
with -, and added lines with +: see
Listing 2.

Now, it would be too easy if that was
it. The README file explains all of the
steps to create the chroot jail, and to
populate it with a mirror. We will follow
the steps but ignore mirror stuff so that
we simply have an empty repository
inside the chroot jail.

I like my repositories to be accessed
at /cvs, so we will simply create the
base directory and initialize a repository
named 'cvs' inside of it. When a user
executes anoncvssh, he will be chrooted
to the base directory and the repository
can then be referenced as /cvs.

$ sudo mkdir /var/cvs

Then, create the anoncvs account by
adding the following line to the passwd
database, using the command vipw:

Listing 3. Setup the chroot environment:

 $ sudo mkdir bin dev tmp usr var etc

 $ sudo cp /bin/{cat,pwd,rm,sh} bin/

 $ sudo mknod dev/null c 2 2

 $ sudo chmod 666 dev/null

 $ sudo cp /etc/{group,hosts,passwd,protocols} etc/

 $ sudo cp /etc/{pwd.db,resolv.conf,services,ttys} etc/

 $ (cd var && sudo ln -s ../tmp tmp)

 $ sudo chmod a+rwx tmp

 $ sudo mkdir usr/{bin,lib}

 $ sudo cp /usr/bin/cvs usr/bin/

 $ sudo mkdir usr/libexec

 $ sudo cp /usr/libexec/ld.so usr/libexec/

 Finally, copy all of the libraries that ``cvs'' depends on inside the

chroot at their identical location.

 i.e: cp /usr/lib/libz.so.4.1 usr/lib/libz.so.4.1

 $ ldd /usr/bin/cvs

 /usr/bin/cvs:

 Start End Type Open Ref GrpRef Name

 00000000 00000000 exe 1 0 0 /usr/bin/cvs

 0a1fa000 2a202000 rlib 0 1 0 /usr/lib/libz.so.4.1

 08243000 28248000 rlib 0 1 0 /usr/lib/libgssapi.so.5.0

 0c9fb000 2ca0b000 rlib 0 1 0 /usr/lib/libkrb5.so.16.0

 086d7000 28706000 rlib 0 1 0 /usr/lib/libcrypto.so.13.0

 0f363000 2f368000 rlib 0 1 0 /usr/lib/libdes.so.9.0

 0d734000 2d768000 rlib 0 1 0 /usr/lib/libc.so.45.0

 09377000 09377000 rtld 0 1 0 /usr/libexec/ld.so

24 BSD 2/2008

get started

25www.bsdmag.org

OpenBSD

$ sudo vipw

Copy/paste the line:

"anoncvs::32766:32766::0:0:Anonymous

CVS User:/var/cvs:/usr/local/bin/

anoncvssh"

You may need to tweak your SSH
configuration to PermitEmptyPasswords
or else all attempts to log in as anoncvs
will fail.

Now that the account is set, you need
to setup the chroot environment. While
this may look tricky it is quite simple
when you understand what you're doing
and you can always use the README as
a reminder. Create base directory:

$ cd /var/cvs

Create a few files for the anoncvs account,
you may want to edit .profile and .plan to
display proper information:

$ sudo touch .hushlogin .profile .plan

Setup the chroot environment: see Listing
3.

Once this is done, edit /etc/fstab to
make sure the /var filesystem doesn't
have the nodev option or else things
won't work too good when attempting
any operation on dev/null. If it was nodev,
remove the option and ... reboot.

What do we do from now ? Well, we
have just created the environment to host
the anonymous access but we still do not
have a repository initialized !

$ cd /var/cvs

$ sudo cvs -d /var/cvs/cvs init

This is not a typo, our base directory
is /var/cvs, and the repository uses
cvs as its name. When accessing

the repository using the anonymous
account, the CVSROOT will look like
this:

anoncvs@cvs.poolp.org:/cvs

It is a bit annoying because if you're
not connecting as anoncvs and you
do have read/write access, you will not
execute the anoncvssh shell which will
not chroot you and your CVSROOT will
look like this:

anoncvs@cvs.poolp.org:/var/cvs/cvs

The fix is trivial ...

$ cd /

$ sudo ln -s /var/cvs/cvs /cvs

Voila, CVS repository is setup.

Setting up the accounts
At this point, we have a CVS that's
installed with a repository that can
be accessed read-only by the user
anoncvs, but this is quite useless
without a real user with write access to
the repository.

How you create developers accounts
is up to you, and there are as many
ways to deal with this as there are
administrators with creative ideas. I like
to keep things simple so I make use of
groups and permissions.

First, I create a group called coders:

$ sudo groupadd coders

Then I make myself part of the group:

$ sudo usermod -G coders gilles

Finally, I change permissions and group
ownership on the repository we have
created earlier so that members of the

group coders can create modules in the
repository.

 $ sudo chgrp -R coders /var/cvs/cvs

$ sudo chmod 775 coders /var/cvs/cvs

Whenever we need to add a new
developer, we can simply add her to
coders, then she'll be able to commit
to any module inside the repository.
Also, we can restrict commit to specific
modules by creating a group specific
to the module, make the module group-
writable for the new group and making
the new developer part of that group
instead of coders.

Mail notifications
When working with other developers,
it is nice to be notified by mail when a
change is made to the tree. This can be
setup in a matter of minutes and only
requires the setting up of an alias for
sendmail and a one liner to a file in /cvs/
CVSROOT. See Listing 4.

Sending mail to anoncvs will now send
mail to everyone listed in the /etc/mail/
lists/anoncvs file. Adding new people will
only require us to execute newaliases so
that the database is rebuilt.

Now, we need to tell CVS that it has to
send mail to anoncvs whenever a commit
is done to the repository. This is done by
adding the line:

 DEFAULT (echo ""; echo %{sVv}; cat)

| mail -s 'CVS: cvs.poolp.org' anoncvs

To the file /cvs/CVSROOT/loginfo. You can
actually do notifications that are more
precise and that apply to certain modules
and directories, but I will let you read the
header of the loginfo file which explains
how this works.

There are many other things you
could do depending on your need and
with more or less effort. Many tools
are available to browse through a web
interface, create graphs and statistics,
or create snapshots. The loginfo file
could even be used to implement some
kind of continuous integration bot, it is
all about your needs and the ideas you
come up with to solve your problems ;)

Listing 4. Creating the mailing list

 $ sudo mkdir /etc/mail/lists/

 $ sudo sh

 # echo "gilles" > /etc/mail/lists/anoncvs

 # echo "anoncvs: :include:/etc/mail/lists/anoncvs" >> /etc/mail/aliases

 # newaliases

 /etc/mail/aliases: 47 aliases, longest 52 bytes, 714 bytes total

 # exit

 $

26 BSD 2/2008

get started BSD certification

27www.bsdmag.org

The BSD certification
by the BSD Certification Group

This article is not about just any BSD certification. We will discuss the certification that
is being developed by the BSD Certification Group Advisory Board.

Machtelt Garrels

The Advisory Board and the rest of the group consists
of people who are actively involved in the different
BSD projects (DragonFly BSD, FreeBSD, NetBSD and
OpenBSD) – many of them are key figures in their

communities and help develop their systems. The BSDCG
is working with Subject Matter Experts (SMEs) and a psy-
chometrician to ensure that both the question items and the
testing method are a fair and unbiased assessment of the
candidate's abilities.

Why is it important to have a *BSD certification?

• We need to break the myth that says that *BSD is offering
no support.

• We need to ease and fasten adoption of BSD in business
world: match companies that are using or that want to
use *BSD with people who are up to the task of manag-
ing a BSD environment. There is a chicken and egg prob-
lem: people think that there is no support, so the business
world does not like BSD, so there is no interest in support-
ing BSD.

• There is a need for (standard) objectives for training cen-
ters, course developers and publishers. A (standard) certifi-
cation encourages development of course materials.

• Companies need help when hiring BSD people. To put it
blunt, we need to point out for them which words to do a
keyword search on in a CV.

• We need a revaluation of IT professionals: after the boom
of the nineties, we now get the lash-back of the phenom-
enon where everybody went into IT without really knowing
what they were doing. Now, IT environments are running
slow and are badly managed, because most IT profes-
sionals are not up to the job. As a result, they are always
busy and as a result of their busy schedule, they do not
want to change, update or migrate to better solutions.

Note
We call it *BSD because we do not test any specific BSD distri-
bution. *BSD includes all distributions of the BSD family.

There are some problems with traditional certifications that
we do not want for our *BSD certification:

• Certifications are made to sell software.
• Certifications are accompanied by official course materi-

als that examinees more or less are forced to buy. There is
no free documentation, it is not freely distributable and not
easy to find.

• Certifications, like software, expire in order to sell upgrades.
• Knowledge of tools is tested instead of knowledge of

techniques.
• There is no input from examinees.

Value of a
certification for employers
Some reports, trivially from Microsoft but also from members of
more or less independent analyzing businesses, like for instance
IDC, point out that employees for a UNIX-like environment on the
average cost 30% more than normal employees. Hence they
jump to the conclusion that the total cost of ownership of such
an environment, which can be equipped for instance with freely
available BSD software on PC hardware, is more expensive,
even though it is cheaper in almost every other respect.

Note
BSD is part of the UNIX family, a collection of robust operating
systems that where originally designed for big environments.
Since many names of family members end in -NIX, they are
sometimes called *NIX to refer to all UNICES together.

However, these reports fail to mention (on purpose?) that
*NIX professionals have a much wider knowledge, while e.g.

26 BSD 2/2008

get started BSD certification

27www.bsdmag.org

Microsoft professionals tend to be niche
specialists – and that you need only 1/3
of the people normally required to main-
tain a Microsoft environment, when you
have a free *NIX environment.

Employers tend to forget that finding
adequate personnel, not so much as
costs, is the real problem. Somebody
who knows how to do the job, somebody
who can start on the job right away, rath-
er than going through a learning period,
is to be preferred by far above someone
who has to learn on-the-job.

Without wanting to be an evil
gossip aunt, whom would you prefer:
the freshman (or worse, the would-
be graduate who quit college) who
installed Linux at home and who has
learned everything on his/her own, or
the veteran who has enough practical
experience to get a certificate?

The problem with certificates, of
course, is that there is no consensus.
Which certificate proves that a candidate
has a professional *NIX experience?

Remember not to always believe the
hype. For instance, bsdcertification.com
comes to mind. From their name, it is obvi-
ous enough that this is a commercial orga-
nization, and not a community-driven one.

Their last press release is from
2006, testing is for FreeBSD only, and
an old version for that. Certifications for
OpenBSD and NetBSD were promised,
but were never created. As far as we can
tell from the web site, this organization is
dead.

Even though we have to deal with the
little details, a BSD certification remains
a good investment if you do not know yet
what additional bonus you can offer your
employees.

All BSD systems are focused on
evolution, contrary to for instance
Microsoft, which is based on revolution.
BSD/UNIX competence hardly becomes
outdated: you can build on it and what
you learned in the past will still be
valuable in ten years time from now.

Knowledge acquired is not invalidated
because of new things that you have to
learn now in order to survive in today's
IT world. Exams become exponentially
more difficult and standards are raised,
guaranteeing that fiascoes like the one
with the MCSE certification can not
occur in our world.

Other reasons to prefer a BSD
certification over a traditional one:

• It is relatively cheap.
• It is rather difficult, a good test for

the candidate's experience: there are
not only multiple-choice questions,
but also multiple answer questions,
which make it nearly impossible to
pass without experience.

• BSDCG values community input
and candidates can provide new
questions or new objectives through
regular update requests. The next
update round is currently scheduled
for the last quarter of 2008.

• BSDCG is vendor-independent, so
there is a large item pool of exam
questions and a high variation in
questions. This has a positive effect
on the level of difficulty of the exams.

Some people say that it is a disadvantages
not to have a practical test. BUT:

• Time is limited.
• Practical tests require expensive

infrastructure and the extra costs
would be charged to candidates
taking the exam.

• Having a practical test would
almost certainly pinpoint the
certification to a specific BSD
distribution or version.

• We have to get rid of the idea of per-
formance based testing and move
towards performance based learning
instead: learn students how to use
their experience instead of learning
them how to use their memory.

Pros and cons for employees
The most important reason for certification
remains of course that you will acquire an
extra asset when compared to that other
applicant for your dream job. Especially
when you just finished school or univer-
sity, a certificate is a nice addition to your
education. But let's be honest, among the
working crowd in the BSd world, who re-
ally needs a certificate? BSD people know
what they know and they do not need to
prove anything to anybody, do they?

No serious BSD user or administrator
has ever needed to provide prove of what
he or she knows. Once you have a job
and experience, the rest follows.

Another reason to take the exam,
which is becoming more fashionable as
we speak, is that your employer asks you
to get the certificate. That is also one that
is easy to understand. But if we want to

find more reasons, things get harder.
Maybe you could say that you want to get
a certificate in order to prove your knowl-
edge, or maybe you want to know for
yourself where you stand, or you decide
with a couple of friends to do a contest
and see who gets the highest score.

You might also get a certificate
because you are confident as to what
the future will bring, or because you want
to protect your career. If we believe the
predictions of economic analysts, free
software is going to expand dramatically
during the decade to come. We are
already past the file and print server
phase, and well into the database or
Java development platform stage, as
more and more companies admit to.

You can probably name some
cases of adoption right off the top of
your head. Even the newspapers are
telling everybody who wants to hear
that free software is really making it in
the business world. It is obvious that we
have reached a tipping-point: there will
be more free software systems, more
*BSD professionals or people claiming
to be so, and more incentive to divide
them into the good and the bad.

If you are smart, you will make sure
that when that time comes, you fall into
the right category and make sure that
you can show some paper.

I would have to think really hard to
come up with more reasons to certify...
When it comes from your own pocket,
it is still an investment, however small it
may be. After the boom of the nineties,
wages in IT are back to normal or at least
seriously reduced.

You will probably want to study a bit,
too, and that takes time. Time off from
work, be it with the approval of your boss,
or you would have to sacrifice your own
free time. And all that to prove that you
can do something that you know for
yourself you are capable of doing...

And then there is the risk that you
don't pass, and maybe you will have to
explain that mishap to your boss, who
meant so well with you and sponsored
your exam.

28 BSD 2/2008

get started

29www.bsdmag.org

BSD certification

One of the less evident disadvantages
of certification is that you force an upper
limit onto your own competences.
Imagine: Another applicant has a master
level certificate, while you only have an
entry level certificate because you never
felt like going further. Who will be chosen
for the job? The candidate who is more
experienced, or the candidate who has
more certificates? So once you start on
a given certification path, you need to go
through to the highest level that you can
reach, or you run the risk to ruin your
chances on the job market.

Progress report
The BSDCG did not just come up with
a bunch of questions. In order to be
credible, first the needs were analyzed
with the help of a professional test
developer (a psychometrician). She
made us perform a Job Task Analysis
(JTA), were we assembled input from
many people.

That makes our certification a
good one: it does not only contain the
opinions of individual BSDCG Advisory
Group members, it also has the input of
thousands of others who expressed their
opinions about the subjects to test (the
exam objectives).

The initial exam, which got out of
beta-testing by the end of November
of 2007 and is now ready, is available

in English only. During the beta-testing
period, hundreds of testers with all
kinds of competences took the exam.
The results were then used to make a
statistically valuable analysis that can
be used to compare examinees.

The exam objectives are already
translated in Mexican Spanish and
Russian.

Currently, the BSDCG is focusing on
the BSD Associate (BSDA) exam, which
is oriented towards beginning users and
administrators. Later the BSDCG plans to
release a BSD Professional (BSDP) exam,
which will test advanced administration
skills. The details about this exam will be
available by the end of 2008.

In order to bring the exam to the
candidate, the BSDCG is developing a
test platform which consists of a Live
CD and a secured environment, lead
by one or more of the proctors of our
network. A proctor is somebody who
has signed a Non-Disclosure Agreement
and who leads the exam and makes
sure candidates respect our security
procedure.

We are currently looking for
sponsoring and translators to make this
platform available in different languages
and countries. We specifically choose
for this method of exam delivery, as we
are on a tight budget and do not want to
waste our money on commercial exam
centers like Vue or Prometric. Besides, we
do not want to run our test environment
on MS Windows.

Until the test platform is finished, we
work with paper-based exams forms.
Apart from anything else, this helps us to
reduce costs. We are very concerned that
the certification remains accessible for
everyone who wants to take the exam.

Hence the candidates' contribution
is really only a small part of the total
cost to publish an exam. The tests,
needed for NOCA certification and
thus for credibility, cost about 35.000
USD - NOCA being the quality control
organization for certifications bodies.
Vue and Prometric, the traditional
certification bodies, charge +/- 8.000
USD per exam per language (and
per version of the same exam!). We
calculated that the development of our
own test platform would cost about
15.000 USD. Copyrights and trademark
registration would be another 4.000
USD.

As for the BSD flavors that we check
for, the exam questions currently deal
with FreeBSD, NetBSD, OpenBSD and
DragonFlyBSD.

When tested, the candidates will
be asked questions about all types of
BSD systems, there is no possibility to
opt for a specific distribution or version.
As a consequence, we are probing for
understanding, not for knowledge of
details and memory capacity. Also, the
BSDA is not a requirement for the BSDP.

In cooperation with the communities,
we arrived at the conclusion that test
objectives can be divided into 7 categories
with the following weighting:

• Installation and upgrading the
operating system and software: 13%.

• Securing the operating system: 11%.
• Files, file systems and disks: 15%.
• User and group management: 12%.
• Basic system administration: 12%.
• Basic network administration: 15%.
• Basic UNIX knowledge: 17%.

The BSDA exam has 100 questions
covering these subjects. From the web site,
you can download a command reference
mapping each of the BSDA commands
to the four operating systems covered
by the BSDA. Furthermore, the BSDCG
conceived a document describing the
BSDA Certification Requirements, which
can also be downloaded from the web
site.

In order to gather funds, the BSDCG
created a courseware DVD that
gathers all the study materials from
the web site. The collection consists
of the exam objectives, the command
reference, an explanation on our quality
control mechanisms, and software and
documentation for FreeBSD, OpenBSD,
NetBSD and DragonFlyBSD.

Certification standards
We want our exam to be a quality test.
Therefore, we apply the rules as defined
by NOCA, the National Organization for
Competence Assurance, which defines
the standards for certification bodies.

Among other criteria, NOCA
certification requires that you use
psychometrics for the analysis and
quality control of your exams. According
to the dictionary, psychometrics is the
Mathematical analysis of psychological
processes. In other words, psychometrics Figure 1. bsds

28 BSD 2/2008

get started

29www.bsdmag.org

BSD certification

is the science that measures human
variables: not only knowledge, but also
practical experience. This science is also
devoted to the development of tests by
means of statistics.

A test is just a tool to measure
the amount of Knowledge, Skills and
Abilities (KSAs) that a person has
in some area. It is often difficult to
comprehend a quantity of knowledge,
since it seems to be so abstract. But in
actuality, any quantity of measurement
is just an abstraction.

For instance, the measurement of
height in inches, feet or meters appears
on the surface to be a real and concrete
measurement. But if you think about it,
the inch was simply created and defined
by people. There is no naturally occuring
inch and there are no natural units of
measurement at all. One cannot hold an
inch, and it really is just an abstraction
that is generally agreed upon. It is this
general agreement that makes the inch
a useful measurement tool. It is this
common frame of reference that makes
a unit of measurement functional and
useful. Psychometricians do the same
with exams: they create a common frame
of reference that enables us to measure
knowledge about a given subject.

A psychometrician has a university
degree in psychology and usually
additional degrees in the measurement
of the human mind, in industrial
psychology or in quantitative psychology.
He or she is trained in the development
of questions that test human features,
including those features that indicate
mastery of a given field of competence. A
trained psychometrician is the difference
between a bunch of questions and
a tool that accurately measures and

documents knowledge and experience.
For the development of their tests,
psychometricians use scientific methods
to assure that the exam complies with
the four rules of a good test:

• The questions are fair: no trick
questions, only objective answers are
possible, brain dumpers and others
who do not play the game in a fair
way stand no chance.

• The questions are accurate: they are
updated regularly, especially in the
volatile world of IT.

• The questions are clear and the
wording specific, they can not be
misinterpreted and all candidates can
understand them without difficulties.

• The questions allow the test body to
perform precise measurements of
the competence of the examinees.

The psychometrician also uses scientific
methods to determine the following:

• Scoring procedures: when do you get
points for a good answer, and how
many?

• Passing score levels: how much do
you have to score in order to pass the
test? Subject matter experts assist
the psychometrician to determine
this.

• Different versions of a test are
equal: by means of statistical
calculations the exam is compiled.
New questions are piloted first:
the answers to those questions
are not scored until the validity
of the question has been proved
statistically, during this test phase
the statistical information about the
quality of the item is gathered.

• Planning of the rotation scheme, which
is important for the security of an
exam (again a measure against brain
dumpers).

While other certifications (like
RedHat and Novell) might also use
psychometrics (they did not answer our
questions), given the lower numbers of
certified examinees, it is unsure whether

the use of psychometrics is useful for
them.

Recertification
Once you get your BSDA, it will not
expire. BSDP on the other hand is testing
somewhat more volatile subjects. The
BSDCG is as yet undecided what the
recertification scheme will be for this
certificate.

Summary
BSD Associate (BSDA) Certification
Language: English
Available: 2008
Re-certification: 5 years
Requirements: good knowledge of UNIX,
at least 1 year of
experience on BSD systems
Domains covered:

• Installing/Upgrading OS/Hardware
• Securing the OS
• Files, Filesystems and Disks
• User and Account Management
• Basic System Administration
• Network Administration
• Basic UNIX Skills

BSD Professional (BSDP) Certification
Language: English
Available: estimated Q4/2008
Re-certification: 5 years
It is not necessary to be BSDA certified
as a prerequisite.
The BSDP certification is for system
administrators with extensive knowledge
of UNIX and BSD Systems. Experienced
system administrators of BSD systems
can register for the exam directly.

Registration process:

• Get a BSDCG-ID at http://register.
bsdcertification.org/register/get-a-
bsdcg-id

• Choose an exam location
• Pay the fee by credit card or Paypal

(USD 75, Eur 50).

Figure 2. Metan

Machtelt Garels is in the Advisory Council of
the BSD Cert Group. He gives presentations
about the certification and helps promote
it, among other at conferences in Berlin,
Istanbul, Kopenhagen etc.

About the Author

• http://www.bsdcertification.org
• Mailinglist: bsdcert@lists.nycbug.org

More information

30 BSD 2/2008

how-to’s OpenBSD

31www.bsdmag.org

Building an OpenBSD
SAMP server with content
filtering proxy

In this article we will build an OpenBSD server from scratch with Squid, Apache,
MySQL, PHP and Webmin (for remote management) which will allow you to serve
web pages from your own network and cache the content reaching your browser.

Rob Somerville

OpenBSD is very secure, and while it does not use
bleeding edge applications, is very stable. As a de-
fault, OpenBSD has a specially hardened version of
Apache that runs in a chroot jail. This means if an

attacker were to compromise the site, they would be unable to
access anything outside the jail and cause considerable dam-
age. While this is very good practice, it is down to the systems
administrator to ensure that security is kept tight by not running
unwanted daemons, processes or software etc.

Prerequisites
OpenBSD runs on many platforms including Intel i386 based pro-
cessors and AMD 64. As the majority of people will have access
to the i386 platform, this will be the basis for the server. For the test
box I am using an AMD Athlon 64 bit PC with a single 15GB SCSI
hard drive with 256MB of RAM and a single 100MB Ethernet card.
Obviously the higher specification the better the performance and
the more flexibility (e.g. to use the server to store backups etc.),
so your mileage may vary depending on the hardware you have
available – certainly a larger hard disk and more RAM would not
be wasted. You will also need a working ADSL or cable connec-
tion to the internet via an Ethernet router, a blank CDR and a PC
or laptop with a CD writer and software that is capable of writing
ISO images to CDROM. Please note that a USB cable modem
or a wireless internet connection is not suitable for this install.
To perform the initial installation you will need a keyboard and
monitor connected to the host machine, but once the machine is
configured it is possible to run in in headless mode, that is without
a keyboard and monitor.

Preparation
Preparation is the key to any successful project and we will
need to perform the following actions to configure our server
box (Table 1). Table 2 shows the default settings I have used for

the configuration of the server. You will need to modify these to
reflect your own internal network and personal requirements.

Stage 1 – Get network settings
Before we proceed, you will need to find a free IP address on your
internal network and both the gateway and DNS settings. Use
ifconfig to discover your current IP address, route to discover your
default gateway, ping to discover if an IP address is in use and dig
to discover your DNS settings.

Once you have collected the required network settings, note
them down as you will need them later on in the install.

Stage 2 – Download
and burn OpenBSD 4.2 boot CDROM
OpenBSD 4.2 can be downloaded via HTTP or FTP from a mirror
site. To preserve bandwidth, download the ISO image from the mir-
ror closest to you. See http://www.openbsd.org/ftp.html for further
details. The image you will require is install42.iso and will be in the
i386/4.2 directory of most mirror servers. NOTE: If you are outside
the USA, do not use a USA mirror as this will contravene US law
due to export restrictions. Once you have downloaded the image,
you will need to burn this to CDROM using CD writer software that
supports the burning of a CD ISO image. It is important that the
image is written correctly, as copying the ISO image will result in
a CD that will not boot. Suitable software for this purpose includes
K3B on the BSD / Linux platform, and Nero Burning ROM on the
Microsoft platform.

Stage 3
– Install Operating system
Insert the newly created CDROM into the CDROM of the host
machine and reboot. After a short while you will be presented with
the following Figure 1. After a short while, OpenBSD will boot and
you will be prompted with (I)nstall, (U)pgrade or (S)hell?. At

30 BSD 2/2008

how-to’s OpenBSD

31www.bsdmag.org

this prompt press I [ENTER] then [ENTER]
again to accept the default terminal type.
For the keyboard mapping I will be using
uk as I am using a UK keyboard. To see the
available list of keyboard mappings, press
L [ENTER] and select what is appropriate
for your keyboard Figure 2.

You will be warned that OpenBSD
is about to modify the contents of your
hard disk. Type yes [ENTER] to proceed
and you will be prompted for the root
disk. While OpenBSD can run in dual boot

configurations, this is beyond the scope of
this article and we will be allocating all of
the hard drive to OpenBSD. Press [ENTER]
to accept the default configuration. You will
then be asked if you wish to use all of the
hard drive, answer yes [ENTER] to access
the label editor Figure 3.

Creating the partitions and mount points
Referring to table 2, we will configure
the partitions prior to formatting the
hard disk. First of all, if you have parti-

tions already installed on the disk these
will have to be removed. Type p [ENTER]
to view all partitions defined. If any parti-
tions other than c: are present, delete
them by pressing d [ENTER] followed by
the partition letter until only the c: parti-
tion remains Figure 4.

To add a partition type a [ENTER] at
the > prompt and accept the default free
partition by pressing [ENTER]. You will
be asked for the offset, press [ENTER]
again and you will be prompted for the
size. Type the partition size in Gigabytes
you require (e.g. 2.5G for the root parti-
tion) and press [ENTER]. You will be
prompted for the file system type, press
[ENTER] to accept the default. You will
then be prompted for the mount point,
enter this (e.g. / for root, /tmp for tmp
etc.) and press [ENTER] to finish the
partition entry. Repeat this process for
the swap, tmp, var and usr partitions
but do not specify a size for the final var
partition – OpenBSD will calculate the
remainder for you.

NOTE: You will not be prompted for a
mount point for the swap partition.

Finally type w [ENTER] then q [ENTER]
followed by done [ENTER] and yes [EN-
TER] to commit the changes to disk and
format the drive.

Configuring networking
You will then be asked for a short host-
name and if you want to configure the
network. Type your domain name and
press [ENTER] and continue to press [EN-
TER] until you are prompted for the IPv4
address. In our test rig, this is 192.168.0.1,
but your network will probably be differ-
ent from this. Type the desired IP address
and type [ENTER] and press [ENTER]
again to accept the default netmask if
this is appropriate. When prompted for
an IPv6 address press [ENTER] and for

Table 1. Installation steps

Description
1 Get network settings

2 Download and burn OpenBSD 4.2 boot CDROM

3 Install operating system

4 Check networking

5 Download and install packages

6 Configure Apache, PHP, MySQL Squid and Webmin

7 Test

Listing 1. Output of ifconfig showing current IP address

eth0 Link encap:Ethernet HWaddr 00:0D:61:49:7D:E1

 inet addr:192.168.0.147 Bcast:192.168.0.255 Mask:255.255.255.0

 inet6 addr: fe80::20d:61ff:fe49:7de1/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:29460 errors:0 dropped:0 overruns:0 frame:0

 TX packets:14026 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:37093437 (35.3 MB) TX bytes:1104087 (1.0 MB)

 Interrupt:19 Base address:0xa000

Listing 2. Output of route -v showing default gateway

Kernel IP routeing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.0.0 * 255.255.255.0 U 0 0 0 eth0

link-local * 255.255.0.0 U 1000 0 0 eth0

default border 0.0.0.0 UG 0 0 0 eth0

Listing 3. Output of the ping command showing an allocated IP address and a free IP address

PING border (192.168.0.254) 56(84) bytes of data.

64 bytes from border.merville.intranet (192.168.0.254): icmp_seq=1 ttl=64

time=0.115 ms

....

PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.

From 192.168.0.147 icmp_seq=2 Destination Host Unreachable

FOLLOWING THE INSTRUCTIONS
BELOW WILL RESULT IN THE TOTAL
DESTRUCTION OF ALL DATA ON THE
HARD DRIVE INSTALLED ON THE
HOST MACHINE. ENSURE YOU HAVE
AN ADEQUATE TESTED BACKUP IF
YOU WANT TO RETAIN ANY DATA ON
THE TARGET DRIVE OF THE HOST
MACHINE.

WARNING

32 BSD 2/2008

how-to’s

33www.bsdmag.org

OpenBSD

the domain name type your domain
name (in our example merville.intranet)
and press [ENTER] to accept. Enter
the IP address of your nameserver
(192.168.0.254 in our example) and
press [ENTER]. When prompted to use
the nameserver, press [ENTER] and you
will be asked for the default gateway. En-
ter this IP address here (in our example
192.168.0.254) and press [ENTER]. Press
[ENTER] twice to accept the defaults and
you will be asked for the root password.
Type in test [ENTER] and test [ENTER]
when prompted again Figure 5.

Installing software sets
When asked for the location of the
sets, accept the default location of
the CD by pressing [ENTER] 3 times.
You will be prompted for a set name,
type xbase42.tgz [ENTER]. The xbase42
software set should now have a [X]
next to it Figure 6. Type done [ENTER]
[ENTER] to install the software from
cdrom. Once the sets are installed,
press [ENTER] to perform the final con-
figuration. When prompted to use sshd
press [ENTER], press [ENTER] to ac-
cept no ntp server and [ENTER] as you

are not using X. Respond by pressing
[ENTER] when prompted for the default
console, and enter your timezone and
press [ENTER] to accept this option. If
you are unclear as to what timezone
to use, type ? [ENTER] to view a list of
timezones.

At this point we are ready to reboot,
type halt [ENTER] at the prompt, and
when the blue text with please press
any key appears, eject the CDROM and
press [ENTER]. The machine should
now boot into a clean OpenBSD in-
stall.

Table 2. Default settings for the installation

Setting TEST.MERVILLE.INTRANET Value Recommended value
Hostname test Whatever you choose provided this name is not used by another server or

client on your network.

Domain name merville.intranet The domain name of your internal network.

Network 192.168.0.0 Your network address

IP address 192.168.0.1 Any free IP address on your internal network. NOTE: Using an IP address
which is is use will break your network!

Netmask 255.255.255.0 The Netmask used on your internal network

Gateway 192.168.0.254 The internal address of the router or ADSL modem on your network.

DNS 192.168.0.254 Either the internal address of your router or ADSL modem if it supports
DNS lookups or your ISP's DNS server settings

Root password test An 8-12 character Alphanumeric password. We use test in the initial con-
figuration and change it once we know the system is up and running.

MySQL root password password123 An 8-12 character Alphanumeric password.

User Account merville A user name of your choice

User Password testing An 8 character Alphanumeric password.

Partition sizes
Root (/) 2.5G Small root partition as we will not have any user data in /home. Use a

larger drive if you intend to use the server for storage and create a sepa-
rate /home partition

Swap (swap) 0.5G 2 times installed memory

Tmp (/tmp) 1G Temporary storage area cleaned at each reboot

Var (/var) 9G Largest partition used for web server and proxy cache. the bigger the
better

User (/usr) ~ 2G Binary system files are stored here. Shouldn't need more than this unless
you are install other software

Other

Keyboard uk Use you country code

Timezone GB Use your timezone setting

OpenBSD download location http://www.mirrorservice.org/sites/
ftp.openbsd.org/pub/OpenBSD/4.2/i386/

Use your fastest local mirror

PKG location ftp://ftp.mirrorservice.org/pub/OpenBSD/
4.2/packages/i386/

Use your fastest local mirror

32 BSD 2/2008

how-to’s

33www.bsdmag.org

OpenBSD

Stage 4 – Check Networking
Once we have configured networking
and rebooted, we need to check that
we have access to the internet to
download the package files. Login
as root with the temporary password
(test), and at the shell prompt, type ping
-c3 www.google.com [ENTER] and you
should get a packet back from google
Figure 7. Some notes on the default
shell. If you type part of a command,
pressing [TAB] will attempt to complete
the command for you. For example, to
change to /etc, type cd /et [TAB] will
change the line to cd /etc.

If all is well, we can proceed to install
the packages. If at this stage you cannot
ping google, you will not be able install
packages from the mirror site so further
investigation will be required. Check
your network settings are correct by
typing cd /etc [ENTER] and typing the
commands at the # prompt Figure 8.
NOTE: Your network card may not be
called pcn0 – look for a file in the /etc
directory called hostname.xxx where xxx
is your network card name. If the set-
tings in resolv.conf or hostname.xxx are
incorrect, change them by using the vi
editor (vi filename). Using vi is beyond
the scope of this article, but there are
plenty of resources on the web to help.

Stage 5
– Download and install packages
If networking is OK, we need to set up the
package source. At the prompt type:

export PKG_PATH=ftp://

ftp.mirrorservice.org/pub/OpenBSD/

4.2/packages/i386/ [ENTER]

pkg_add -r nano-2.0.6 [ENTER]

Replace the mirror site I am using with one
that is closer to you to improve download
speeds. If all goes well, edit the .profile file
in the /root directory with the following
command:

nano /root/.profile [ENTER]

Then add export PKG_PATH=ftp:/xxx/
as used above at the end of the .profile
file. This will save you having to type the
export command every time you want to
install software. To check this works, type
exit [ENTER] and then login again. We will
now test package downloading for the
webserver etc:

Table 3. Generic commands for discovering network settings

Operating system Commands

Linux ifconfig, route -v, ping, dig www.google.com

FreeBSD ifconfig, route get www.google.com, ping

Microsoft XP ipconfig /all, ping

Listing 4. Output of dig command showing DNS server in use

; <<>> DiG 9.4.1-P1 <<>> www.google.com

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29756

;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 13, ADDITIONAL: 10

;; QUESTION SECTION:

;www.google.com. IN A

;; ANSWER SECTION:

www.google.com. 539223 IN CNAME www.l.google.com.

www.l.google.com. 281 IN A 64.233.183.99

...

;; AUTHORITY SECTION:

com. 34990 IN NS A.GTLD-SERVERS.NET.

...

;; ADDITIONAL SECTION:

A.GTLD-SERVERS.NET. 28376 IN A 192.5.6.30

...

;; Query time: 51 msec

;; SERVER: 192.168.0.254#53(192.168.0.254)

;; WHEN: Sun Jan 20 13:46:14 2008

;; MSG SIZE rcvd: 508

Figure 2. Keyboard mappings

Figure 1. Instal Operating System

34 BSD 2/2008

how-to’s

www.bsdmag.org

Download packages

pkg_add -r wget-1.10.2p0 [ENTER]

pkg_add -r squid-2.6.STABLE13

[ENTER]

pkg_add -r mysql-server-5.0.45

[ENTER]

pkg_add – php5-core-5.2.3 [ENTER]

MySQL configuration

/usr/local/bin/mysql_install_db

[ENTER]

/usr/local/bin/mysqld_safe & [ENTER]

and after a few seconds [ENTER] again

/usr/local/bin/mysqladmin -u root

password 'password123' [ENTER]

mysql -uroot -ppassword123 [ENTER]

This should display the MySQL prompt.
Type exit [ENTER] to return Using nano
or an editor of your choice, create a file
/etc/rc.conf.local and add the following
line:

MYSQL=YES

Stage 6 – Configure Apache,
PHP, MySQL Squid and Webmin

Install Webmin

cd /usr/local/share [ENTER]

wget http://prdownloads.sourceforge.n

et/webadmin/webmin-1.390.tar.gz

tar -xvzf webadmin/webmin-1.390

.tar.gz [ENTER]

cd webmin-1.390

./setup.pl [ENTER]

Then follow the prompts.

Configure Apache to start on boot

nano /etc/rc.conf [ENTER]

Change httpd_flags=NO to httpd_

flags=””

Save and quit

Configure PHP and Apache

/usr/local/sbin/phpxs -s [ENTER]

cp /usr/local/share/examples/php5/

php.ini-recommended /var/www/conf/

php.ini [ENTER]

pkg_add -r php-mysql-5.2.3 [ENTER]

/usr/local/sbin/phpxs -a mysql [ENTER]

Edit /var/www/conf/httpd.conf and
uncomment (remove the # from) the
following:

#AddType application/x-httpd-php .php

On the line that says DirectoryIndex
index.html change this to read:

 DirectoryIndex index.html index.php

Configure a PHP script
Create a test script phpinfo.php in
/var/www/htdocs with the following
content:
<?php phpinfo(); ?>

Save and quit

Figure 3. Label edition

Figure 4. Configoring networking

Figure 5. Rout Password

34 BSD 2/2008

how-to’s

www.bsdmag.org

Configure Squid
Create the cache:

squid -z [ENTER]

Add the below at the end of /etc/rc.c/local:

/usr/local/sbin/squid

Edit the /etc/squid.conf file:

Add this below the http_access allow
manager localhost:

http_access allow local_network

Add this line below acl CONNECT method CON-
NECT (replace network range as required):

acl local_network src 192.168.0.1-

192.168.0.254

Figure 6. xbase42 software set

Figure 7. Checking Networking

Figure 8. The defoult shell

36 BSD 2/2008

how-to’s
Please remember to save before you
quit.

Add default user
and change root password
At the shell prompt execute the following:
adduser merville [ENTER] and follow the

prompts. When prompted to add user to
other groups, add the wheel group. Change
the root password to something secure:

passwd [ENTER]

And follow the prompts.

Testing
Now reboot the machine with a HALT
then press [ENTER].when prompted.
First, point your browser to http://
192.168.0.1 you should see a web page
similar to Figure 9.

Point your browser at http:
//192.168.0.1/phpinfo.php. You should
see a web page similar to Figure 10.
Point your browser at http://192.168.0.1:
10000 You should see a web page
similar to Figure 11. Finally, change your
proxy server settings on your browser to
192.168.0.1 using port 3128. You should
be able to browse the net. Point your
browser at http://z and you should see a
screen similar to Figure 12.

Cleaning up and further improvements
This configuration, while reasonably
robust requires a lot more work to
be highly secure in today's internet
environment. For instance, if the rig is
install behind a firewall SSH, Webmin
and Sendmail will not be visible to the
outside world.

However, if these programs are
exposed there is the possibility of an
attack. Read up on security and only run
processes that are absolutely vital. SSH
is used for remote management and
Sendmail is the default SMTP mail server.
For normal day to day operations it best
practice to login as a normal user then
su to root.

Figure 9. Apache

Figure 10. Apache Web Server

FIGURE 11. Login to Webmaster

Figure 12. Webmaster

● http://www.openbsd.org
● http://www.apache.org
● http://www.squid-cache.org
● http://www.mysql.com
● http://www.php.net

Further reading

Rob Somerville has a keen passion for
all things Open Source and has been
working with software and hardware since
the early Eighties. His biggest claim to
fame was designing an on-line search
engine for a database company long
before Google or Yahoo caught the public
eye. Married with 1 daughter, he shares
the house with 12 computers, a cat and an
extensive collection of O’Reilly books.

About the Author

38 BSD 2/2008

how – to’s OpenBSD as Desktop

39www.bsdmag.org

OpenBSD
as Desktop

This guide is intended for people who use Linux or FreeBSD and would like to give
OpenBSD a try on the desktop. The guide does not claim to be en expert's advisor, so
intentionally some general unix routines are also explained, while others simplified.

Petr Topiarz

Many tutorials have been written on using OpenBSD
as a server, however, few deal with OpenBSD as the
main desktop and everyday office work and internet
box. Surprisingly, that is what OpenBSD can do very

well too. The jump from 4.1 release to 4.2 was great for Gnome
users, as Gnome has been updated from 2.10 to 2.18. The new 4.3
release has besides the update of Gnome 2.18 to 2.20 brought a
lot of useful packages especially in printing area, e.g. Gutenprint or
HPLIP has been introduced and Firefox and Thunderbird updated
too. For the coming release, Ekiga is in the ports for telephony and
the KDE users can finally enjoy the advantage of K3B for burning
CDs. So overall the improvements are huge.

However in this article we are going to see more practical
information on how to make life with an OpenBSD desktop really
easy. Let's start with the basics. We will add a group, user, mount
devices, deal with the network and set up a printer.

Adding a group is basic if more people login to the PC, so
that they can share documents:

$ groupadd -g 1200 friends

creates a group with id number 1200 and name friends and the
following:

$ useradd -u 500 -g friends -G wheel,operator -k /etc/

skel -s /bin/sh -d /home/caroline -m caroline

creates a user caroline as a member of friends and with ad-
ministrative power (wheel,operator). Interesting is that with a
-d switch you can identify a different home directory than the
default. Another practical stuff is to omit -m if your home directory
already exists.

Similarly, you can add other users. Of course, change the -u
number and -d directory. e.g.:

$ useradd -u 501 -g friends -G wheel,operator -s /bin/sh

-d /mnt/usb/my_data peter

Now to set a password and allow people to login you need to:

$ passwd caroline

which will ask you for the password and then for repeating it.
Noticeable thing is that the system, for security reasons, does not
show anything while you write the password, it does not even print
stars or other cryptic symbols, however it accepts your typing.

Now we will allow Caroline to access usb and cdrom de-
vices. First we need to create mounting points

$ mkdir /mnt/usb /mnt/cdrom

then we have to dedicate these to caroline

$ chown caroline /mnt/usb /mnt/cdrom

similarly we have to adjust the permitions in /dev

$ chmod 660 /dev/sd0i /dev/cd0a

and now we are going to send the information about mounting
points to /etc/fstab

$ echo "/dev/sd0i /mnt/usb msdos rw,nodev,noexec,nosuid,n

oauto 0 0 " >> /etc/fstab

and

$ echo "/dev/cd0a /mnt/cdrom cd9660 ro,nodev,noexec,nosui

d,noauto 0 0" >> /etc/fstab

38 BSD 2/2008

how – to’s OpenBSD as Desktop

39www.bsdmag.org

and finally there is one and last change,
we need to inform the kernel about our
idea to let users mount devices. So we
write to the configuration:

$ echo "kern.usermount=1

 # enable user mounting devices" >>

/etc/sysctl

and if you want to try that immediatelly:

$ sysctl -w kern.usermount=1

now feel free to plug in a usb stick and
you do not have to be a root to type:

$ mount /mnt/usb

and you are there!
To make the nice feeling more com-

plete, KDE, Gnome, and Rox environments
will allow you to mount these devices just
by clicking at the mounting points, which
makes it even more fun. Now our Caroline
can login, mount CD, or USB. So, how do
we start the graphics? We need to make a
configuration file where we tell the system
which graphical environment we would
like to use. Let's be very spoiled:

Make sure you are in your home
directory:

$ cd /home/caroline

create the config file

$ touch .xinitrc

This will ensure, that our settings is valid
both for graphical login and the black ugly
command line:

$ ln -s .xinitrc .xsession

Now the command to start kde session:

$ echo " exec startkde " >> .xinitrc

And finally we can happily type:

$ startx

and if things go well we will enjoy a nice
environment, almost like in the spoiled
Linux distros of today.

If you want to enable graphical login
by default, go to /etc/rc.conf and change
xdm_flags=NO to xdm_flags=''. For a really
nice look this would need a little tuning,

but basically it will work. Maybe you will
argue, that KDE environment is not part
of the OpenBSD release, of course not, so
lets add it:

$ export PKG_PATH=ftp://

ftp.openbsd.org/pub/OpenBSD/4.3/

packages/i386

as you see I am expecting you to run a
regular simple PC, so change the archi-
tecture at the end of the line if you have
PPC or AMD64

$ pkg_add -v kdebase kdemultimedia
mozilla-firefox mozilla-thunderbird amarok
gwenview

Ok, I have made a random choice, but
you can similarly add many more, you will
find them at http://openports.se/ which is a
very clever web interface providing detailed
info about packages and their sources
called ports. A very important point here is
to read the post install messages and do
what they instruct you to do. Advices are
simple and exact.

Now having such a nice graphical
environment it would be a shame to be
without a network.

$ ifconfig -a

will show you the interfaces, among them,
for example the ethernet fxp0 or wireless
wi0 will appear. $ dhclient fxp0 will con-
nect you to the net if you have the line
plugged in and the net is not blocked.

If you want it after every start of the
system, we need to write a configuration:

$ touch /etc/hostname.fxp0

$ echo " dhcp NONE NONE NONE " >>

/etc/hostname.fxp0

If you come to a place with wireless net-
work you can enjoy the advantage of the
genius simplicity of OpenBSD.

$ ifconfig wi0 up

$ ifconfig -M wi0

will provide you with a list of networks
around, you can pick one

$ ifconfig wi0 nwid CoffeShopNetwork

$ dhclient wi0

and there you go... Well unless the network
is marked private, then you need the
password, in our case Jimmy, and then:

$ ifconfig wi0 nwid CoffeShopNetwork

nwkey Jimmy

$ dhclient wi0

and there you go really straight to the
internet! In case you want your PC to
remember this setting, then

$ touch /etc/hostname.wi0

$ echo " dhcp nwid CoffeShopNetwork

nwkey Jimmy " >> /etc/hostname.wi0

and after the restart, if the network is run-
ning, you will automagically connect to it.

OpenBSD is definitely a leader in us-
ing wireless technologies and allows you
to use cards such as those with Prism
Intersil, Asus or TNETW chipsets with their
native drivers. They have been reversely en-
gineered by geeks and experts to avoid us-
ing the Windows' driver with ndiswrapper,
as Linux and Freebsd or Netbsd tend to do.
Now the last thing that you need to have
running on a laptop or a desktop is printing.
That used to be a real issue earlier, how-
ever with the latest releases of OpenBSD it
is merely fun. Just add few packages and
configure it with a web interface:

$ pkg_add -v cups foomatic-db

foomatic-filters ghostscript hplip

that should be enough for most usual print-
ers, then you enable and start the cups
print-server:

$ /usr/local/sbin/cups-enable

$ /usr/local/sbin/cupsd

fire up your web browser and type:

http://127.0.0.1:631/

which will bring you to a very friendly web
interface, that allows you to add a printer
or configure the print-server to share print-
ers.

An OpenBSD machine can also
run JAVA, FLASH plugin, play realplayer
streaming, and emulate Linux environ-
ment, but that would need a little more
time to describe. If you are interested and
cannot wait, then I strongly recommend
http://www.openbsd101.com/ and http://
www.softwareinreview.com/bsd_tutorials/
using_openbsd_4.2.html as well as the
famous http://www.onlamp.com/ server,
where you can learn a lot of wisdom from
the real BSD gurus.

40 BSD 2/2008

how – to’s Inside the PBI system...

41www.bsdmag.org

Inside the
PBI system...

PBI stands for PC-BSD Installer. It is a unique and very useful package management
system. If you are familiar with other systems, you will notice some similarities and
also some differences that make it unique.

Svetoslav P. Chukov

I f one just clicks on the .pbi file, an automated installer
appears and offers to guide the user through the
installation process. On the whole this is probably like a
wizard that helps people install the program, and I would

say it is very successful in that task.

Features
Every operating system is based on some small parts of
software that create the whole solid foundation of the OS. So,
I would say that these small pieces in the GNU/Linux world
are the packages, but it is interesting how this question is
answered in the PC-BSD world. What are these parts that
PC-BSD is built on? The packages of FreeBSD and of the
PBI. They create the system and everything that lies on it;
libraries, applications and all other data need to be used.
For successful integration of an operating system into the
market, the OS needs to be designed for that market. So, a
server OS is designed with the main goals of being secure
and stable, a desktop OS is designed to be user-friendly and
easy to use. Everything is built for and aims to be used in a
particular target market. PC-BSD itself is a desktop-oriented
OS. Yes, and I would say that it really achieves that goal
pretty well. But this is not all. The basics of its success are
mostly because of the great system called the PC-BSD
installer. What exactly is so great in PBI? What makes it
special for installing software? The answer: its ease of use
and its simplicity. The basic reason why I think PBI is so
successful is that it contains all the data it needs to install
the application. So, if the application needs library X, then the
installer should contain that library.In the installation process
it should extract and prepare that library to work, and that
makes the application work properly.

This design concept solves an entire pool of problems and
troubles with package dependencies and inconsistencies. One

other big plus for PBI is the support for advanced scripting. That
is a very huge plus for it.

PBI offers:

• A completely graphical installation in step-by-step style.
• Scripting support - a really powerful feature that makes PBI

not only an executable installer, but an installer that can
think.

• A check for package integrity.
• Icon Management - this allows developers to set icons for

both the desktop and the K-Menu.
• Error Detection, if something goes wrong with the

installation
• Easy installation and un-installation. There is a utility to do

this in the graphical environment, but a command line tool
is also available.

Understand what is inside
Basically, the front side of PBI is a visible-to-the-user, nice,
user-friendly graphical interface, but the engine under the
hood is nothing more than FreeBSD packages. Yes, PBI is
something like an upgrade of FreeBSD packages, and it
adds additional functionality. So, instead of being just a binary
package that should be extracted to result in useful files, PBI
consists of several parts that empower the plain packages
with extra features. And these extra features make the PCBSD
installer flexible and scalable. What I want to do is to show
you what exactly is inside a PBI package, how it works, how it
processes data, and how it decides to do this instead of that.
After this article you will be able to understand what actually
is a PBI package and the magic inside it.We will start with the
setup script. The purpose of the setup script is to setup the
first actions and configurations of the subsequent operations.
And, the next-executed script sets up the environment and

40 BSD 2/2008

how – to’s Inside the PBI system...

41www.bsdmag.org

options for work. All the pre-tasks need
to be done, and the control of the
installation is taken up by the next script.
Basically this is a very comfortable
model, because of the modularity of
the scripts and processes. One could
separate some tasks to different scripts
easily, without any of them interfering
with each other.

Probably at this point you have some
questions, like, scripts? In PBI? What
scripts?. Yes, exactly, what scripts? The
scripts that manage the installation and
the un-installation processes, and the
scripts that prepare the processes and
make it possible for a simple package
installer to interact with the user.

OK. PBI is not just a plain archive,
but it is much more than that. It is a
package with binary data and executable
scripts that do some work. Basically the
structure is very simple: the scripts are
executed in the installation and the un-
installation processes, and they handle
all the necessary tasks. So, let's take
a closer look at this. I assume for our
example that work is to be done on the
gFTP. This isacomfortable GTK+ ftp client
without many requirements for libraries
and resources. So, it is suitable for our
use.

When one starts installing a
particular .pbi file, a nice, user-friendly,
wizard-like installer appears. So, the
next step is to specify the folder where
the program files are to be put, and then
the actual work of installation begins.
As you may notice, it is clearly a simple
procedure with two or three clicks on
the Next button. But behind these three
clicks a huge amount of work is done.
There are pre- and post-installation
scripts that need to be explained at this
point.

These are the PBI.SetupScript.sh
and PBI.FirstRun.sh.

The PBI.FirstRun.sh script will run
before the program is extracted into the
target directory. I understand that you
can not wait to see what is behind this
script, and how it works to benefit the
whole PCBSD installer. Let's proceed
deeper...;See Listing 1, which is the code
fragment of the PBI.FirstRun.sh

As you may see, this script contains
logic that makes the decision whether
to be installed or not to be installed.
This example is pretty simple and
understandable. Now I would say

Listing 1. Code fragment of the PBI.FirstRun.sh

#!/bin/sh

if [-e "/usr/local/bin/gftp"]

then

 # Looks like FF is installed, ask if they want to remove the old one

 ls -al /usr/local/bin/gftp | grep Programs 2>/dev/null

 if ["$?" = "0"]

 then

 kdialog --yesno "gFTP is already installed, do you wish to uninstall

it?"

 if ["$?" = "0"]

 then

 FF="`ls -al /usr/local/bin/gftp | cut -d '>' -f 2 | cut -d "/" -f 3`"

 echo $FF | grep gFTP 2>/dev/null

 if ["$?" = "0"]

 then

 PBIdelete -remove ${FF}

 else

 kdialog --sorry "gFTP could not be automatically removed... Please

remove it in Add / Remove Programs and try again."

 return 2

 fi

 else

 kdialog --sorry "gFTP is already installed, it must be uninstalled

before loading this PBI"

 return 2

 fi

 else

 # Could not find a link to PBI folder

 kdialog --sorry "gFTP is already installed, it must be uninstalled

before loading this PBI"

 return 2

 fi

fi

Figure 1. Start the PC-BSD installer

42 BSD 2/2008

how – to’s

43www.bsdmag.org

Inside the PBI system...

Listing 2. Code fragment of PBI.SetupScript.sh

ln -s /Programs/${PROGDIR}/.sbin/gftp /usr/local/bin/gftp

ln -s /Programs/${PROGDIR}/.sbin/gftp-gtk /usr/local/bin/gftp-gtk

ln -s /Programs/${PROGDIR}/.sbin/gftp-text /usr/local/bin/gftp-text

ln -s /Programs/${PROGDIR}/man/man1/gftp.1.gz /usr/local/man/man1/gftp.1.gz

ln -s /Programs/${PROGDIR}/share/gftp /usr/local/share/gftp

sed 's:prefix=/usr/local:prefix=/Programs/gFTP2.0.18:g' /Programs/${PROGDIR}/bin/gftp > tempfile && mv -- tempfile

/Programs/${PROGDIR}/bin/gftp

Copy over all the LANG files

LANGFILE="gftp.mo"

cd /Programs/${PROGDIR}/locale

for i in `ls`

do

 mkdir -p /usr/local/share/locale/${i}/LC_MESSAGES >/dev/null 2>/dev/null

 cp /Programs/${PROGDIR}/locale/${i}/${LANGFILE} /usr/local/share/locale/${i}/LC_MESSAGES/${LANGFILE}

done

chmod +x /Programs/${PROGDIR}/bin/gftp

echo "LAUNCHCLOSE: /usr/local/bin/gftp"

Listing 3. Uninstall with PBI.RemoveScript.sh and PBI.RemoveScript2.sh

#!/bin/sh

if [-e '/Programs/gFTP2.0.18/PBI.RemoveScript2.sh']

then

 sh /Programs/gFTP2.0.18/PBI.RemoveScript2.sh "${@}"

fi

rm -rf '/Programs/gFTP2.0.18'

#!/bin/sh

rm -fR /usr/local/bin/gftp-gtk

rm -fR /usr/local/bin/gftp-text

rm -fR /usr/local/bin/gftp

rm -fR /usr/local/man/man1/gftp.1.gz

rm -fR /usr/local/share/gftp

Remove the old locale files since we are uninstalling

LANGFILE="gftp.mo"

cd /Programs/${PROGDIR}/locale

for i in `ls`

do

 rm /usr/local/share/locale/${i}/LC_MESSAGES/${LANGFILE}

done

if [! -z "$DISPLAY"]

then

 # Ask if we want to remove the user profiles

 kdialog --yesno "Do you want to remove gFTP user settings?" --title "Remove user settings"

 if ["$?" = "0"]

 then

 cd /home

 for i in `ls`

 do

 if [-e "/home/${i}/.gftp"]

 then

 rm -rf /home/${i}/.gftp

 fi

 done

 fi

fi

42 BSD 2/2008

how – to’s

43www.bsdmag.org

Inside the PBI system...

how surprised I was when I saw for
the first time these lines of code. I
expected to see more universal code
with limited opportunities for user
interaction. Instead, I saw code that is
highly manual and modular. In fact, this
is a SHELL script, and it is based on
command-line tools and applications,
but it also uses a GUI application to
interact with the user. And of course the
script could be altered to any new form
you want. Since it is a SHELL script,
you could execute another tool, an
application, an interactive shell, or even
another script, if you wish. That gives the
feature of being easily extensible. So,
basically this script aims to do all the
steps needed. Is PBI already installed or
not? Is there an older or newer version?
Are there perhaps corrupted files in the
target directory? These are some of the
questions this script should answer.

OK. We have the FirstRun script, but
what about the second run? What about
the script that does the work after the
package has been extracted? That is the
place for the PBI.SetupScript.sh.

It handles additional questions like:
How to set up the application and its
libraries? How to put the data files so they
are visible to the application? What about
local files? Or new language support? So,
after the package has been extracted into
the target directory, this script takes on
the job of setting up and solving all these
questions. Of course this executable file
is a SHELL script and that gives us more
oppor-tunities for work. I like the SHELL, it
is well known to the users of all the UNIX-
like systems, and such a script could be
easily changed to match new criteria or
goals.

Let's see now how actually this
executable works. For that reason take a
closer look at the code itself. (See Listing
2.)

This code just creates symbolic links
between the real files at the /Programs
folder and the folders in the $PATH at
/usr/local. After that, other additional
data files needed for the application’s
work are prepared. So, basically the
target directory is the directory that
contains the files visible in the $PATH

variable, and thatmakes them visible
to the system. Every file needed by the
application should be visible to the
system and copied or linked to the
folders in the $PATH.

That was for the installation tasks; let’s
see how the un-installation works.

The remove actions are taken
at un-install time by the script
PBI.RemoveScript.sh. Basically, it
runs the next following script, called
PBI.RemoveScript2.sh. (See Listing 3.)

The result
You have now seen an example of the
PC-BSD installer from the inside, and you
could imagine how all the parts of the
installer work together. Now I will show
you what is the result of this. It is really
pleasant. The first time I saw PBI, I did
not understand how it works, but after
a few hours of in-depth experience with
PC-BSD, I got it. So, here are the actions
of PBI shown on screenshots: see Figures
1-5.

Summary
I would say PBI is a wonderful way to
manage an application, and I really
liked it because of the way it works. In
the world of Unix the ordinary method of
installingan application or data on your
computer is via packages. Many systems
use many different package managers,
but I was so impressed by PBI because
of the step-by-step-and-you-are-done
style in which it works. I am a technically
oriented person, but I always appreciate
good and valuable solutions that make
my work easier. And PBI is one of them.
It makes software management tasks
moreunderstandable to the user.

Figure 2. Agree to the terms of the license

Figure 3. Choose installation directory Figure 4. Installation

Figure 5. Sit back and relax while the extracting of
the files is done

44 BSD 2/2008

admin IM networks

45www.bsdmag.org

Connecting
to Other IM networks

You have taken the plunge, you have adopted Jabber as your instant messaging
system of choice. How do you keep in contact with all your poor, un-enlightened
friends who are still using the proprietary walled garden networks?

Eric Schnoebelen,
Michele Cranmer

The solution is designed into Jabber/XMPP. The
solution is transports, a mechanism to allow the
creation of a gateway between the jabber network
and closed/proprietary networks, such as Yahoo!

Instant Messenger, Microsoft Live Messenger, AOL Instant
Messenger, ICQ, China's QQ, FaceBook, Poland's GaduGadu
and other networks. GTalk is not listed as GTalk is XMPP-
based and already federating, all it takes to converse with
friends on GTalk is to add them to your roster.

Unfortunately, you can't connect to the Walled Garden
networks without having an identity on those networks.
However, using the transports, you can use your favorite Jabber
client, and connect to all the networks you have identities on.
All the roster information is contained in one location, on your
jabber server.

Why not use a multi-protocol client?
Multi-protocol clients have to focus on supporting lots of
protocols, and probably don't support them all as well they
might. Jabber-only clients support Jabber extremely well, and
leave the supporting of the other protocols to the transport,
installed on the jabber server. Granted, the Jabber transports
probably wouldn't be nearly as good as they are, if it weren't
for the people working on reverse engineering the proprietary
protocols for the multi-protocol clients.

Lets build some transports
We are going to look at building the following transports and
configuring them to work with the jabberd2 server we have been
configuring. The transports are for AOL, MSN and Yahoo!.

The transports we're building are all written in Python. The
AOL and MSN transports use the Twisted framework while the
Yahoo! transport uses the xmpp.py framework. Obligatory pkgsrc
recommendation: I have packaged all of pyAIMt, PyMSNt and

YIMt in pkgsrc-wip on Source Forge. The packages are py-
jabber-aim-t, py-jabber-msnt, and py-jabber-yahoo-transport.

Changing into the appropriate directory, and typing [b]make
install will download, will build and install the packages and
all their dependencies. FreeBSD has pyAIMt and pyMSNt in the
ports collection as net-im/jabber-pyaim and net-im/jabber-
pymsn. Ok, now for building things the hard way.

Listing 1. Needed Packages and where to find them

Twisted-2.5.0

 http://tmrc.mit.edu/mirror/twisted/Twisted/2.5/

pyOpenSSL-0.6

 http://dl.sourceforge.net/sourceforge/pyopenssl/

Imaging-1.1.6

 http://effbot.org/downloads/

dnspython-1.6.0

 http://www.dnspython.org/kits/1.6.0/

xmpppy-0.4.1

yahoo-transport-0.4

 http://dl.sourceforge.net/sourceforge/xmpppy/

pyaim-t-0.8a

 http://pyaimt.googlecode.com/files/

pymsnt-0.11.3

 http://delx.net.au/projects/pymsnt/tarballs/

44 BSD 2/2008

admin IM networks

45www.bsdmag.org

Listing 2. Packages and their dependencies

pyaim-t-0.8a

 Twisted-2.5.0

 Imagine-1-1.6

 pyOpenSSL-0.6

pymsnt-0.11.3

 Twisted-2.5.0

 Imagine-1-1.6

 pyOpenSSL-0.6

yahoo-transport-0.4

 xmppy-0.4.1

 dnspython-1.6.0

Listing 3. Working pyaim-t configuration from jabber.cirr.com

<pyaimt>

 <!-- The JabberID of the transport. -->

 <jid>aim.jabber.cirr.com</jid>

 <!-- The JabberID of the conference room handler.

-->

 <!-- GROUPCHAT IS NOT STABLE YET -->

 <confjid>chat.aim.jabber.cirr.com</confjid>

 <!-- The component JID of the transport. Unless

you're doing

 – clustering, leave this alone -->

 <!-- <compjid>aim1</compjid> -->

 <!-- The location of the spool directory.. if

relative, relative to -->

 <!-- the src dir. Do not include the jid of the

transport. -->

 <spooldir>/var/spool/jabberd</spooldir>

 <!-- The location of the PID file. if relative,

relative to the src dir. -->

 <!-- Comment out if you do not want a PID file -->

 <pid>/var/run/jabberd/pyaimt.pid</pid>

 <!-- The IP address of the

 main Jabber server -->

 <mainServer>jabber.cirr.com</mainServer>

 <!-- The JID of the main Jabber server -->

 <mainServerJID>jabber.cirr.com</mainServerJID>

 <!-- The website of the Jabber service -->

 <website>http://jabber.cirr.com/</website>

 <!-- The TCP port to connect to the Jabber server on

-->

 <!-- (this is the default for Jabberd2) -->

 <port>5347</port>

 <!-- The TCP port that the web admin interface will

answer on -->

 <!-- (uncomment to enable) -->

 <!-- <webport>12345</webport> -->

 <!-- The authentication token to use when connecting

to

 – the Jabber server -->

 <secret>***************</secret>

 <!-- The authentication token to use when connection

to

 – the web interface -->

 <websecret>letmein</websecret>

 <!-- The default language to use (for error/status

messages) -->

 <lang>en</lang>

 <!-- The hostname of the AOL login server you wish

to connect to -->

 <aimServer>login.oscar.aol.com</aimServer>

 <!-- The port of the AOL server you wish to

connect to -->

 <aimPort>5190</aimPort>

 <!-- Send message on successful registration -->

 <registerMessage>You have successfully registered

with PyAIMt</registerMessage>

 <!-- You can choose which users you wish to have

as administrators.

 – These users can perform some tasks with Ad-Hoc

commands that

 – others cannot -->

 <admins>

 <jid>eric@jabber.cirr.com</jid>

 </admins>

 <!-- You can select which event loop PyAIMt will

use. It's probably

 – safe to leave this as the default -->

 <!-- Use epoll for high-load Linux servers running

kernel 2.6 or above -->

 <!--<reactor>epoll</reactor>-->

 <!-- Use kqueue for high-load FreeBSD servers -->

 <!--<reactor>kqueue</reactor>-->

 <!-- Use poll for high-load Unix servers -->

 <reactor>poll</reactor>

</pyaimt>

46 BSD 2/2008

admin

www.bsdmag.org

Dependencies
The first, and probably biggest
dependency is python itself. I am
assuming you have already gotten python
built and installed. pyaim-t and pymsnt
require the python Twisted framework,
at least 2.5 or later. The Twisted -core,

-zopeinterface, -web, and -words sub-
modules of Twisted are required. All are
part of the Twisted-2.5.0 archive. The
python OpenSSL (pyopenssl) module
is also required. If you want to support
avatars, the Python Imaging module is
also required. Yahoo transport requires

xmpppy, dnspython, and python expat,
which is sometimes optional portion of
the python distribution.

Build and install all the modules
using the standard python mechanism
of changing in the package directory,
and executing:

Listing 4. Working pymsn-t configuration file from jabber.cirr.com

<pymsnt>

 <!-- This file contains options to be configured by the

server

 – administrator. -->

 <!-- Please read through all the options in this file

-->

 <!-- The JabberID of the transport -->

 <jid>msn.jabber.cirr.com</jid>

 <!-- The public IP or DNS name of the machine the

transport is

 – running on -->

 <host>msn.jabber.cirr.com</host>

 <!-- The location of the spool directory.. if

relative, relative

 – to the PyMSNt dir. Do not include the jid of the

transport -->

 <spooldir>/var/spool/jabberd/</spooldir>

 <!-- The location of the PID file, relative to the

PyMSNt directory -->

 <pid>/var/run/jabberd/pymsnt.pid</pid>

 <!-- If set, the transport will background itself

when run -->

 <background/>

 <!-- The IP address of the main Jabber server to

connect to -->

 <mainServer>jabber.cirr.com</mainServer>

 <!-- The TCP port to connect to the Jabber server on

(this is

 – the default for Jabberd2) -->

 <port>5347</port>

 <!-- The authentication token to use when

connecting to the

 – Jabber server -->

 <secret>***************</secret>

 <!-- The default language to use -->

 <lang>en</lang>

 <!-- The website of the Jabber service -->

 <website>http://jabber.cirr.com</website>

 <!-- Comment out the following options to disable

them, or

 – uncomment them to enable them -->

 <!-- Send email notification messages to users -->

 <mailNotifications/>

 <!-- Send greeting on login -->

 <sessionGreeting>

 You have just started a session with PyMSNt

 </sessionGreeting>

 <!-- Send message on successful registration -->

 <registerMessage>

 You have successfully registered with PyMSNt

 </registerMessage>

 <!-- Allow users to register with this transport

-->

 <allowRegister/>

 <!-- Get all avatars. If this is set to true then

avatars are

 – grabbed for all your contacts immediately. If

false then avatars

 – are only grabbed when you're in a chat with a

contact -->

 <getAllAvatars/>

 <!-- File transfer settings -->

 <!-- The maximum size of a file transfer (in

bytes). For

 – unlimited, comment out, or set to 0 -->

 <ftSizeLimit>524288</ftSizeLimit>

 <!-- The maximum rate for file transfer (in bytes).

For unlimited,

 – comment out, or set to 0 -->

 <ftRateLimit>2048</ftRateLimit>

 <!-- You can choose which users you wish to have

as administrators.

 – These users can perform some tasks with Ad-Hoc

commands that

 – others cannot -->

 <admins>

 <jid>eric@jabber.cirr.com</jid>

 </admins>

 <!-- Log settings -->

 <!-- The logging level

 0 -> No logging

 1 -> Log tracebacks

 2 -> Log tracebacks, warnings and errors

 3 -> Log everything -->

 <debugLevel>2</debugLevel>

 <!-- The file to log to. Leave this disabled for

stdout -->

 <debugFile>/var/log/jabberd/pymsnt.debug</

debugFile>

</pymsnt>

46 BSD 2/2008

admin

www.bsdmag.org

Listing 5. Working yahoo-transport configuration file from jabber.cirr.com

<?xml version="1.0" ?>

<pyyimt>

 <!-- This file contains options to be configured by the server

 administrator. -->

 <!-- Please read through all the options in this file -->

 <!-- The JabberID of the transport -->

 <jid>yahoo.jabber.cirr.com</jid>

 <!-- The JabberID of the conference room handler. -->

 <confjid>chat.yahoo.jabber.cirr.com</confjid>

 <!-- The location of the spool file.. if relative, relative to the

 PyYIMt dir. -->

 <!-- Include the jid of the transport, if running multiple copies of

 the same transport -->

 <spoolFile>/var/spool/jabberd/yahoo</spoolFile>

 <!-- The location of the PID file, relative to the PyYIMt directory -->

 <!-- Comment out if you do not want a PID file -->

 <pid>/var/run/jabberd/yahoo-transport.pid</pid>

 <!-- The IP address or DNS name of the main Jabber server -->

 <mainServer>127.0.0.1</mainServer>

 <!-- The JID of the main Jabber server -->

 <mainServerJID>jabber.cirr.com</mainServerJID>

 <!-- The TCP port to connect to the Jabber server on

 (this is the default for Jabberd2) -->

 <port>5347</port>

 <!-- The authentication token to use when connecting to the

 Jabber server -->

 <secret>***************</secret>

 <!-- Allow users to register with this transport -->

 <allowRegister/>

 <!-- Allow users to use the Yahoo! chat rooms with this transport -->

 <enableChatrooms/>

 <!-- You can choose which users you wish to have as administrators.

 These users can perform some tasks with Ad-Hoc commands that

 others cannot -->

 <admins>

 <jid>eric@jabber.cirr.com</jid>

 </admins>

 <!-- The file to log to. Leave this disabled for stdout only -->

 <debugFile>/var/log/jabberd/yahoo-transport.log</debugFile>

</pyyimt>

48 BSD 2/2008

admin
• python setup.py build
• sudo python setup.py install

Build the transports
Once all the prerequisites are built, now
its time to move on to building/installing
the transports themselves.

All of the transports are meant to be
executed out of the extraction directory,
so choose well. (The packages in pkgsrc-
wip have been modified to install into a
common tree, and execute there.) Thus,
there is not a lot to do for building.

Configuring
All the transports use XML files for
configuration, and use many of the same
tags. We will start our configurations
with pyaim-t. Change into the directory
pyaim-t-0.8a and start by copying
config_example.xml to config.xml. Now
fire up your favorite editor on config.xml.

The most interesting fields to be
checked and modified are: <jid> the id/
name of the transport. Usually something
like aim.jabber.<domain name> If you want
off site users to be able to use your AIM
transport, this name needs to exist in
DNS.

• <mainServer> – the IP address of the
jabber server

• <mainServerJID> – the DNS listed
hostname of the jabber server

• <secret> – The shared secret
between pyaimt and the

• jabber server (router component.)

Changing those elements will get you
up and running.. Reviewing the rest
of the elements may be interesting,
but not essential. Configuring pymsnt
is essentially identical. The example
configuration file is called config-

example.xml. Copy it to config.xml, and
edit the <jid>, <mainServer> and <secret>
elements to suit. Again, if you want the
transport to be usable by people on other
jabber servers, make sure the name
specified in <jid> is listed in DNS.

The last transport to configure
is yahoo-transport. For the yahoo-
transport, the example configuration file
is config_example.xml, and is expected to
be config.xml in the application start up
directory.

Again, the interesting elements are
<jid>, <mainServer>, <mainServerJID>,
and <secret>. Setting <confjid>, along

with <enableChatrooms/> will set up the
gateway into the Yahoo conference
rooms. Once again, the name given
in <jid> (and <confjid> if you want
conference rooms) must be resolvable in
DNS if you want off site jabber servers to
be able to use it.

Starting the transports
Ok, we've got them built, and we've got
them configured, hopefully. Now it is
time to start the servers. Each of them
was designed to run out of their source
directories.

First up, make sure the user you've
chosen to run the servers has write
permissions in the program directories.
All of the transports store their spool
files and directories as sub-directories
of the current directory (unless modified
by the configuration file).

So, as the user you are going to run
the transports as, iteratively change into
each directory, and start the transport.
For pyaim-t and pymsnt, it is PyAIMt.py
and PyMSNt.py respectively. For yahoo-
transport, it is yahoo.py.

PyAIMt.py will go into the background
(become a daemon) if you specify the -b
or --background' flags.

./PyAIMt.py -b

Will fire up the AIM transport. Check
your log files for errors if the background
program ends unexpectedly. PyMSNt.py
acts the same as PyAIMt.py. Change into
it is directory, and start it with the -b flag to
make it act like a daemon. pymsnt also
supports an XML element of <background/
> to have the transport start as a daemon.

yahoo-transport is a bit different, in
that it has to be explicitly be put in the
background, as follows:

./yahoo.py &

Using the transports
To make use of your newly installed
transports, browse your local server from
your jabber client.

In Psi, right click on your account
name, and select Service Discovery from
the pop-up menu. Your newly installed
transports should show up as children
of the server.

To register, select the registration
function in the appropriate fashion (in Psi,
double clicking will do it) and then fill in

the registration dialog. You will need to
fill in your legacy network username and
password.

Once you have registered, all of your
contacts on the legacy system should
start showing up in your jabber roster.
Warning, you may be asked to Add/Auth
a lot of users, the entire contents of your
legacy system roster. Do not worry, your
contacts on the legacy system won't
see anything. And you will only have the
annoyance once.

Congratulations, you have successfully
built the transports, and used them to
connect to the legacy systems. Now you
can do all your instant messaging through
your jabber server and your jabber client.
And your frends on the legacy systems
won’t know the difference I have been
doing just that for over 3 years.

Now, it’s up to you to start enouraging
them to migrate to an open-standards
messaging system, XMPP/Jabber.

In the coming issues, we’ll talk about
setting up conference room services,
file transfer proxies, and an overview of
several popular Jabber capable clients.
If you have any ideas for future articles,
please send them to jabber@cirr.com.

Eric Schnoebelen is a 25 year veteran
of the UNIX wars, using both System V
and BSD derived systems. He's spent
more than 20 years working with and
contributing to various open source
projects, such as NetBSD, sendmail,
tcsh, and jabberd2. He operates a
UNIX consultancy, and a small, NetBSD
powered ISP. His prefered OS is
NetBSD, which he has running on Alpha,
UltraSPARC, SPARC, amd64 and i386.

Michele Cranmer is a relativity new
user to UNIX and Jabber, having been
basically forced into learning it when
she met Eric. After having been a loyal
Windows and Yahoo Messenger user for
many years, she finds that she prefers the
new systems to the others because of
ease of use and reliability. Being a college
student, getting her degree in Special
Education, she plans on using the new
systems in her classroom as a way of
teaching the children that there are many
different ways to do things other then the
``normal'' ways and those ways are no
more strange or unusual then they are.

About the Author

Get your copy of BSD Magazine
and save $20 of the shop price

SAVE $20!

Three easy ways to order
• visit: www.buyitpress.com/en
• call: 001 917 338 3631
• fill in the form below and post it

Why subscribe?
• save $20
• 4 issues delivered directly to you
• never miss an issue

great

subscriber
offer

Order information
(□ individual user/ □ company)
Title
Name and surname
address

postcode
tel no.
email
Date

Company name
Tax Identification Number
Office position
Client’s ID*
Signed**

□ Yes, I’d like to subscribe to
 BSD Magazine from issue □ □ □ □

I understand that I will receive 4 issues over the next 12 months.
Credit card:
□ Master Card □ Visa □ JCB □ POLCARD
□ DINERS CLUB

Card no. □□□□ □□□□ □□□□ □□□□ □□□□
Expiry date □□□□ Issue number □□
Security number □□□
□ I pay by transfer: Nordea Bank
IBAN: PL 49144012990000000005233698
SWIFT: NDEAPLP2

Cheque:
□ I enclose a cheque for $ ____________________

Signed

Terms and conditions:
Your subscription will start with the next available issue.
You will receive 4 issues a year.

* if you already are Software-Wydawnictwo Sp. z o.o. client, write your client’s ID number, if not, fill in the chart above
** I enable Software-Wydawnictwo Sp. z o.o. to make an invoice

Payment details:
□ USA $39.99
□ Europe 29.99€
□ World 29.99€

1 2 3 4

(made payable to Software-Wydawnictwo Sp. z o.o.)

BSD Magazine ORDER FORM

50 BSD 2/2008

admin Kernel File System Development

51www.bsdmag.org

Kernel File System
Development in Userspace

As a programming and testing environment, the kernel is immensely more challenging
than userspace. Therefore, kernel code is typically tested and developed in the
comfort of userspace before undertaking the trial by fire in the kernel.

Antti Kantee

Previously, specially written glue code was required to
make it possible to run the kernel code in userspace,
but now the NetBSD Runnable Userspace Meta
Program (rump) framework enables to run unmodified

kernel file system code out-of-the-box in userspace and
with seamless integration. It can be thought of as being a
generalized superset of the functionality provided by Sun's ZFS
libzpool userspace testing library.

After the developed code is dropped into the kernel, bugs
are usually found in specific use cases and the code must
be debugged in the kernel environment. Anyone who has ever
done kernel debugging knows that it is far from the most trivial
and enjoyable task in the world. As the debugging session
more often than not leads to a kernel panic, two different
environments are a common approach: one for running the
kernel being debugged and another one for controlling the
previous. There are multiple classic ways of accomplishing
this: two physical machines, an emulator, or a userspace
operating system.

The three ways listed above are fundamentally the same
thing. Creating an alternate environment and using that
for debugging. There are two common problems with this
approach.

• Not enough isolation. The implementation under
development still runs in the same kernel environment as
the system that hosts it. For example, error path testing is
difficult by introducing errors to common routines such as
the buffer cache and disk drivers, since extra care must
be taken to make portions of the kernel that are not under
development (e.g. the root file system) not suffer from fault
injection.

• Too much isolation. Repeating a bug often depends
on a specific machine and application configuration.

For instance, it might require a big application such as
OpenOffice or Firefox, or downloading and saving a file
from some specific ftp site. This environment needs to
be recreated in the test setup before the problem can be
repeated.

This article is a tutorial for file system development using the
Runnable Userspace Meta Program (rump) facility found in
NetBSD. In addition to explaining the necessary steps in a
practical hands-on manner, a brief introduction of the involved
technology is given.

Technology overview
There are two different technologies involved in running kernel
file systems in userspace.

• Pass-to-Userspace Framework File System or puffs. puffs
is the NetBSD mechanism for implementing file systems
in userspace. The idea is similar to the Linux FUSE, but
the interface is different and mimics the BSD file systems
kernel interface enabling a more natural implementation in
the kernel. puffs receives requests in the kernel, transports
them to the userspace file server, waits for a result and
passes it back to the caller.

• Runnable Userspace Meta Programs or rump. File
systems implemented in the kernel are free to call any
kernel routines. The rump shim layer makes sure these
routines are available in userspace. For the most part, the
routines are directly compiled from kernel source modules.
Examples of these types of routines are the buffer cache
routines and virtual file system subroutines. Some parts,
however, must be reimplemented for userspace. Examples
in the later category are the disk device driver and virtual
memory subsystem code.

50 BSD 2/2008

admin Kernel File System Development

51www.bsdmag.org

There are two basic choices for running
kernel file system code in userspace.
These are both presented in see Figure
1, in addition to a regular in-kernel file
system architecture being given for
comparison.

• The case with a mounted file system
shows what the configuration looks
like when running a kernel file
system in userspace with complete
application transparency. The
requests are passed from the kernel
to userspace and back using puffs
and translated from the puffs protocol
to the kernel vfs/vop interface using
a helper library called p2k (puffs-to-
kernel).

• The standalone case invokes file
system operations directly. This avoids
kernel involvement, but requires
specially written applications against
a library called ukfs (user-kernel
file system). The advantage in this
approach is that the application is
completely disjointed from the the host
kernel features, the only exceptions
being a handful of common system
calls such as read()/write(). This
means that NetBSD kernel file
system code can be run on virtually
any platform. The ukfs interface is
discussed at lenth later in this article.

File locations
All rump source code is located in the
NetBSD-current source tree under src/
sys/rump. It will be present in NetBSD
5.0 when it is released. This document
is written against the status present in
NetBSD-current at the end of May 2008.

The shim library is under src/sys/rump/
librump. The kernel file systems are build
as libraries under src/sys/rump/fs/lib
while the file server binaries themselves
are located in src/sys/rump/fs/bin. For
example the efs file system's kernel portion
is built into src/sys/rump/fs/lib/efs and
the file server binary is found from src/sys/
rump/fs/bin/efs. None of the built binaries
are currently installed anywhere, so they
must be run directly from the source tree.

Adding a new mountable
file system: a walkthough
To add a new file server to the rump
build, the kernel portion of the file server
must first be built as a regular userspace
library. The only difference from a normal

program library is that the compilation
flags used for building this library are that
of the kernel. Most of the necessary steps
are already automatically handled by the
build framework. The user should fill in the
library name, source file path, and source
modules to be compiled. An example of
this for the efs file system is presented in
see Listing 1.

A directory called libyourfs should
be created under src/sys/rump/fs/lib
with the only content being the Makefile
described above.

Additionally it might be necessary to
specify file system specific compilation
flags for the library. This may be done
as with any other library. The following
example is from libffs:

CPPFLAGS+= -DFFS_NO_SNAPSHOT -

DFFS_EI

CFLAGS+= -Wno-pointer-sign

Next, the file server executable for
mounting the file system is required.

The server daemon implementation
is effectively just a matter of filling out
the file system argument structure
and calling p2k library run routine. The
file system arguments depend on the
file system in question, but for our efs
example it is simply a matter of filling
out the location of the file system image
to be mounted. As the server daemon
assumes this path is passed as the first
parameter to the program, the following
does the trick:

struct efs_args args;

memset(&args, 0, sizeof(args));

args.fspec = argv[0];

Calling the p2k library run routine mounts
the file system and jumps to a main loop,
which takes care of processing requests.
The routine's signature is p2k_run_fs

(fs_type, devpath, mountpath, mountflags,
fs_args, fs_args_size, puffs_flags). As
our example, efs is used once again: see
Listing 2.

Listing 1. Kernel fs library Makefile

– $NetBSD: Makefile,v 1.2 2007/08/07 10:16:57 pooka Exp $

#

.include <bsd.own.mk>

LIB= efs

.PATH: ${NETBSDSRCDIR}/sys/fs/efs

SRCS= efs_genfs.c efs_ihash.c efs_subr.c efs_vfsops.c efs_vnops.c

.include <bsd.lib.mk>

.include <bsd.klinks.mk>

Listing 2. p2k_run_fs() in efs

 rv = p2k_run_fs(MOUNT_EFS, argv[0], argv[1], mntflags | MNT_RDONLY,

 &args, sizeof(args), pflags);

 if (rv)

 err(1, "mount");

��� ��� ���

�������

�����������

������ ������

���������

���

�������������

���

�������������

������

����

������������������������

�������������

�����

���������������������������

����������

��������

������

���������

���������

�������

�������

�������

Figure 1. Kernel file system

52 BSD 2/2008

admin

53www.bsdmag.org

Kernel File System Development

The mntflags and pflags variables
have been parsed earlier from command
line arguments. As the kernel efs
implementation is currently read-only, the
readonly flag is forced. The p2k_run_fs()
routine returns only after a fatal error
or when the file system is unmounted.
Unmounting can be done the normal way
using umount(8), or the violent way by
killing the file server. To build the file system
daemon, a similar Makefile as building
the kernel portion library is required.
Most of the work is once again handled
by existing build infrastructure magic.
The daemon code should be located in
src/sys/rump/fs/bin in a directory called
yourfs. The Makefile looks a lot like a
standard program BSD Makefile, with the
exception that the kernel file system library
gets linked in. The pathmagic for this is
handled automatically by the rump build
framework. See Listing 3 for an example.

Finally, the build system must be told
that your file system exists. This is done by
adding yourfs to the RUMPFSLIST variable
in Makefile.rumpfs in the directory src/
sys/rump/fs. Currently the relevant line
looks like this:

RUMPFSLIST= cd9660fs efs ext2fs ffs

hfs lfs msdosfs ntfs syspuffs tmpfs

udf

After this, rebuild everything by typing
make in the rump main directory. If all

the above steps were done properly
and rump supports all the functionality
your file system uses, there will be an
executable called yourfs in the object
directory of src/sys/rump/fs/bin/yourfs.
This executable can be run to mount the
file system:

./efs ~/img/efs.img /puffs

As inferred by the previous example, an
additional advantage of using rump is that
there is no need to vnconfig file system
images: they can be directly mounted
as files. In case of accessing a device
directly, it is recommended that the raw
device is used, e.g. /dev/rwd1e. In case
the block device node (e.g. /dev/wd1e) is
used, all access goes through the buffer
cache. Since the buffer cache is fairly
small in size, this can negatively effect
the performance of all other file systems
on the system in case heavy file I/O is
performed. The buffer cache is used by
file systems only for metadata while file
contents are stored in the page cache.
Therefore the buffer cache is of limited
size. Block device node access goes
entirely through the buffer cache, therefore
caching also file contents in the buffer
cache. For large files, this can quickly flush
everything else from the buffer cache.

After mounting it is possible to use the
file system just like a regular kernel file
system: see Listing 4.

The only difference to an in-kernel
file system is that the file system image
is being accessed in the comformt and
safety of userspace.

Debugging Mounted
File Systems in Userspace
All of the regular userspace debugging
tricks apply to rump file systems. It is
possible to single step, send signals,
dump core, attach a debugger, ktrace,
profile, stop and continue, add printfs, and
do iterative development very quickly.

Dealing with "kernel" panics
A kernel panic in a rump file system is
merely a core dump. It can be loaded
into gdb like from any other userspace
program and the stack backtrace and
other state at the point of panic can be
examined. The example below shows
what happened when trying to mount a
slightly corrupted FAT file system image:

golem> ./msdosfs ~/img/msdosfs.img

/mnt

panic: buf mem pool index 23

Abort (core dumped)

golem>

After examining the core dump it became
clear which field caused the error. A check
for a bad value added to the mount
routine and now mounting of the image
is politely refused instead of causing a
kernel panic.

Single stepping
Single stepping rump file systems while
being executed is easy, since pausing
the file system does not pause the entire
kernel. Only applications accessing the
file system will be frozen for the duration
of the debugging operation. For example,
if one would like to trace/debug the
execution of the ufs lookup routine, one
could do the following: see Listing 5.

In addition to the small teaser
presented above, the regular gdb tricks
of course apply. A useful thing to note
from the stack backtrace is that vnode
operations go through RUMP_VOP_OP()
instead of VOP_OP() as in the kernel. The
former can be used to place a breakpoint
for a certain operation regardless of the
type of file system being debugged.

There is one catch. Since NetBSD
currently has problems debugging
threaded programs, as a workaround for

Listing 3. File system server Makefile

$NetBSD: Makefile,v 1.1 2007/08/05 22:28:02 pooka Exp $

#

PROG= efs

LDADD+= ${RUMPFSLD_EFS}

DPADD+= ${RUMPFSDP_EFS}

.include <bsd.prog.mk>

Listing 4. rump file system in mount lists

golem> mount | grep efs

/home/pooka/img/efs.img on /puffs type puffs|p2k|efs (read-only, nosuid,

nodev, mounted by pooka)

golem> df /puffs

Filesystem 1K-blocks Used Avail %Cap Mounted on

/home/pooka/img/efs.img 16214 9161 7053 56% /puffs

golem> ls /puffs

WorkSpace debug etc lost+found unix

bin dev floppy stand usr

cdrom dumpster lib tmp usr2

golem>

52 BSD 2/2008

admin

53www.bsdmag.org

Kernel File System Development

attaching a debugger you must compile
rump so that it does not use threads.
This can be done by making sure the
following is set in src/sys/rump/librump/
Makefile.inc:

CPPFLAGS+= -DRUMP_WITHOUT_THREADS

This disables thread support completely.
This means that file systems which create
threads can no longer be run. It also
means that system threads such as the
vnode release thread will not be started.
For development operations besides live
program debugging, it is recommended
that rump is compiled with this option
commented out to better emulate a proper
kernel environment. Notably, there is no
problem in NetBSD with debugging core
dumps created by threaded programs.

Creating code dumps
Sometimes it is useful to add clauses to
the code to force a code dump if some

complex set of rules it met. This can be
done simply with if (conditional) panic(hit
condition);. Taking a core dump of an
already running file server is sometimes
required. The standard methods of using
gcore(1) to generate a live core or kill
-ABRT for terminating the program and
creating a core have often been found
useful.

Direct access
to file system code
The examples discussed so far mount
the file system as part of the host
system. If we recall, this means that
accessing them requires control to
flow through the kernel by making
system calls. Accessing file system
routines directly is done directly from
ukfs without passing through the kernel.
It can be used for developing utilities
such as mtools and NetBSD makefs(8)
by directly employing the kernel fs code
and not requiring a separate userspace

implemention. In addition, it allows the
writing fine-grained test programs and
the stress-test of file system code much
more efficiently. Test functionality similar
to Sun's ZFS ztest utility could also be
written using ukfs, with the exception
that it does not need to be limited to just
one file system.

The main documentation for the ukfs
library is currently available only in the
form of a header in src/sys/rump/fs/
lib/libukfs/ukfs.h. However, most of
the routines resemble system calls, so
it is easy to figure out what each ukfs
call does. Calls typically take the file
system context structure (struct ukfs *), a
pathname, and whatever arguments are
necessary. For instance:

ukfs_rmdir(ukfs, dirpath)

removes the directory dirpath, while:

ukfs_read(ukfs, filename, off, buf,

bufsize)

will read at most bufsize bytes into buf
from the file filename from offset off.

To use the ukfs library, two initialization
routines must be called. ukfs_init()
initializes the global process state
required for using ukfs and rump. After
this, the desired file system must be
mounted using ukfs_mount(fs_type,
devpath, mountpath, mountflags, fs_args,
fs_args_size). The parameters are the
same as for p2k_run_fs() described
earlier. The mount routine returns the
context structure to be passed to interface
routines.

All pathnames given to the library
can be relative or absolute. The current
directory can be changed by calling
the ukfs_chdir() routine. The current
directory is per thread, so in case the
process using ukfs has multiple threads,
each thread is initialized with the current
directory as the root directory and must
be explicitly changed if desired.

Further information
Documentation, technical papers and
examples of use for puffs and rump can
be found from the NetBSD website:

• http://www.NetBSD.org/docs/puffs/
• http://www.NetBSD.org/docs/puffs/

rump.html

Listing 5. using gdb on ffs

 golem> gdb ffs

 GNU gdb 6.5

 [...]

 This GDB was configured as "i386--netbsdelf"...

 (gdb) break ufs_lookup

 Breakpoint 1 at 0x80697bc: file /usr/allsrc/src/sys/ufs/ufs/ufs_

lookup.c, line 115.

 (gdb) run -o ro ~/img/ffs.img /puffs

 Starting program: /objs/obj/sys/rump/fs/bin/ffs/ffs -o ro ~/img/ffs.img

/puffs

 rump warning: threads not enabled, not starting vrele thread

 rump warning: threads not enabled, not starting namecache g/c thread

 [meanwhile, cause a lookup to happen from another window]

 Breakpoint 1, ufs_lookup (v=0xbfbfd1a0)

 at /usr/allsrc/src/sys/ufs/ufs/ufs_lookup.c:115

 115 struct vop_lookup_args /* {

 (gdb) n

 120 struct vnode *vdp = ap->a_dvp;

 (gdb) bt

 #0 ufs_lookup (v=0xbfbfd1a0) at /usr/allsrc/src/sys/ufs/ufs/ufs_

lookup.c:115

 #1 0x0807ac38 in RUMP_VOP_LOOKUP (dvp=0x8148d00, vpp=0xbfbfd1ec,

 cnp=0x80b2a20) at rumpvnode_if.c:132

 #2 0x0806f725 in p2k_node_lookup (pu=0x80b7200, opc=0x8148d00,

 pni=0xbfbfd290, pcn=0xbfbfd27c) at p2k.c:327

 #3 0x08076d7c in dispatch (pcc=0x80aea20) at dispatcher.c:277

 [etc.]

54 BSD 2/2008

admin Jabber/XMPP and TLS

55www.bsdmag.org

Securing IM
using Jabber/XMPP and TLS

XMPP/Jabber offers a number of features that make it different from the commercial,
closed messaging systems. This month, we'll talk how to secure client to server and
server to server communications.

Eric Schnoebelen,
Michele Cranmer

Are your private communications vi instant messaging
really as private as you think they are? This month, we
will talk how to secure client to server and server to
server communications.

Have you ever been chatting with a friend or family member
on one of the big instant messaging services, and wondered
who else might be seeing your conversation? Well, the truth
is...it could be anyone! The major IM services seem to lack
the mechanism for securing the communications between the
client and server.

Would not you rather use a service that you operate and
know is secure? One where you do not have to worry about if
the things you say to your Mother about your ex, will be read
by someone who knows them? That is what Jabber can give
you! The security in knowing that what you chat about will be
between you and the person/people you are chatting with.

In the last issue we showed you how to set up a Jabber/
XMPP server, using the open source jabberd2 server. This
time we will talk about how to secure communications
through that system. One of the features Jabber/XMPP offers
that makes it different from the proprietary, commercial
IM services is the ability to secure client to server and
server to server communications. Secure server to server
communications is an important feature of XMPP, and
the XMPP Foundation has a goal of having most of the
interconnecting (federating) jabber servers using secure
channels by Jabber’s 10th anniversary, 4 Jan 2009 (see
https://stpeter.im/?p=2136).

Securing communications
First up, we are going to discuss securing communications
between your Jabber/XMPP server and a client. We are
going to use the jabberd2 server we built/installed last
time. (although, since then versions up to 2.1.24.1 have been

released, and 2.2.0 was released during the writing of this
article.)

You can use either a self-signed certificate for securing your
jabber server, or you can use a commercial certificate. The XMPP
Foundation (http://www.xmpp.net) has set up an agreement
with Startcom to provide every Jabber server operator with a
certificate signed by a known signing authority.

We will go through the common steps for generating both a
commercially signed certificate and a self-signed certificate, as
they are common for most of the tasks.

Creating the certificate signing request
Some of the signing authorities, such as the one offered by
xmpp.net, offer a web form to create the certificate signing
request.

Other signing authorities will require you to create your
own certificate signing request. If you are creating a self-
signed certificate, you will need to create a signing request as
well. XMPP certificates require a bit of additional information
not required for the more common HTTP/SSL certificate
signing request.

Listing 1 shows the changes/additions needed to your
OpenSSL configuration file (/etc/openssl/openssl.cnf on
NetBSD) to get the extra OID's needed for XMPP's use. (this
listing can be found at http://wiki.jabber.org/index.php/XMPP_
Server_Certificates).

Listing 2 shows the OpenSSL configuration file I used to
generate signing certificates and self-signed certificates for
jabber.cirr.com (along with my test jabber server, portnoy.cirr.com.)

Creating a self-signed certificate
Creating a self-signed certificate is fairly straight forward for
anyone who has done it for web servers. Here is the command
line I used:

54 BSD 2/2008

admin Jabber/XMPP and TLS

55www.bsdmag.org

openssl req -x509 -nodes -days 365 \

-config /etc/openssl/xmpp.cnf -newkey

rsa:1024 \

-keyout portnoy.cirr.com.key -out

portnoy.cirr.com.pem

Before installing on the jabber server,
make sure to concatenate the .key file
onto the .pem file.

Getting a certificate from xmpp.net
To receive a certificate from xmpp.net,
you will have to register with xmpp.net.
Follow the registration directions at https:
//www.xmpp.net/account-request.

There are two mechanisms for
receiving a certificate from xmpp.net.
The first is to use the web site to create
your private key, your certificate signing
request, and finally your certificate.

The second is to create your own
key and signing request, and submitting
it to the XMPP CA for the creation of the
request.

The first two screens on both
processes are the same. The first screen
is selecting the request type, either letting
the CA create the request, or providing
your own. Select as appropriate.

The second screen is providing
contact information. A street address
must be provided (post office boxes
are not acceptable.) The phone number
provided must reverse look up to the
street address provided.

Now the processes diverge.

XMPP CA generated CSR
When letting the XMPP CA generate the
certificate signing, the third screen in the
process will request a pass-phrase for
use on your key. It must be between 10
and 32 characters long, using mixed case
alphabetic letters and the digits.

The forth screen presents the
private key that was generated. Copy
it from the text box, and record it
somewhere. Also remember to record
the pass-phrase to this private key.
Select continue to move to the next
screen.

On the fifth screen, the information
required for your certificate signing
request will be collected. The information
is your country, your state/province, your
city/town/locality, you organization,
and finally the hostname of the jabber
server. The top level domain is available
as a pull down.

Select continue, and the sixth screen
appears, requesting the email address
to receive the validation request, and
presents the certificate signing request
generated. You should save the certificate
signing request.

Skip down to Validating the request for
the rest of the process.

Self Generated CSR
When generating the CSR yourself, you can
use Listing 2 as the start of a configuration
file to generate your certificate signing
request. Make sure the Common Name
is the fully qualified domain name of the
jabber server, as presented in the DNS SRV
record or A record.

Listing 1. Lifted from http://wiki.jabber.org/index.php/XMPP_Server_Certificates

oid_section = new_oids

[new_oids]

RFC 3920 section 5.1.1 defines this OID

xmppAddr = 1.3.6.1.5.5.7.8.5

[req]

default_bits = 1024

default_keyfile = dotat.key

distinguished_name = distinguished_name

req_extensions = v3_extensions

x509_extensions = v3_extensions

don't ask about the DN

prompt = no

[distinguished_name]

countryName = GB

stateOrProvinceName = England

localityName = Cambridge

organizationName = dotat labs

commonName = dotat.at

[v3_extensions]

for certificate requests (req_extensions)

and self-signed certificates (x509_extensions)

basicConstraints = CA:FALSE

keyUsage = digitalSignature,keyEncipherment

subjectAltName = @subject_alternative_name

[subject_alternative_name]

DNS.0 = dotat.at

otherName.0 = xmppAddr;UTF8:dotat.at

Append the following for a server which handles multiple domain names:

DNS.1 = example.org

otherName.1 = xmppAddr;UTF8:example.org

56 BSD 2/2008

admin
The following openssl command line

will generate the request:

openssl req -new -nodes -config /etc/

openssl/xmpp.cnf \

-newkey rsa:1024 -keyout

portnoy.cirr.com.key \

-out portnoy.cirr.com.csr

After the certificate signing request has
been generated, paste it into the text
box on the XMPP CA form, and submit it.
The next screen will ask for the domain
administrative email (hostmaster@,
postmaster@, or webmaster@) to receive
the validation token. Patiently await it is
delivery to the respective mailbox.

Validating the request
At this point the two certificate generation
paths converge.

Once the token arrives, enter it into
the the field on the screen, and submit
the form.

The final screen will appear with your
certificate. Copy it from the web page,
and also save the Certificate Authority
intermediate certificates as well. Once
you have got all the certificates, chaining
certificates and keys, your key needs to
have the pass-phrase removed (unless you
want to enter your pass-phrase every time
one of the component start). To remove your
pass-phrase, use an openssl command
line similar to the following: (replace the key
file names with your key file names):

openssl rsa -in jabber.cirr.com.key \

-out jabber.cirr.com.key-no-passprhase

The certificate, chaining certificates, and
your key now need to be concatenated
into one large file, with the elements in the
following order:

• Your certificate
• The intermediate certificate authority

chain certificates
• Your key.

as an example:

cat jabber.cirr.com.crt

sub.class1.xmpp.ca \

jabber.cirr.com.key-no-passphrase >

jabber.cirr.com.pem

Congratulations, at this point you have
successfully generated a certificate file for
securing your XMPP communications.

Configuring
jabberd2 to use the certificate
Configuring jabbed2 is pretty easy to
configure to use the certificates.

Two configuration files need to be
modified, and two components need to
be restarted.

Configuring client-server encryption
The first of the configuration files to be
modified is the c2s.xml configuration
file (found in /usr/pkg/etc/jabberd/

c2s.xml on pkgsrc/NetBSD/DragonFlyBSD,
/usr/local/etc/jabberd on OpenBSD/
FreeBSD). The stanza to be modified is
<local><id></id></local>. You want to

Listing 2. Openssl_conf

openssl_conf = openssl_init

[openssl_init]

oid_section = new_oids

[new_oids]

RFC 3920 section 5.1.1 defines this OID

xmppAddr = 1.3.6.1.5.5.7.8.5

[req]

default_bits = 1024

default_keyfile = privkey.pem

distinguished_name = distinguished_name

req_extensions = v3_extensions

x509_extensions = v3_extensions

prompt = no

[distinguished_name]

countryName = US

stateOrProvinceName = Texas

localityName = Plano

organizationName = Central Iowa (Model) Railroad

commonName = jabber.cirr.com

[v3_extensions]

for certificate requests (req_extensions)

and self-signed certificates (x509_extensions)

basicConstraints = CA:FALSE

keyUsage = digitalSignature,keyEncipherment

subjectAltName = @subj_alt_name

subjectAltName=DNS.1:cirr.com,otherName.1:xmppAddr;UTF8:cirr.com,\

 dirName.1:distinguished_name,\

 DNS.0:jabber.cirr.com,otherName.0:xmppAddr;UTF8:jabber.cirr.com,\

 dirName.0:distinguished_name,\

 DNS.2:portnoy.cirr.com,otherName.2:xmppAddr;UTF8:

portnoy.cirr.com,\

 dirName.2:distinguished_name

Listing 3. jabber.cirr.com

 <id realm='jabber.cirr.com'

 password-change='true'

 pemfile='/etc/openssl/certs/jabber.cirr.com.pem'

 register-enable='false'>jabber.cirr.com</id>

56 BSD 2/2008

admin

add a pemfile='<pemfile filename>' to
the <id> tag. In the standard c2s.xml
file, there is a commented out stanza
showing the correct syntax. Listing 3
shows the (stripped down) stanza in use
on jabber.cirr.com.

Once you've restarted the
c2s component, client to server
communications can now be encrypted,
assuming the client supports TLS
authentication/encryption with the server.

Fire up your favorite TLS capable
Jabber client (Psi is one such client) and
look for the secured icon. Note, using a
self-signed certificate may cause the
client to produce a dialog about an invalid
certificate authority (CA.)

Configuring
server-server encryption
Configuring server to server (s2s)
encryption is as easy as configuring
client to server (c2s) encryption. The
stanza needing attention in the s2s.xml
is <local><pemfile></pemfile></local>.
Uncomment that clause, and update the
file path as appropriate. To verify that TLS

encryption is working, verify that the s2s
component started with no errors about
the certificate. Then, attempt to get the
presence information about someone
on a TLS secured XMPP server, such as
jabber.org or jabber.cirr.com. Look in your
s2s log file, and search for a message
similar to the following:

[7] [208.68.163.220, port=54127]

incoming route \

'portnoy.cirr.com/jabber.org' is now

valid, TLS negotiated

Congratulations, you have successfully
secured communications between your
XMPP client and your XMPP server, and
between your XMPP server and other
(suitably configured) XMPP servers
(such as jabber.org, jabber.cirr.com, or
others.)

That wraps up securing/encrypting
communications between your XMPP
client and your server, and between your
server and others! That was relatively
easy, was not it.

Eric Schnoebelen is a 25 year veteran of the UNIX wars, using both System V and BSD
derived systems. He's spent more than 20 years working with and contributing to various
open source projects, such as NetBSD, sendmail, tcsh, and jabberd2. He operates a UNIX
consultancy, and a small, NetBSD powered ISP. His prefered OS is NetBSD, which he has
running on Alpha, UltraSPARC, SPARC, amd64 and i386.

Michele Cranmer is a relativity new user to UNIX and Jabber, having been basically
forced into learning it when she met Eric. After having been a loyal Windows and Yahoo
Messenger user for many years, she finds that she prefers the new systems to the others
because of ease of use and reliability. Being a college student, getting her degree in Special
Education, she plans on using the new systems in her classroom as a way of teaching the
children that there are many different ways to do things other then the normal ways and
those ways are no more strange or unusual then they are.

About the Author

���� ����

����
������

���� ���� ����

���� ����

������

������

������

����
������

������

������

������

Figure 1. XMPP

www.bsdmag.org

58 BSD 2/2008

in business

OpenBSD
and making money

Open Source is often alleged as being apathetic towards business and money.
Corporations often accuse open source for being unable to bring in the profits that run a
business. Nowadays everone knows that open source is serious and cannot be ignored.

Girish Venkatachalam

I am going to demonstrate in this article that open source
can not only mean seriuos business but also make you
rich. No kidding. There are many entrepreneurs among
OpenBSD developers and they use OpenBSD which has

the most liberal licensing that any OS has and still interestingly
they make a living out of it. I am going to show you how I use
OpenBSD to make a living in Chennai, India.

We are going to be talking three different topics but related
to one another in a subtle way.

Spam control
Spam control is big business in organizations. Employees
having to deal with unsolicited commercial/bulk mail is
something that not only reduces productivity but also eats into
the company's bottomline.

Another thing that eats into the company's bottomline is
the lack of productivity and disturbance caused by Microsoft
Windows due to its various vulnerabilities, viruses, worms , trap
doors and other malwares not to mention crashes of course. We
will get to that in a minute.

First spam control.

Spam control with OpenBSD greylisting
Spam control has to invariably fall under one of the following
categories.

• Bayesian filtering and contextual analysis
• Heuristical filtering based on known keywords/bad words
• CRM114 Markovian chain based filtering (related to a)
• Vipul's razor approach of DCC (Distributed checksum

computation) with manual interference – gmail uses this
heavily

• Greylisting to stop spam right at the MTA level
• IP address blacklisting and e-mail address whitelisting

• TMDA – cure worse than the disease (Only approved
senders can send mail)

• RBL lists , spamhaus (politically sensitive spam control
techniques)

• Sender Policy Framework(SPF) (not a bad idea per se) but
does not work well

This is more or less it.
And most of these techniques are based on content

scanning/filtering and actually reading e-mails with a computer.
Since this is an activity that requires a high end CPU and

memory, spam control software and virus scanning software
typically end up grinding your machines to a halt or even slow
down your legitimate e-mails.

Also there is the very scary possibility of losing e-mails due
to false positives.

OpenBSD's spamd uses a technique called greylisting. This
is a very smart way to combat spam since it is stopped right at
the MTA level. Since this never reads e-mail it is also very fast
and highly efficient.

It is impossible to get a false positive here though the first
mail from a domain will experience a delay.

I have seen some problem with popular mail sites like
yahoo and gmail but they can be easily resolved by manual
whitelisting.

Basically greylisting forces mail servers to be RFC 2821
compliant and retry mails until the receiving site is ready. This
also has an added advantage of hurting spammers sometimes
and also stopping the spam that is meant for some other sites.

The architecture of our solution is something like this (Listing
1). Here is a schematic to explain how OpenBSD greylisting
works.

The firewall that works in the appliance redirects e-mail
traffic depending on three parameters:

OpenBSD and making money

• Sending IP address (From IP)
• Envelope sender (who sends you

mail?)
• Envelope recipient (who is mail ad-

dressed to?)

If the above 3 tuple are seen for the first
time then the mail sender is subjected to
the torturous SPAMD filtering (running on
port 8025 above). There is a phenomenon
called initial stuttering that happens here.
Instead of talking at full speed the MTA
accepts mail one character at a time. This
will piss off spammers and many go away.
But legitimate senders have just one mail
to send. Moreover they have to be RFC
compliant. So they survive the test.

Once this process is completed, any
subsequent mails from this sending IP
address is assumed to be legitimate and
they directly talk to the company mail
server.

There are several parameters that
can be tweaked here. So we can tighten
the screws a bit once we observe how
this comes up in production. And you
don't waste your storage space and

bandwidth receiving spam first and then
rejecting them. Overall a very brilliant idea
no doubt.

To configure spamd(8) all you have
to do is enable it in /etc/rc.conf.local by
adding these lines.

pf=YES

spamd_flags=""

spamd_black=NO

spamlogd_flags="-i fxp0"

I am of course assuming that your
network interface is fxp0.

And your pf.conf should have these
lines.

table <spamd-white> persist

no rdr on fxp0 proto tcp from <spamd-

white> to any port smtp

rdr pass on fxp0 proto tcp from any to

any port smtp -> 127.0.0.1 port spamd

Of course there is more to it than meets
the eye but you get the idea.

Anyway as a bonus this also stops
all sorts of irritating malware like virses,

Trojans, worms and other annoyances.
Such mails usually propagate with
reckless abandon and my firewall running
in the appliance can rate limit them.

Service Redirector
Another need the big corporates have
is ensuring 100% uptime for their critical
servers. This could include web servers,
mail servers, database servers or
anything else that forms the backbone of
a company's business.

OpenBSD has two very simple ways
to solve this problem – CARP and relayd.

CARP is a protocol that works at a
very low level. Hence its ability to fail over
is fantastic. Since it works at layer II, you
can trivially fail over any service you offer
since all services will be offered with an
IP address.CARP configuration is brain
dead simple and anyone can get it
working within minutes.

If you have two OpenBSD boxes
that you want to fail over in case one
goes down then all you have to do
is create the carp0 interface on both
machines like this.

A D V E R T I S E M E N T

60 BSD 2/2008

in business
Host A (MASTER)

ifconfig carp0 create

ifconfig carp0 192.168.1.10 vhid 1

carpdev fxp0

and on Host B,

Host B (BACKUP)

ifconfig carp0 create

ifconfig carp0 192.168.1.10 vhid 1

carpdev fxp0 advskew 100

That is all there is to it. Now trying pinging
the virtual IP 192.168.1.10 you just created
from a different host.Then try something
interesting. Plug out the ethernet cable
from Host A. You can check which one is
master with the ifconfig command.

You will notice that the BACKUP will
take over within few seconds and start
responding to ping requests. Once you
plug the cable back in you will see that
the MASTER and BACKUP roles will get
interchanged automatically as per our
original intention. CARP is really simple to
get working but there is more to it. You need
to allow the IP CARP protocol as well as the
PFSYNC protocol in case you ar interested
in synchronizing the firewall states before
fail over. And in most real world applications
you have to take care that the state of the
backup is up to date with the master or
at least reasonably close. For instance if
you are doing a fail over of the antispam
appliance then you need to ensure that the
pf tables are in sync. And also the /var/
db/spamdb database. You can easily ensure
this by running a cron job to rsync or even

copy it from place to another. relayd(8) is
another interesting daemon introduced
in OpenBSD recently that can do quite a
few interesting things. We are not going to
discuss most of its cool features here. We
will just take a look at its potential. The gory
details are in the man pages of OpenBSD
as is the usual case with the OS. There is
no OS that places as much emphasis on
correct documentation like OpenBSD.

What does relayd do?
It is a service redirector. It is also many
other things but for me it means that in
case the customer runs a web server on
an OS other than OpenBSD, then I can fail
over the web server using relayd. But then
you should remember that relayd works at
a much higher layer in the OSI stack and
consequently you should always try to use
CARP for fail over as much as possible.
Relayd can act as an SSL load balancer.
This is a very useful feature since what
we require is a secure connection only till
the point it reaches our internal network.
Beyond that we can load balance using
unencrypted/unprotected sessions. So
what relayd can do for us is finish the SSL
handshake at the entry point to our network
so that we can serve many customers even
when using SSL. SSL based HTTP servers
are typically highly loaded due to the crypto
operations and other latency. This comes
as a boon for such businesses.

Firewall
In the last issue I had covered firewalling
with OpenBSD pf. pf forms such an

important component of OpenBSD
networking that any networking product
that uses OpenBSD will invariably use
it. pf can be used for NATing, blocking
certain ports or redirection. It can also be
used for load balancing.

We talked about the various ways in
which Windows hurts a business in the
beginning. OpenBSD based firewalling
can be used to good effect using its
ability to do passive OS fingerprinting. pf
comes with an ability to detect the OS of
a particular machine by inspecting its TCP
SYN packet. So we can use this to make
sure that Windows machines do not send
malicious traffic.

Conclusion
We have very clearly seen how OpenBSD
helps you succeed in business and make
as much or even more money than
companies that sell commercial software
or hardware. The model of open source
software based appliances have a great
potential since most businesses are
worried about support. If you can provide
them support for the hardware and the
open source software they will be willing
to purchase your product. The reason is
simple for businesses.

Open source software gives them
unlimited freedom and there are no pesky
limitations like number of concurrent users
and other irritations like license renewals
that are typically found in commercial
software.

In short, OpenBSD is serious business!

�������������������

����������������
�������

���������������
�����������������

������������

������������

�����������

������������������

��������������������

���
��

�������������
����

���

Figure 1. Spamed architecture

61

Written by MICHAEL W.
LUCAS Jr (the W. in the
middle is important, the
appended Jr is even better)

this 700 pages book is the updated opus
of the famous FreeBSD bible from No
Stark Press. Known for their unique books
on technology, they give focus on Open
Source, security, hacking, programming,
alternative operating systems and
Absolute FreeBSD 2nd Edition is no
exception.

You will learn to manage your
FreeBSD system, from installation to
configuration and lot's more, like how to
build your own embedded devices, how
to encrypt disk partitions, how to use
FreeBSD's multiprocessor features to
your best advantage, how to run diskless
servers, and more!

Absolute FreeBSD, 2nd Edition covers
installation, networking, security, network
services, system performance, kernel
tweaking, filesystems, SMP, upgrading,
crash debugging. It includes also a lot
of tutorials and how to : Use advanced
security features like packet filtering,
virtual machines, host-based intrusion
detection, build custom live FreeBSD CDs
and bootable flash , manage network
services and filesystems, use DNS and
set up email, IMAP, web, and FTP services

and FreeBSD since 1995. Developer
himself, and as a long term contributor
of the FreeBSD system, he provides in
his books a clear point of view of the op-
erating system. Written with the help and
advice of dozens of FreeBSD developers,
the answers are straights, the concepts
given clearly. Famous for is cool writing
talent, the author of the Absolute series
makes it easy to read, very lively for a
system administration guide. You can
make yourself an idea with the chap. 8
available for free in the editor's webpage.
More than a book it's a manual aimed
to the regular users who want to cleanly
handle their desktop and the sysadmins
who want to know how the machine
thinks. Of course it's all about command
line interface and configuration files,
those used with GUI environments and
click-here-and-then-there tutorials will
discover the strength and the flexibility
of Unix and how the FreeBSD system is
organised.

This book covers almost everything
that appears in 7.0 except too recent
developments like binary updates. It is
nonetheless a bible for FreeBSD users
and sysadmins. Now you don't have
to google for every little command or
single configuration detail you're looking
for.

for both servers and clients, monitor
your system with performance-testing
and troubleshooting tools, run diskless
systems, manage schedulers, remap
shared libraries, optimize your system
for your hardware and your workload,
build custom network appliances
with embedded FreeBSD, implement
redundant disks, even without special
hardware, integrate FreeBSD-specific
SNMP into your network management
system.

The first edition is 7 years old, and
was a complete guide to FreeBSD
4.0 at that time. This second edition
is about the last FreeBSD version 7.0,
with all the tools from 4.0. Of course
this book applies also to earlier version
as well as for future version. Michael's
coverage of GEOM, NanoBSD, FreeSBIE,
journaling, memory file systems,
filesystems in a file makes this book a
must have even for the readers of the
first edition. New readers will still get the
solid introduction they need, concepts
are explained clearly and with a lot of
examples in this easy-to-use book. It's a
great first step for those who would like
to become committers or contributors
in the future.

MICHAEL W. LUCAS (Jr) has been us-
ing Unix systems for more than 20 years

Absolute
FreeBSD
2nd Edition

review

www.bsdmag.org

62 BSD 2/2008 63www.bsdmag.org

PC-BSD in Schools

P C-BSD provided the stable and
secure solution we needed
for a trouble-free deployment
in the Poulx School District at

a negligible cost, say Marie Walrafen
and Guillaume Fontaine, owners of
Chamanik.com.

• PC-BSD is easy to install
• PC-BSD is free and open source
• PC-BSD is secure, reliable,

and provides excellent content
management

• PC-BSD is easy to support
• PC-BSD can handle multiple users

on a small network
• PC-BSD is based on FreeBSD

Schools, businesses, and government
offices have a basic set of needs when it
comes to deploying a desktop operating
system. They need a solution that runs
smoothly and efficiently, with minimal
effort on behalf of the parties involved. The
solution also needs to be safe, secure,
and easy to implement and maintain.

The Poulx School District did not
have a need to run highly specialized
applications. What they required was an
operating system that is stable, reliable,
and free of viruses. Unfortunately, hackers

available for PC-BSD. Hundreds of easily
installed PBIs are available for download
from http://www.pbidir.com, with updates
made daily. Many are also available on
Disc 2 of PC-BSD. They also knew that
PC-BSD can be installed very quickly and
is easy to use, and can handle multiple
users on a small school network. They
made the recommendation to deploy
PC-BSD in the schools, and have never
looked back.

Marie and Guillaume downloaded
PC-BSD Discs 1 and 2 free of charge
from http://www.pcbsd.org. Marie used
the Disc 1 copy as the install disk on
all the machines. When each machine
had completed the install process, Marie
removed Disc 1 from the machine and
inserted Disc 2. It took only a few minutes
to install PC-BSD on each computer.

The final steps of the deployment
process took about half an hour to
complete. Marie configured the internet
access for the school network and
installed the French language files from
the second CD. She also installed the
PBIs for critical applications needed
by the school. Through the use of the
PBI software Marie was quickly able to
install Gimp, Planetarium, and various
educational games.

are continuously writing viruses for the
Windows environment, and these viruses
hamper the successful operation of a
network. And while Linux protects against
most viruses and is a low-cost open
source alternative, it doesn't feature the
stability and security of FreeBSD.

PC-BSD is a fully functional desktop
operating system running FreeBSD 6
under the hood. Its graphical system
installer makes the system installation
process effortless. Its self-installing
software packages make loading
programs a snap. It is secure, reliable, and
easy – a perfect tool for all basic needs
and especially fit for use at a school, small
business, or government office.

In February of 2008, Marie and
Guillaume deployed PC-BSD in the Poulx
School District in France.

They installed PC-BSD on a small
network that had previously been running
the Mandriva version of Linux.

Marie and Guillaume were already
familiar with PC-BSD and FreeBSD,
having deployed it for the wireless
network in the city hall. They knew that
the applications needed to run on the
systems in the school were compatible,
and that all the applications could be run
with existing PBI's (push button installers)

PC-BSD
in Schools

iXsystems

Security, Stability, and Ease of Use Make PC-BSD Deployment in Poulx School District
a Success. School District Deployment Sets the Tone for Future PC-BSD Deployments
Throughout France

PC-BSD

62 BSD 2/2008 63www.bsdmag.org

PC-BSD in Schools

The school's requirement for
preventing inappropriate site content from
being accessed by students resulted
in the need to set up a proxy server
as a filter. Methods and protocols were
established so that teachers were able
to log in and connect to the internet
without going through the proxy server
for unrestricted searches and research.
The systems were also set up so that the
teachers could boot from their individual
computers, instead of having to boot from
the general server.

Marie set up an individual profile for
each pupil on the school network, which
would allow documents saved on the
network to be accessed by students
using any computer within the network. All
software needs were accommodated by
existing PBIs.

All in all, the deployment process was
highly successful. Marie just laughed
when asked to describe a technical
problem she had had during the
deployment, as there were none. Support
issues since the deployment have been
minimal as well, consisting primarily of
hardware upgrades and other issues not
related to PC-BSD.

The teachers are very comfortable
using PC-BSD and appreciate its ease
of use and trouble-free administration.
They have forgotten all about Mandriva
and Windows XP (which they were using
before Mandriva). The students have
been able to access their files with
ease, and some of them are enjoying

PC-BSD so much that they have asked
Marie and Guillaume how to install it on
their desktop at home. They appreciate
the possibility that there is an available
alternative to Windows, and even to
Linux.

The solution deployed by Marie and
Guillaume in the school can be easily
replicated in an academic, government,
or small business environment. Marie
and Guillaume are in the process of
setting up other deployment contracts
within the Poulx school district, as well
as throughout France. It is easy to sell
the PC-BSD implementation solution to
other entities given PC-BSD's stability,
reliability, and trouble-free system
administration. Marie says that even
though she is the technically ignorant
half of the partnership with Guillaume,
she was able to get up to speed on
installing and using PC-BSD in no
time. PC-BSD is also significantly more
cost-effective than its closest non-open
source competitor, which costs upwards
of $200 per copy for the full version of
the operating system.

Marie and Guillaume are also taking
their solution to the Poulx City Hall,
which previously contracted them to
set up the city's wireless network. City
Hall is currently running Windows on 8
of the 12 available computers but has
agreed to gradually switch the remaining
computers over to PC-BSD. Marie and
Guillaume are confident that the software
used to run city hall's administrative

functions can be made to work on
WINE (a compatibility layer for running
Windows programs on top of UNIX). They
intend to eventually develop their own
solution that does not need WINE. Once
the switch-over is complete Poulx will
have the unofficial title of FreeBSD City
bestowed upon it by its Mayor.

General Advantages of PC-BSD
In addition to some of the items listed
above, there are a number of reasons
to deploy a FreeBSD-based solution
when designing a network architecture.
Because the underlying OS for PC-BSD
is FreeBSD, these advantages apply to
PC-BSD as well.

First of all, the FreeBSD license
is unrestrictive and user-friendly, and
consists of only a couple of clauses. It
does not require people to make their
code changes public, which means
that you can take BSD licensed code,
change it, and sell it as closed source
software. The same is not true for Linux,
another popular open source OS, which
is released under the GPL (GNU Public
License) and requires that changes be
contributed back to the source code. As
a result, when Linux code is modified,
these changes are not proprietary.

Furthermore, FreeBSD eliminates
most dependency issues through the
FreeBSD Ports System. The Ports System
is a software management infrastructure
for easily installing, upgrading, and
maintaining software on the system.

With PC-BSD the PBI's can be
installed in addition to the over 18,000
ports of available applications. PBI's
are not part of the centralized repository
system. While the PC-BSD Project hosts
and maintains many popular programs
in PBI format, users can download
programs from anyone who has a PBI,
and anyone can build PBIs and host
them. This is different from Linux, where
software availability is mostly controlled
by the distro manufacturer.

Finally, FreeBSD is a centrally
developed and maintained operating
system, whereas Linux is a kernel
wrapped in mostly GNU userland utilities.
This means that with FreeBSD, a single
project comprised of various teams is
responsible for the kernel AND userland
while in Linux, userland utilities and kernel
versions are different from distribution to
distribution.Figure 1. Poulx School District

64 BSD 2/2008

let's talk

65www.bsdmag.org

Interview

Damien worked on the drivers,
reverse engineering and
building some of the code
that can now be found in

most free OSes, even OpenSolaris!
The work he did on the WPA

implementation follow a different design,
as the code runs in the kernel, and
provide a very clear way of configuration:
ifconfig.

You could setup WPA-PSK in station
mode with a simple line:

ifconfig ral0 wpa wpapsk \

0x0e8de50e2a614dbd83df61db3e042b39617

7e8cc8ef7e1f2e83e158a19ba5ea3

or a WPA2-PSK setup for access point
mode with:

ifconfig ral0 mediaopt hostap nwid

openbsd_ap chan 5 \

wpa wpaprotos wpa2 wpaciphers ccmp

wpagroupcipher ccmp wpapsk \

0x0e8de50e2a614dbd83df61db3e042b39617

7e8cc8ef7e1f2e83e158a19ba5ea3

Keep reading for the other cool details!

must fully master that code and be
very comfortable with it . We prefer to
not support a feature rather than import
code we cannot maintain. Although
this may be frustrated for our users
sometimes, this is a winning strategy
in the end.

Before beginning my work on
WPA, I studied various existing WPA
implementations (mostly wpa_supplicant,
hostapd and xsupplicant) but I did not like
their design so I decided to write my own
implementation from scratch, taking a
very different approach.

What differences do you see in
OpenBSD's WPA implementation
compared with other BSDs' ones?
Other BSDs use wpa_supplicant for client
mode and hostapd for AP mode.

The reason I chose to not go that
road is that wpa_supplicant and hostapd
are rather huge (in terms of lines of code)
and that they try to implement too many
things at the same time (802.1X, 802.11i,
EAPs).

I particularly did not like the way
those tools were reimplementing parts

Could you introduce yourself?
I am French, I'm 28 years old. I'm an
OpenBSD developer since 2004. I have
written numerous drivers for 802.11
wireless devices, and lately, I added
support for WPA-PSK (Wi-Fi Protected
Access using pre-shared keys) to our
generic 802.11 layer.

What type of difficulties did you have to
overcome to implement WPA/WPA2?
The reason it took a long time to
implement WPA in OpenBSD is that the
various standards that make WPA are
fairly complicated. It's a steep learning
curve.

Of course we could have thrown in
whatever existing WPA implementation
that would have made the trick but
this is not the way we operate in
OpenBSD.

OpenBSD tends to be more quality-
driven than feature-driven. Before we
import a large piece of code in the
base system, we must make sure
someone in OpenBSD can maintain
that code and can fix it should it break.
This means at least one developer

Interview
with Damien
Bergamini
OpenBSD developer

One of the most requested features for wireless networking should be part of OpenBSD 4.4. I am talking
about WPA, and I had the pleasure to interview Damien Bergamini, the developer who made a huge work
for OpenBSD wireless subsystem.

64 BSD 2/2008

let's talk

65www.bsdmag.org

Interview

of the 802.11 management entity
(MLME) in userspace. This is very
redundant with what we already do in
the kernel, and it requires that the kernel
implement hooks to let the userspace
play with the 802.11 management state
machine.

In OpenBSD, support for 802.11i is
fully implemented in the kernel (in our
generic 802.11 layer) because this is
the natural place to do it (this is where
we keep all the information and states
about APs and stations.) As a result, you
can setup a WPA-PSK network (AP or
client mode) without running any external
daemon.

You only need to know one command:
ifconfig.

However, in OpenBSD, we do not
support WPA-Enterprise yet, while other
BSDs support it. But this is something
I'm actively working on.

I did like to implement the 802.1X
PACP protocol in the kernel (both
supplicant and authenticator state
machines) for both wired and wireless
interfaces. Then I will implement some
of the most used EAPs.

Does running WPA in the kernel increase
the security risk?
Not at all. In this particular case, I
would say quite the opposite because
implementing the 4-way handshake
and group key handshake in userspace
require that you to let the userspace
control the 802.11 kernel state machine
which is very error-prone given that
the 802.11 state machine is quite
complicated and that not all drivers
handle all the possible state transitions
properly, especially those that
implement the 802.11 state machine
in firmware.

Considering that your implementation
runs in the kernel, do you see any
performance advantage over the other
implementations?
No. Except for software encryption/
decryption (that other OSes do in the
kernel too), WPA is not performance
critical.

It consists in the exchange of a small
number of packets (4 for the 4-way
handshake) between the supplicant (the
client) and the authenticator (the access
point). This does not require any special
optimization.

Is there any work on performance
improvements or power saving for wifi
drivers?
I'm currently adding hardware crypto
support for more chipsets. This should
help a bit performance-wise. I'm also
working on supporting stations in power-
save mode when operating as an access
point.

I remember that you used only software
crypto for WEP, instead of the features
included in some chips. Is this still true?
What about modern WPA-compliant
chips? What advantages do you have
using software crypto and opensource
drivers?
That is not exactly true. Some drivers
were already doing WEP in hardware,
however, because CCMP is more costly
to do in software, it will become critical
to support hardware crypto for more
devices. I have already implemented
hardware crypto for TKIP and CCMP in
the Ralink RT2860 driver to make sure
our net80211 design was clean enough
to allow for both types of crypto.

I am now working on other drivers,
like wpi(4) and iwn(4). Some crypto
engines are so badly designed though
that supporting them will offer little to
no performance benefit (because, for
instance, even if the device supports
scatter/gather, the crypto engine
does not, and you have to copy every
outgoing packet). For these devices we
will continue to use the software crypto
code.

OpenBSD developed a lot of drivers for
wireless chips using reverse engineering.
We saw some exploits for closed-source
drivers provided by vendors. Were
your drivers vulnerable? What type of
measures did you adopt to improve
wireless drivers security?
Offering open-source drivers does not
guarantee that no vulnerability will ever
be found. However, you do not need to
wait for the vendor (or the developer that
wrote the driver under an NDA) to fix that
vulnerability.

How are your relationships with vendors?
Do they offer you access to datasheets
and specs without NDA agreements? Do
they let you redistribute their firmwares?
Only a few vendors provide datasheets
without NDAs. Ralink is one of them. Zydas

also provided some documentation for
their USB chipsets before they got bought
by Atheros.

There was some documentation
available for the earliest Realtek chipsets
too, but I'm not sure it's still the case for
their latest chipsets. Some vendors, like
Intel or Marvell, provide open-source
Linux drivers but no documentation. The
worst players are Atheros and Broadcom,
though things may change with Atheros
in the future.

From a security point of view what setup
would you suggest for a wireless network?
For a home network, WPA2-PSK (with
256-bit AES) is a good compromise
between security and ease of
configuration. WPA2-Enterprise or IPSEC
are equally good solutions for enterprise
networks.

What reasons do you see to deploy an
OpenBSD based access point instead of
using one of those cheap little boxes?
Of course, you can always use a
classical access point as a bridge if
you want, but it is a bit of an overkill if
you want to build something small. With
the support of more embedded systems
in OpenBSD (armish, socppc ports), it
becomes even more important to have
a good support for AP mode. This way
you can for example setup a smaller
NAS with Wi-Fi support, and all the good
things that OpenBSD brings to you (pf,
etc).

Any thought on 802.11n?
802.11n is not yet standardized at the
time of this writing [May 2008]. It is not yet
supported in OpenBSD.

Although we already have drivers
for 802.11n devices, they only support
802.11g mode for now. Some parts
of the 802.11n specification are very
complicated to implement (like block
ACK sessions) while the performance
gain in a real-life setup is not clear at
all.

I don't buy the argument about the
improved speed in 802.11n at all. Anyway,
I'm planning to work on 802.11n at some
point, but there are more important
things to do first, like multi-bss support
and improved power management.

by Federico Biancuzzi ed@bsd.it

66 BSD 2/2008

column

Apple’s emergence into the BSD
Community has been a long
and storied one. While they are
quick to claim membership as

they have derived much of Mac OS X
from various points, most notably from
FreeBSD 5, I often wonder how much
have they returned. Granted, there are not
any requirements for such participation in
the community, which is a major facet of
BSD licensing as a whole. Still, it would
be nice to cite some examples of their
contributions, and respectfully offer some
suggestions.

One of the most often overlooked
aspects of Apple’s BSD lineage is the fact
that, as far as Open Source is concerned,
they single handedly launched FreeBSD
into the stratosphere, numbers-wise. BSD
can accordingly claim more desktop
installations than any other freely available
OS, including all of the Linuxes combined.
However, I am still left wondering, “Is this
enough?”. This is especially so since Mac
OS X, like DragonFlyBSD, is a fork off
of FreeBSD 5, which has been officially
deprecated as of the release of FreeBSD
7. I am not saying that either of these
products are flawed, just that I have to
wonder what Apple’s game plan is.

When Apple made the shift to FreeBSD
5 as the base of their OS, many pondered
the possibility that Apple would simply
evolve their product along the line as
FreeBSD itself evolved. Considering that
they use their own version of the Mach
kernel, there may be little benefit for them
to incorporate FreeBSD’s major evolutions
into their product. Yet it would seem that with
the switch to an Intel-based architecture, it
would be possible one day to run FreeBSD
with an Apple UI; and that truly would be
interesting. Considering that they were a bit
tardy with the Leopard release, it certainly

from the X community. With Leopard
Apple made the shift from XFree86 to
X.org which was not a happy transition, to
say the least. Here again Apple does not
treat X as a part of the OS with regards
to updates, and users had to wait for
quite a while before the version supplied
with Leopard was stable. Fact of the
matter is numerous users installed the
version found in Tiger in lieu of the latter
version so that they could continue to
run their favorite applications. This is yet
another example why Apple should just
incorporate the ports directly into the
OS. Were they to provide the necessary
libraries, components and patches, users
could keep their systems up to date
without issue.

To be fair, I have read that Apple has
been kind enough to donate hardware
on occasion to Open Source projects.
However, I must admit they do not make
that list of recipients well known. To sum
up their involvement in the Open Source
community, it appears to be little more
than a marketing ploy, which is truly sad.

If you compare their involvement to
that of IBM or NOVELL, who both have a
clear track record, Apple would look more
like a SUN rather than a true Open Source
contributor. Sun has eked ahead only
slightly with the recent purchase of MySQL
and the decision to keep it open (for now).
Finally, sad as it is to say, Microsoft has
a more clearly defined stance on Open
Source; they made no bones about using
FreeBSD’s TCP/IP networking stack for
years without any intentions of giving
anything back to the community.

All in all, I must ponder what sorts of
leaps and bounds could be made if Apple
worked more closely with the community.

Community membership application
status: Probationary Approval

might help reduce their overhead if they
were to adopt this approach.

Another interesting point would be
to fully incorporate the MacPorts into the
base OS right from the installation. This
could be especially true on their server
version of the product, where it should
be a trivial matter to update the installed
version of, say PHP, to add a new feature
not bundled in the original installation. Do
not even get me started on sed, which
is version 0.1 from 1987. While Mac OS
X updates fix the items they have added
to the OS and eventually tie up the loose
ends in security issues, they typically do
not address that lagging UNIX under-belly.

Personally I would prefer the FreeBSD
model where you install the OS bare-
bones. Then install things like Apache
from the ports rather than have them
installed by default, as you would on
other overly bloated operating systems.
The obvious benefits of this approach
are well-documented and are discussed
to death on the various FreeBSD mailing
lists and forums.

Another Open Source project to feel
the touch of Apple’s broad borrowing is
the KDE project, as they have adopted
the KHTML engine, which is the basis of
the Konqueror and their Safari browser.
Here again I can not find a direct example
where Apple has done anything more
than tell the world Hey we use KHTML as
the basis for our browser thus drawing
attention to the project that it would not
have otherwise garnered on its own. What
is truly interesting here is that a tangent
of the KDE project has devoted itself to a
natively deployable version on Mac OS X
without the requirement of X11 at all.

This, of course, leads me to Apple’s
touting the ability of running thousands
of ready made applications available

Mac OS X the other BSD
Mikel King

In the next issue:

A complete guide to PC-BSD
l Enable prisons in PCBSD for maximum horsepower
l Virtualisation in PC-BSD
and much more...

Next issue of BSD magazine available in December !

